
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2009

• 5074: Proposed by Kenneth Korbin, New York, NY

Solve in the reals: √
25 + 9x + 30

√
x−

√
16 + 9x + 30

√
x− 1 =

3
x
√

x
.

• 5075: Proposed by Kenneth Korbin, New York, NY

An isosceles trapezoid is such that the length of its diagonal is equal to the sum of the
lengths of the bases. The length of each side of this trapezoid is of the form a + b

√
3

where a and b are positive integers.
Find the dimensions of this trapezoid if its perimeter is 31 + 16

√
3.

• 5076: Proposed by M.N. Deshpande, Nagpur, India

Let a, b, and m be positive integers and let Fn satisfy the recursive relationship

Fn+2 = mFn+1 + Fn, with F0 = a, F1 = b, n ≥ 0.

Furthermore, let an = F 2
n + F 2

n+1, n ≥ 0. Show that for every a, b, m, and n,

an+2 = (m2 + 2)an+1 − an.

• 5077: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all triplets (x, y, z) of real numbers such that

xy(x + y − z) = 3,
yz(y + z − x) = 1,
zx(z + x− y) = 1.


• 5078: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”

Rome, Italy

Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

a√
b(b + c)

+
b√

c(a + c)
+

c√
a(a + b)

≥ 3
2

1√
ab + ac + cb

.
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• 5079: Proposed by Ovidiu Furdui, Cluj, Romania

Let x ∈ (0, 1) be a real number. Study the convergence of the series

∞∑
n=1

x
sin

1
1

+ sin
1
2

+ · · ·+ sin
1
n .

Solutions

• 5056: Proposed by Kenneth Korbin, New York, NY

A convex pentagon with integer length sides is inscribed in a circle with diameter
d = 1105. Find the area of the pentagon if its longest side is 561.

Solution by proposer

The answer is 25284.

The sides are 561, 169, 264, 105, and 47 (in any order).

Check: arcsin
(

561
d

)
= arcsin

(
169
d

)
+ arcsin

(
264
d

)
+ arcsin

(
105
d

)
+ arcsin

(
47
d

)
.

Let AB = 561, BC = 105, CD = 47, DE = 169, EA = 264. Then Diag AC = 468.

Check: arcsin
(

468
d

)
= arcsin

(
47
d

)
+ arcsin

(
169
d

)
+ arcsin

(
264
d

)
.

Area 4ABC =
√

567 · 99 · 462 · 6 = 12474.

Diag AD = 425.

Check: arcsin
(

425
d

)
= arcsin

(
169
d

)
+ arcsin

(
264
d

)
.

Area 4ACD =
√

470 · 45 · 423 · 2 = 4230, and
Area 4ADE =

√
429 · 260 · 165 · 4 = 8580.

Area pentagon = 12474 + 4230 + 8580 = 25284.

Editor’s comments: Several solutions to this problem were received each claiming, at
least initially, that the problem was impossible. I sent these individuals Ken’s proof and
some responded with an analysis of their errors. Brian Beasley of Clinton, SC
responded as follows:

“My assumption was that the inscribed pentagon was large enough to contain the center
of the circle, so that I could subdivide the pentagon into five isosceles triangles, each
with two radii as sides along with one side of the pentagon. But this pentagon is very
small compared to the circle; it does not contain the center of the circle, and the ratio of
its area to the area of the circle is only bout 2.64%. Attached is a rough diagram with
two attempts to draw such an inscribed pentagon.”
“This has been a fascinating exercise! I found a Wolfram site and a Monthly paper with
results about cyclic pentagons: <http://mathworld.wolfram.com/CyclicPentagon.html>
and Areas of Polygons Inscribed in a Circle, by D. Robbins, American Mathematical
Monthly, 102(6), 1995, 523-530.”
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“I salute Ken for creating this problem and for finding the arcsine identities to make it
work.”

David Stone and John Hawkins of Statesboro GA wrote: “Using MATLAB, we
found the following four cyclic pentagons which have a side of length 561 and can be
inscribed in a circle of diameter 1105. The first one has longest side 561, as required by
the problem.”

561 264 169 105 47 Area = 25284
817 663 663 561 520 Area = 705276
817 744 576 561 520 Area = 699984
817 744 663 561 425 Area = 692340

• 5057: Proposed by David C. Wilson, Winston-Salem, N.C.

We know that 1 + x + x2 + x3 + · · · =
∞∑

k=0

xk =
1

1− x
where −1 < x < 1.

Find formulas for
∞∑

k=1

kxk,
∞∑

k=0

k2xk,
∞∑

k=0

k3xk,
∞∑

k=0

k4xk, and
∞∑

k=0

k5xk.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

By differentiating the geometric series when |x| < 1,

∞∑
k=1

xk =
1

1− x

⇒
∞∑

k=1

kxk−1 =
1

(1− x)2

⇒
∞∑

k=1

kxk =
x

(1− x)2
(1)

Similarly, by differentiating (1),

∞∑
k=1

k2xk−1 =
1 + x

(1− x)3

⇒
∞∑

k=1

k2xk =
x(1 + x)
(1− x)3

.

Continuing this technique, it can be shown that

∞∑
k=1

k3xk =
x(x2 + 4x + 1)

(1− x)4
∞∑

k=1

k4xk =
x(x3 + 11x2 + 11x + 1)

(1− x)5
∞∑

k=1

k5xk =
x(x4 + 26x3 + 66x2 + 26x + 1)

(1− x)6

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy
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The sums are respectively:

x

(1− x)2
,

x(x + 1)
(1− x)3

,
x(x2 + 4x + 1)

(1− x)4
,

x(x3 + 11x2 + 11x + 1)
(1− x)5

,
x(x4 + 26x3 + 66x2 + 26x + 1)

(1− x)6

One might invoke standard theorems about the differentiability of convergent power
series, but we propose the following proof which we believe is attributed to Euler.
We define

Sp(x) .=
∞∑

k=1

kpxk, p = 1, . . . , 5 and employ
∞∑

k=1

xk =
( ∞∑

k=0

xk
)
− 1 =

1
1− x

− 1 =
x

1− x
.

To compute
∞∑

k=0

xk − 1 =
1

1− x
we proceed as follows:

P
.=
∞∑

k=0

xk = 1 + x(1 + x + x2 + . . .) = 1 + xP =⇒ P =
1

1− x
.

S1(x) :

∞∑
k=1

kxk =
∞∑

k=2

(k − 1)xk +
∞∑

k=0

xk − 1 = x
∞∑

n=1

nxn +
1

1− x
− 1 or

(1− x)
∞∑

k=1

kxk =
x

1− x
=⇒

∞∑
k=1

kxk =
x

(1− x)2
.

S2(x) :

∞∑
k=1

k2xk =
∞∑

k=2

(k − 1)2xk + 2
∞∑

k=1

kxk −
∞∑

k=1

xk or

∞∑
k=1

k2xk − x
∞∑

n=1

n2xn = 2
∞∑

k=1

kxk −
∞∑

k=1

xk

=
2x

(1− x)2
− x

(1− x)
=⇒ S2(x) =

x(x + 1)
(1− x)3

.

S3(x) :

∞∑
k=1

k3xk =
∞∑

k=2

(k − 1)3xk + 3
∞∑

k=1

k2xk − 3
∞∑

k=1

kxk +
∞∑

k=1

xk

= x
∞∑

k=1

k3xk + 3
∞∑

k=1

k2xk − 3
∞∑

k=1

kxk +
∞∑

k=1

xk or

(1− x)
∞∑

k=1

k3xk = 3S2(x)− 3S1(x) +
x

1− x
=⇒ S3(x) =

x(x2 + 4x + 1)
(1− x)4

.

S4(x) :
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∞∑
k=1

k4xk =
∞∑

k=2

(k − 1)4xk + 4
∞∑

k=1

k3xk − 6
∞∑

k=1

k2xk + 4
∞∑

k=1

kxk −
∞∑

k=1

xk

= x
∞∑

k=1

k4xk + 4
∞∑

k=1

k3xk − 6
∞∑

k=1

k2xk + 4
∞∑

k=1

kxk −
∞∑

k=1

xk or

(1−x)
∞∑

k=1

k4xk = 4S3(x)− 6S2(x)+4S1(x)− x

1− x
=⇒ S4(x) =

x(x3 + 11x2 + 11x + 1)
(1− x)5.

S5(x) :

∞∑
k=1

k5xk =
∞∑

k=2

(k − 1)5xk + 5
∞∑

k=1

k4xk − 10
∞∑

k=1

k3xk + 10
∞∑

k=1

k2xk − 5
∞∑

k=1

kxk +
∞∑

k=1

xk

= x
∞∑

k=1

k5xk + 5S4(x)− 10
∞∑

k=1

k3xk + 10
∞∑

k=1

k2xk − 5
∞∑

k=1

kxk +
∞∑

k=1

xk or

(1− x)
∞∑

k=1

k5xk = 5S4(x)− 10S3(x) + 10S2(x)− 5S1(x) +
x

1− x

=⇒ S5(x) =
x(x4 + 26x3 + 66x2 + 26x + 1)

(1− x)6
.

Also solved by Matei Alexianu (student, St. George’s School), Spokane,WA;
Brian D. Beasley, Clinton, SC; Sully Blake (student, St. George’s School),
Spokane,WA; Michael Brozinsky, Central Islip, NY; Mark Cassell (student,
St. George’s School), Spokane,WA; Richard Caulkins (student, St. George’s
School), Spokane,WA; Pat Costello, Richmond, KY; Michael C. Faleski,
University Center, MI; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; John Hawkins and David Stone (jointly),
Statesboro, GA; David E. Manes, Oneonta, NY; John Nord, Spokane, WA;
Nguyen Pham and Quynh Anh (jointly; students, Belarusian State
University), Belarus; Boris Rays, Brooklyn, NY, and the proposer.

• 5058: Proposed by Juan-Bosco Romero Márquez, Avila, Spain.

If p, r, a,A are the semi-perimeter, inradius, side, and angle respectively of an acute
triangle, show that

r + a ≤ p ≤ p

sinA
≤ p

tan
A

2

,

with equality holding if, and only if, A = 90o.

Solution by Manh Dung Nguyen,(student, Special High School for Gifted
Students) HUS, Vietnam
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1) r + a ≤ p :

tan
A

2
≤ 1 for all A ∈ (0, π/2], so by the well known formula tan

A

2
=

(p− b)(p− c)
p(p− a)

we

have (p− b)(p− c) ≤ p(p− a). Letting S be the area of 4ABC and using Heron’s
formula,

S2 = p2r2 = p(p− a)(p− b)(p− c) ≤ p2(p− a)2. Thus

r ≤ p− a or r + a ≤ p.

2) p ≤ p
sinA

:

We have sinA ≤ 1 for all A ∈ (0, π), so p ≤ p

sinA
.

3)
p

sinA
≤ p

tan
A
2

:

For A ∈ (0, π/2] we have

sinA− tan
A

2
= sin

A

2

(
2 cos

A

2
− 1

cos
A

2

)
=

sin
A

2
cos A

cos
A

2

≥ 0. Hence

p

sinA
≤ p

tan
A

2

.

Equality holds if and only if A = 900.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Scott H. Brown, Montgomery, AL; Bruno
Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; John
Hawkins and David Stone (jointly), Statesboro, GA; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

• 5059: Proposed by Panagiote Ligouras, Alberobello, Italy.

Prove that for all triangles ABC

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6

√
3 + 1
8

.

Editor’s comment: Many readers noted that the inequality as stated in the problem is

incorrect. It should have been
3(2

√
3 + 1)
2

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We need the following inequalities

sin(A) + sin(B) + sin(C) ≥ sin(2A) + sin(2B) + sin(2C) (1)

sin(A) + sin(B) + sin(A) ≤ 3
√

3
2

(2)
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sin(
A

2
) + sin(

B

2
) + sin(

C

2
) ≤ 3

2
(3)

Inequalities (1), (2), (3) appear respectively as inequalities 2.4, 2.2(1),and 2.9 in
Geometric Inequalities by O. Bottema, R.Z. Dordevic, R.R. Janic, D.S. Mitrinovic, and
P.M. Vasic, (Groningen), 1969.

It follows from (1),(2),(3) that

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 3(2

√
3 + 1)
2

.

Solution 2 by John Hawkins and David Stone, Statesboro, GA

We treat this as a Lagrange Multiplier Problem: let

f(A,B, C) = sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
.

We wish to find the maximum value of this function of three variables, subject to the
constraint g(A,B, C) : A + B + C = π. That is, (A,B, C) lies in the closed, bounded,
triangular region in the first octant with vertices on the coordinate axes:
(π, 0, 0), (0, π, 0), (0, 0, π).

By taking partial derivatives with respect to the variables A,B, and C and setting

∇f(A,B, C) = λ∇g(A,B, C) or
〈

fA, fB, fC

〉
= λ

〈
gA, gB, gC

〉
= λ〈1, 1, 1〉, we are lead

to the system 

2 cos(2A) + cos(A) + 1
2 cos

(
A

2

)
= λ

2 cos(2B) + cos(B) + 1
2 cos

(
B

2

)
= λ

2 cos(2C) + cos(C) + 1
2 cos

(
C

2

)
= λ

It is clear that one solution is to let A = B = C. We claim there are no others in our
domain.

To show this, we investigate the fuction h(θ) = 2 cos(2θ) + cos(θ) +
1
2

cos
(

θ

2

)
on the

interval 0 ≤ θ ≤ π. Finding a solution to our system is equivalent to finding values A,B
and C such that h(A) = h(B) = h(C) = λ.

We determine that h(0) = 3.5; then the function h decreases, passing through height 1
at (0.802,1), reaching a minimum at (1.72,−1.73), then rising to height 1 at π. No
horizontal line crosses the graph three times, so we cannot find distinct A,B and C with
h(A) = h(B) = h(C). In fact, because the function is decreasing from 0 to 1.72, and
increasing from 1.72 to π, any horizontal line crossing the graph more than once must
do so after θ = 0.802. That is all of A,B and C would have to be greater than 0.802,
and at least one of them greater than 1.72. Because 0.802 + 0.802 + 1.72 = 3.324 > π,
this violates the condition that A + B + C = π.
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Thus the maximum value occurs when A = B = C =
π

3
:

f

(
π

3
,
π

3
,
π

3

)
= 3 sin

(
2π

3

)
+ 3 sin

(
π

3

)
+ 3 sin

(
π

6

)
= 6

√
3

2
+

3
2

=
6
√

3 + 3
2

.

This method tells us that the only point on the plane A + B + C = π (in the first
octant) where the function f achieves a maximum value is the point we just found. We
must check the boundaries for a minimum.

Note that f(π, 0, 0) = 1 = f(0, π, 0) = f(0, 0, π). That is f achieves the lower bound 1 at
the vertices of our triangular region.

We also consider the behavior of the function f along the edges of this region. For
instance, in the AB-plane where C = 0, we have A + B = π. Then

f(A, π −A, 0) = 2 sinA + sin
(

A

2

)
+ cos

(
A

2

)
, which has value 1 (of course) at the

endpoints A = 0 and A = π, and climbs to a local maximum value of 2 +
√

2 when

A =
π

2
. This value is less than f

(
π

3
,
π

3
,
π

3

)
.

There is identical behavior along the other two edges.

In summary, the function f achieves an absolute maximum of
6
√

3 + 3
2

at the interior

point A = B = C =
π

3
, and f achieves its absolute minimum of 1 at the vertices.

However, for a non-degenerate triangle ABC

1 < sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6

√
3 + 3
2

,

and the lower bound is never actually achieved.

Solution 3 by Tom Leong, Scranton, PA

This inequality follows from summing the three known inequalities labeled (1), (2), and
(3) below. Both sinx and sin

x

2
are concave down on (0, π). Applying the AM-GM

inequality followed by Jensen’s inequality gives

sinA sinB sinC ≤
(

sinA + sinB + sinC

3

)3

≤ sin3
(

A + B + C

3

)
=

3
√

3
8

(1)

and

sin
A

2
sin

B

2
sin

C

2
≤

sin
A

2
+ sin

B

2
+ sin

C

2
3


3

≤ sin3
(

A + B + C

6

)
=

1
8
. (2)

For the third inequality, we use the AM-GM inequality along with the identity

sin 2A + sin 2B + sin 2C = 4 sin A sin B sinC

and (1):

sin 2A sin 2B sin 2C ≤
(

sin 2A + sin 2B + sin 2C

3

)3

=
(

4 sinA sin B sinC

3

)3
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≤
(

4
3
· 3
√

3
8

)3

=
3
√

3
8

. (3)

Equality occurs if and only if A = B = C = π/3 as it does in every inequality used
above.

Also solved by Brian D. Beasley, Clinton, SC; Scott H. Brown, Montgomery,
AL; Michael Brozinsky, Central Islip, NY; Elsie Campbell, Dionne Bailey,
and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Manh Dung Nguyen (student, Special High School for Gifted
Students) HUS, Vietnam; Boris Rays, Brooklyn, NY, and the proposer.

• 5060: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Show that there exists c ∈ (0, π/2) such that∫ c

0

√
sinx dx + c

√
cos c =

∫ π/2

c

√
cos x dx + (π/2− c)

√
sin c

Solution 1 by Paul M. Harms, North Newton, KS

Let

f(x) =
∫ x

0

√
sin t dt + x

√
cos x−

∫ π/2

x

√
cos t dt− (

π

2
− x)

√
sinx where x ∈ [0, π/2].

For x ∈ [0, π/2], each term of f(x) is continuous including the integrals of continuous
functions. Then f(x) is continuous for x ∈ [0, π/2]. For any x ∈ [0, π/2], the two
integrals of nonnegative functions are positive except when the lower limit equals the
upper limit. We have

f(0) = −
∫ π/2

0

√
cos t dt < 0 and f(π/2) =

∫ π/2

0

√
sin t dt > 0.

Since f(x) is continuous for x ∈ [0, π/2], f(0) < 0 and f(π/2) > 0, there is at least one
c ∈ (0, π/2) such that

f(c) = 0 =
∫ c

0

√
sin t dt + c

√
cos c−

∫ π/2

c

√
cos t− (π/2− c)

√
sin c.

This last equation is equivalent to the equation in the problem.

Solution 2 by Michael C. Faleski, University Center, MI

The given equation will hold if the integrals and their constants of integration are the
same on each side of the equality.

For the integral
∫ c

0

√
sinxdx we substitute x =

π

2
− y to obtain

∫ c

0

√
sinxdx =

∫ π/2−c

π/2

√
sin
(

π

2
− y

)
(−dy) =

∫ π/2

π/2−c

√
cos ydy.

We substitute this into the original statement of the problem and equate the integrals
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on each side of the equation.∫ π/2

π/2−c

√
cos ydy =

∫ π/2

c

√
cos ydy

For equality to hold the lower limits of integration must be the same; that is,
π

2
− c = c =⇒ c =

π

4
We now check the constants of integration on each side of the equality when c =

π

4
, and

we see that they are equal.
π

4

(
1√
2

)1/2

=
π

4

(
1√
2

)1/2

Hence, the value of c =
π

4
satisfies the original equation.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie, and
Andrew Siefker (jointly), San Angelo, TX; Brian D. Beasley, Clinton, SC;
Bruno Salgueiro Fanego, Viveiro, Spain; Ovidiu Furdui, Cluj, Romania;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Nguyen
Pham and Quynh Anh (jointly; students, Belarusian State University),
Belarus; Angel Plaza, Las Palmas, Spain; Paolo Perfetti, Mathematics
Department, University “Tor Vergata,” Rome, Italy; David Stone and John
Hawkins (jointly) Statesboro, GA , and the proposer.

• 5061: Michael P. Abramson, NSA, Ft. Meade, MD.

Let a1, a2, . . . , an be a sequence of positive integers. Prove that
n∑

im=1

im∑
im−1=1

· · ·
i2∑

i1=1

ai1 =
n∑

i=1

(
n− i + m− 1

m− 1

)
ai.

Solution by Tom Leong, Scranton, PA

We treat the a’s as variables; they don’t necessarily have to be integers. Fix an i,
1 ≤ i ≤ n, and imagine completely expanding all the sums on the lefthand side. We wish
to show that, in this expansion, the number of times that the term ai appears is(

n− i + m− 1
m− 1

)
. Now each term in this expansion corresponds to some m-tuple of

indices in the set

I = {(i1, i2, . . . , im) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n}.

We want to count the number of elements of I of the form (i, i2, . . . , im). Equivalently,
using the one-to-one correspondence between I and

J = {(j1, j2, . . . , jm) : 1 ≤ j1 < j2 < · · · < jm ≤ n + m− 1}

given by

(i1, i2, . . . , im) ↔ (j1, j2, . . . , jm) = (i1, i2 + 1, i3 + 2 . . . , im + m− 1),

we wish to count the number elements of J of the form (i, j2, . . . , jm). This number is
simply the number of (m− 1)-element subsets of {i + 1, i + 2, . . . , n + m− 1} which is

just

(
n− i + m− 1

m− 1

)
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain and the proposer.
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