
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2012

• 5218: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that,

2x− y −
√

3x2 − 3xy + y2 = 2013

with (x, y) = 1.

• 5219: Proposed by David Manes and Albert Stadler, SUNY College at Oneonta,
Oneonta, NY and Herrliberg, Switzerland (respectively)

Let k and n be natural numbers. Prove that:

n∑
j=1

cosk
(

(2j − 1)π

2n+ 1

)
=



2n+ 1

2k+1

(
k

k/2

)
− 1

2
, k even

1

2
, k odd.

• 5220: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22 . . . and are generally defined by

Pn =
n(3n− 1)

2
, ∀n ≥ 1. The triangular numbers begin 1, 3, 6, 10, . . . and are generally

defined by Tn =
n(n+ 1)

2
,∀n ≥ 1. Find the greatest common divisor, gcd(Tn, Pn).

• 5221: Proposed by Michael Brozinsky, Central Islip, NY

If x, y and z are positive numbers find the maximum of√
(x+ y + z) · xyz

(x+ y)2 + (y + z)2 + (x+ z)2
.

• 5222: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain
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Calculate without the aid of a computer the following sum

∞∑
n=0

(−1)n (n+ 1)(n+ 3)

(
1

1 + 2
√

2i

)n
, where i =

√
−1.

• 5223: Proposed by Ovidiu Furdui,Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

a) Find the value of

∞∑
n=0

(−1)n
(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)
.

b) More generally, if x ∈ (−1, 1] is a real number, calculate

∞∑
n=0

(−1)n
(
xn+1

n+ 1
− xn+2

n+ 2
+
xn+3

n+ 3
− · · ·

)
.

Solutions

• 5200: Proposed by Kenneth Korbin, New York, NY

Given positive integers (a, b, c, d) such that,

(a+ b+ c+ d)2 = 2
(
a2 + b2 + c2 + d2)

with a < b < c < d. Find positive integers x, y and z such that

x =
√
ab+ ad+ bd−

√
ab+ ac+ bc,

y =
√
bc+ bd+ cd−

√
bc+ ab+ ac,

z =
√
bc+ bd+ cd−

√
ac+ ad+ cd.

Solution by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The first equation can be treated as a quadratic in d and solved:

d = (a+ b+ c)± 2
√
ab+ ac+ bc.

The simplest way to force d to be an integer is to find a, b and c such that the
discriminate ab+ ac+ bc is a square. (Note that we must use the + sign, because the
negative choice would make d < c.) (Note also that we could cast a slightly wider net
and look for a, b and c such that ab+ ac+ bc has the form n2/4.)

Suppose ab+ ac+ bc = N2, so that d = (a+ b+ c) + 2N . Then we need
x =
√
ab+ ad+ bd−N to be an integer, so ab+ ad+ bd must be a square. Successively,

bc+ bd+ cd and ac+ ad+ cd must also be squares.
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Thus we look for values of a, b, c and d such that ab+ ac+ bc, ab+ ad+ bd, bc+ bd+ cd
and ac+ ad+ cd are all squares.

Surprisingly, there are many such. We used MATLAB to find a sampling and conjecture
that there are infinitely many of them. The smallest set is a = 1, b = 4, c = 9, d = 28
which give x = 5, y = 13, z = 3.

Editor’s note: David and John then listed about 145 different 4-tuplets (a, b, c, d) which
produce positive integer values for x, y, z. Listed below is a sampling of the values they
listed. 

a b c d x y z

1 4 9 28 5 13 3

1 4 12 33 5 16 3

1 4 28 57 5 32 3

1 4 33 64 5 37 3

1 4 57 96 5 61 3

1 4 64 105 5 68 3

1 4 96 145 5 100 3

1 9 16 52 10 25 8

1 9 28 72 10 37 8

1 9 52 108 10 61 8

1 9 72 136 10 81 8

1 12 24 73 13 36 11

...
...

...
...

...
...

...


David and John also asked if there were an infinite number of such integers and Paul
M. Harms of North Newton, KS answered this affirmatively in his solution by
showing that for any positive integer a, (a, b, c, d) = (a, 4a, 9a, 28a) satisfies the
conditions of the problem and yields positive integers for x, y, z. Note that Paul’s
parameterization of the simplest solution (1, 4, 9, 28) produces an infinite number of
solutions to the problem, but not all solutions. E.g., there is no integer value of a for
which (a, 4a, 9a, 28a) will give (1, 4, 12, 33, ), the second tuple in the above listing.

Most solvers showed that if the conditions of the problem are satisfied then two cases
exist: {

x = d− c, y = d− a, z = b− a if a+b+c−d > 0,
x = a+ b, y = b+ c, z = b− a if a+b+c−d < 0.

So the main question becomes: when is (a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2) solvable?
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Albert Stadler of Herrliberg, Switzerland stated that by labeling the equation
(a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2) as (1), we see that (1) is equivalent to
(a− b)2 + (c− d)2 = 2(a+ b)(c+ d). So if we choose odd integers u and v such that

u2 + v2 = 2rs with r ≥ u and s ≥ v

then r and s are both odd and (a, b, c, d) = ((r − u)/2, (r + u)/2, (s− v)/2, (s+ v)/2)
satisfies (1).

Also solved by Brian D. Beasley, Clinton, SC; Samuel Judge, Justin Wydra
and Karen Wydra (jointly, students at Taylor University), Upland, IN;
Adrian Naco, Polytechnic University, Tirana, Albania; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

• 5201: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with integer length sides where(
AB,BC,CD

)
= 1 and with AB < BC < CD.

The inradius, the circumradius, and both diagonals have rational lengths. Find the
possible dimensions of the quadrilateral.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

A Brahmagupta quadrilateral [1] is a cyclic quadrilateral with integer sides, integer
diagonals, and integer area. All Brahmagupta quadrilaterals with sides a, b, c, d,
diagonals e, f , area K, and circumradius R can be obtained by clearing denominators
from the following expressions involving rational parameters t, u, and v:

a =

(
t(u+ v) + 1− uv

)(
u+ v − t(1− uv)

)
,

b = (1 + u2)(v − t)(1 + tv),

c = t(1 + u2)(1 + v2),

d = (1 + v2)(u− t)(1 + tv),

e = u(1 + t2)(1 + v2),

f = v(1 + t2)(1 + u2),

K =

∣∣∣∣uv(2t(1− uv)− (u+ v)(1− t2)
)(

2(u+ v)t+ (1− uv)(1− t2)
)∣∣∣∣,

4R = (1 + u2)(1 + v2)(1 + t2).

(Source: http://en.wikipedia.org/wiki/Cyclic quadrilateral; we have corrected a minor
slip in the formula for K as we must take the absolute value of the defining expression
of K.)

The condition max

(
0,
uv − 1

u+ v

)
< t < min(u, v) ensures that a > 0, b > 0, c > 0, and

d > 0.
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If the cyclic quadrilateral is in addition tangential (as in the problem statement) then
a+ c = b+ d. So ,

t+ tu2 + 2tuv − u2v + t2u2v + tv2 − uv2 + t2uv2 − tu2v2 = 0, or,

t =

(uv − 1)(uv + 1)− (u+ v)2 +

√
(1 + u2)(1 + v2)

(
(1 + uv)2 + (u+ v)2

)
2uv(u+ v)

There are many tuples (u, v) of rational numbers such that√
(1 + u2)(1 + v2)

(
(1 + uv)2 + (u+ v)2

)
is rational. Here are a few examples:
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t u v

31/384 4/3 124/957

31/384 4/3 496/3828

1443/1276 4/3 1914/248

1443/1276 4/3 7656/992

93/1924 6/8 124/957

93/1924 6/8 496/3828

216/319 6/8 1914/248

44/273 14/48 156/133

171/1372 14/48 266/312

31/384 16/12 124/957

1443/1276 16/12 1914/248

2816/3705 20/21 912/215

93/1924 24/32 124/957

896/1053 24/7 156/133

152/231 24/7 266/312

896/1053 24/7 624/532

896/1053 96/28 156/133

2625/1664 140/51 260/69


In what follows we consider only the first entry in this table.

The triple (t, u, v) = (31/384, 4/3, 124/957) yields the quadruple

(a, b, c, d) =

(
23280625

17639424
,

13885495975

101285572608
,

721699375

3165174144
,
447919225

317509632

)
.

Clearing denominators yields

(a, b, c, d) = (143550, 14911, 24800, 153439)
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which is equivalent to

(a
′
, b
′
, c
′
, d
′
) = (14911, 24800, 153439, 143550).

Obviously a
′
< b

′
< c

′
and these numbers are coprime.

We see that a
′
+ c

′
= b

′
+ d

′
, so the quadrilateral is tangential. We have

s =
(a+ b+ c+ d)

2
= 168350,

K =
√

(s− a)(s− b)(s− c)(s− d) = 2853965400 =
√
abcd,

r =
2K

a+ b+ c+ d
=
K

s
=

118668

7
,

R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

(s− a)(s− b)(s− c)(s− d)
=

3710425

48
,

e =

√
(ac+ bd)(ad+ bc)

ab+ cd
= 148417,

f =

√
(ab+ cd)(ac+ bd)

ad+ bc
=

7604641

193
.

References: [1] Sastry, K.R.S., “Brahmagupta quadrilaterals” Forum Geometricorum, 2,
2002, 167-173.

Solution 2 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We let b = AB, c = BC, d = CD, a = DA.

From Wolfram Math World at http://mathworld.wolfram.com/CyclicQuadrilateral.html
and http://mathworld.wolfram.com/Bicentri Quadrilateral.html, we find
for a bicentric quadrilateral with sides a, b, c, and d (in order around the quadrilateral),
having inradius r circumradius R and area A, semiperimeter s, the following conditions
must be fulfilled:

a+ c = b+ d,

A =
√
abcd =

√
(s− a)(s− b)(s− c)(s− d),

r =

√
abcd

s
,
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R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

abcd
=

1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

(s− a)(s− b)(s− c)(s− d)
.

Diagonal lengths are given by

√
(ab+ cd)(ac+ bd)

ad+ bc
and

√
(ad+ bc)(ac+ bd)

ab+ cd
.

We are requiring b < c < d (which also forces b < a < d), and (b, c, d) = 1, which forces
any three sides to be coprime.

Rationalizing the denominator in the expressions for the diagonals, we see that√
(ad+ bc)(ab+ cd)(ac+ bd) must be an integer if the diagonals are to have rational

length.

Since the circumradius must also be rational, we deduce that the area must also be
rational. Since it is the square root of a product of integers, it must be an integer.

Using the two formulas for the area A =
√

(s− a)(s− b)(s− c)(s− d) and A =
√
abcd

were s is its semiperimeter, we see that 8abcd+ 2(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2.
Thus the side lengths of the quadrilateral must satisfy the following:

• 8abcd+ 2(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2,
• a+ c = b+ d,
• the product abcd must be a perfect square,

•
√

(ad+ bc)(ab+ cd)(ac+ bd) must be an integer.

We wrote a MATLAB program to search through integers b, c, and d where b < c < d
from 1 to 4000 where these conditions were satisfied. The results give us the possible
dimensions of the cyclic quadrilaterals satisfying the requirements of the problem. We
found 7 solutions.

Note that the position of the side can be rearranged as long as opposing pairs have the
same sum. In the following table we have re-lettered to let a be the smallest entry.
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Results are shown below with rational numbers in lowest terms:

a b c d 2s Area Inradius circumradius diag1 diag2

21 85 140 204 450 7140 476/15 221/2 195 104

91 36 260 315 702 16380 140/3 325/2 280 125

190 231 399 440 1260 87780 418/3 1885/8 13650/29 377

2397 483 1316 1564 5760 1543668 128639/240 2405/2 22015/13 11544/5

4756 123 1428 3451 9758 1697892 348 7565/2 7743/5 414715/89

3256 629 1080 2805 7770 2490840 71224/111 1628 1653 15973/5

4828 1060 2125 3763 11776 6397100 3400 2414 3025 23551/5

2849 1480 2145 2184 8658 4444440 4070 3145/2 2975 15703/5

Comment: It is helpful to look at the prime-power decomposition of a, b, c and d. For
instance,

21 = 3 · 7, 85 = 5 · 17, 140 = 22 · 5 · 7, and 204 = 22 · 3 · 17.

Thus the product abcd = 24 · 32 · 52 · 72 · 172 is clearly a square. But recognizing such
patterns does not help us in generating solutions. In fact, it would seem so difficult to
satisfy the required conditions that no solutions could exist.

Conjectures: Each of our solutions consists of two even integers and two odd ones, so
that would be a reasonable conjecture. We suspect there are infinitely many solutions.

Also solved by the proposer.

• 5202: Proposed by Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Solve in <2, 
ln
(
x+
√
x2 + 1

)
= ln

1

y +
√
y2 + 1

2y−x
(
1− 3x−y+1

)
= 2x−y+1 − 1.

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany.

From the first equation, considering the fact that functions f(x) =
√
x2 + 1 + x and

g(x) =
√
x2 + 1− x are symmetric with respect to the y-axis, one can easily observe

that this is satisfied for x = −y.

Replacing x = −y in the second equation we have

22y
(
1− 3−2y+1

)
= 2−2y+1 − 1.
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Let’s consider the function f(y) = 22y
(
1− 3−2y+1

)
− 2−2y+1 + 1 and find the roots of

f(y) = 0. One can easily observe that f(0.5) = 0.

If y > 0.5 then

f(y) = 22y
(
1− 3−2y+1

)
− 2−2y+1 + 1 > 21

(
1− 30

)
− 20 + 1 = 0.

And if y < 0.5 then

f(y) = 22y
(
1− 3−2y+1

)
− 2−2y+1 + 1 < 21

(
1− 30

)
− 20 + 1 = 0.

So the only solution of the system is (x, y) = (−0.5, 0.5) and this is end of the proof.

Solution 2 by Kee-Wai Lau, Hong Kong, China

The simultaneous equations have the unique solution (x, y) =

(
−1

2
,
1

2

)
.

For s ∈ < let f(s) = 2

(
3s
)

+ 4s − 2s − 2, so that

df(s)

ds
= 2 ln 3

(
3s
)

+ ln 4

(
4s
)
− ln 2

(
2s
)
.

It is easy to check that the second equation of the system is equivalent to
f(1 + x− y) = 0. We need to show that f(s) = 0 if and only if s = 0.

Since f(s) < 2

(
3−1

)
+ 4−1 − 2 < 0 for s < −1 and f(0) = 0, it suffices to show that

f(s) is strictly increasing for s > −1.

But this follows immediately from the facts that

df(s)

ds
> 2 ln 3

(
3−1

)
+ln 4

(
4−1

)
−ln 2 > 0 for −1 < s ≤ 0, and

df (s)

ds
> 2 ln 3 > 0 for s > 0.

Hence 1 + x− y = 0 and the first equation of the system can now be written as

x+
√
x2 + 1 =

1

y +
√
y2 + 1

=
√
y2 + 1− y =

√
x2 + 2x+ 2− x− 1, or

(
2x+ 1 +

√
x2 + 1

)2

= x2 + 2x+ 2.

Expanding and simplifying the last equation, we obtain 2(2x+ 1)

(
x+
√
x2 + 1

)
= 0, so that

x = −1

2
and y =

1

2
as claimed.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Arcshx = ln

(
x+

√
x2 + 1

)
10



= ln
1

y +
√
y2 + 1

= ln 1− ln

(
y +

√
y2 + 1

)
= −Arshy = Arsh(−y) ⇐⇒

x = −y.

If x− y + 1 < 0, then 1− 3x−y+1 > 1− 30 = 0 and 2x−y+1 − 1 < 20 − 1 = 0. So, since

2y−x > 0, we have that 0 < 2y−x
(

1− 3x−y+1

)
= 2x−y+1 − 1 < 0, which is a contradiction.

And if x− y + 1 > 0, then 1− 3x−y+1 < 1− 30 = 0, and 2x−y+1 − 1 > 20 − 1 = 0, so, since

2y−x > 0, we have 0 > 2y−x
(

1− 3x−y+1

)
= 2x−y+1 − 1 > 0, which is a contradiction, so

x− y + 1 = 0.

Hence the given system is equivalent to

x+ y = 0
x− y = −1,

whose only solution in <2 is (x, y) = (−1/2, 1/2).

Solution 4 by David Manes, SUNY College at Oneonta, Oneonta, NY

The unique solution for the system of equations is x = −1

2
, y =

1

2
.

Note that ln
1

y +
√
y2 + 1

= ln

(√
y2 + 1− y

)
and the natural logarithm function is

one-to-one.

Therefore, x+
√
x2 + 1 =

√
y2 + 1− y. Squaring both sides of the equation yields

x
√
x2 + 1 + y

√
y2 + 1 = y2 − x2.

Squaring this equation one obtains

x2 + y2 + 2x2y2 = −2xy
√
x2 + 1

√
y2 + 1,

an equation that also implies that x and y have opposite signs. Finally, squaring this
equation, we get (

x2 − y2
)2

= 0 ⇐⇒ |x| = |y|.

Therefore, y = −x, since y = x is impossible. With y = −x, the second equations reduces to

1

2x

(
1− 32x+1

)
= 22x+1 − 1.
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If t = 2x+ 1, then this equation can be written as 4t + 2 · 3t − 2t = 2, whose only solution is

t = 0; hence, x = −1

2
and y =

1

2
as claimed.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro Spain
(two solutions); Paul M. Harms, North Newton, KS; Adrian Naco, Polytechnic
University, Tirana, Albania; Paolo Perfetti, Department of Mathematics, “Tor
Vergata Roma,” Italy; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5203: Proposed by Pedro Pantoja, Natal-RN, Brazil

Evaluate, ∫ π/4

0
ln

(
1 + sin2 2x

sin4 x+ cos4 x

)
dx.

Solution 1 by Marius Damian, Brăila, “Nicolae Balcescu” College, Brailia,
Romania and Neculai Stanciu, “George Emil Palade” Secondary School, Buzau,
Romania

First, we have:

1 =

(
sin2 x+ cos2 x

)2

= sin4 x+ cos4 x+ 2 sin2 x cos2 x = sin4 x+ cos4 x+
1

2
sin2 2x,

so

sin4 x+ cos4 x = 1− 1

2
sin2 2x.

Then the integral becomes:

I =

∫ π/4

0
ln

(
1 + sin2 2x

1− 1
2 sin2 2x

)
dx =

∫ π/4

0
ln

[
2

(
1 + sin2 2x

2− sin2 2x

)]
dx

=

∫ π/4

0

[
ln 2 + ln

(
1 + sin2 2x

2− sin2 2x

)]
dx

=
π ln 2

4
+

∫ π/4

0
ln

(
1 + sin2 2x

2− sin2 2x

)
dx.

We denote:

J =

∫ π/4

0
ln

(
1 + sin2 2x

2− sin2 2x

)
dx,

and we substitute t =
π

4
− x, therefore we deduce that J = −J , so J = 0.
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Hence I =
π ln 2

4
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We have

sin2 x =
1− cos(2x)

2
, cos2 x =

1 + cos(2x)

2
.

So

sin4 x+ cos4 x =

(
1− cos(2x)

2

)2

+

(
1 + cos(2x)

2

)2

=
1 + cos2(2x)

2

and ∫ π/4

0
ln

(
1 + sin2 2x

sin4 x+ cos4 x

)
dx =

∫ π/4

0
ln 2dx+

∫ π/4

0
ln

(
1 + sin2(2x)

1 + cos2(2x)

)
dx

=
π

4
ln 2 +

1

2

∫ π/2

0
ln

(
1 + sin2 y

1 + cos2 y

)
dy

=
π

4
ln 2,

since

∫ π/2

0
ln

(
1 + sin2 y

1 + cos2 y

)
dy =

∫ π/2

0
ln
(
1 + sin2 y

)
dy −

∫ π/2

0
ln
(
1 + cos2 y

)
dy = 0.

Also solved by Arkady Alt, San Jose, CA; Paul M. Harms, North Newton, KS;
Enkel Hysnelaj, Sydney Australia jointly with Elton Bojaxhiu, Kriftel, Germany;
Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; David E,
Manes, Oneonta, NY; Adrian Naco, Polytechnic University, Tirana, Albania;
Paolo Perfetti, Department of Mathematics, University “Tor Vergata Roma,”
Italy; Luke Sly, Joseph Kasper, and Daniel Crane (jointly, students at Taylor
University), Upland, IN, and the proposer.

5204: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let f : < → < be a non-constant function such that,

f(x+ y) =
f(x) + f(y)

1 + f(x)f(y)

for all x, y ∈ <. Show that −1 < f(x) < 1 for all x ∈ <.

Solution 1 by Michael Brozinsky, Central Islip, NY

The functional equation implies f(0) +

(
f(0)

)3

= 2f(0) and so f(0) = 0, 1 or −1. The two

latter possibilities lead to similar contradictions. For example if f(0) = 1 then

f(x) = f(x+ 0) =
f(x) + 1

1 + f(x) · 1
= 1, a constant.
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Thus we must have f(0) = 0.

Now since (u+ 1)2 ≥ 0 and (u− 1)2 ≥ 0 we have

−1 ≤ 2u

1 + u2
≤ 1 (∗)

with equalities (on the side) occurring only if u = 1 or u = −1.

If there exits an x0 such that f(x0) = 1 then

f(x) = f ((x− x0) + x0) =
f(x− x0) + 1

1 + f(x− x0)
= 1

contrary to the stated condition that f(x) is not constant. A similar contradiction follows if
there exits an x0 such that f(x0) = −1.

Finally, since f(x) =
2f

(
x

2

)
1 +

(
f

(
x

2

))2
we have the given inequality follows upon setting

u = f

(
x

2

)
, and using (∗) and the last two results.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

Since f(0) = 2f(0)/(1 + (f(0))2), we have f(0) ∈ {0,±1}. But f(0) = 1 would imply
f(x) = (f(x) + 1)/(1 + f(x)) = 1 for each real x, contradicting the non-constant condition of
the hypothesis. Similarly, f(0) = −1 would imply f(x) = (f(x)− 1)/(1− f(x)) = −1 for each
real x, another contradiction. Thus f(0) = 0. This yields

0 =
f(x) + f(−x)

1 + f(x)f(−x)

and hence f(−x) = −f(x) for each real x. Also, given any real x, we have
f(x) = 2f(x/2)/(1 + (f(x/2))2).

If f(x) ≥ 1 for some real x, then 2f(x/2) ≥ 1 + (f(x/2))2, so 0 ≥ (f(x/2)− 1)2 and thus
f(x/2) = 1. Then f(x) = 1 and f(2x) = 1, but f(−x) = −1, which would mean that

f(x) =
f(2x) + f(−x)

1 + f(2x)f(−x)

is undefined.

Similarly, if f(x) ≤ −1 for some real x, then 2f(x/2) ≤ −1− (f(x/2))2, so (f(x/2) + 1)2 ≤ 0
and thus f(x/2) = −1. Then f(x) = −1 and f(2x) = −1, but f(−x) = 1, which would again
mean that f(x) is undefined.

Hence −1 < f(x) < 1 for each real x.
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Solution 3 by Arkady Alt, San Jose, CA

First note that f (x) · f (y) 6= −1 for any x, y ∈ R.

Since f (x) = f

(
x

2
+
x

2

)
=

2f

(
x

2

)
1 + f2

(
x

2

) ⇒ |f (x)| =
2

∣∣∣∣f (x2
)∣∣∣∣

1 +

∣∣∣∣ f (x2
)∣∣∣∣2

and then we have

(∣∣∣∣f (x2
)∣∣∣∣− 1

)2

≥ 0 ⇐⇒
2

∣∣∣∣f (x2
)∣∣∣∣

1 +

∣∣∣∣ f (x2
)∣∣∣∣2 ≤ 1 ⇐⇒ |f (x)| ≤ 1.

If we suppose |f (x0)| = 1, for some x0, then

∣∣∣∣f (x02
)∣∣∣∣ = 1 and f (x) becomes a constant

function. Indeed, if f (x0) = 1, then for any x ∈ R we have f (x+ x0) =
f (x) + 1

1 + f (x)
= 1,

because f (x) = f (x) · f (x0) 6= −1.

If f (x0) = −1, then for any x ∈ R we have f (x+ x0) =
f (x)− 1

1− f (x)
= −1,

because −f (x) = f (x) · f (x0) 6= −1. Thus, |f (x)| < 1 ⇐⇒ −1 < f (x) < 1 for any x.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo
TX; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, Sydney Australia
jointly with Elton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong Kong, China;
David Manes, Oneonta, NY; Adrian Naco, Polytechnic University, Tirana,
Albania; Paolo Perfetti, Department of Mathematics, University “Tor Vergata
Roma,” Italy; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland; David Stone and John Hawkins, Statesboro, GA; Titu Zvonaru,
Comănesti, Romania and Neculai Stanciu, Buzău, Romania, and the proposer.

5205: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the sum,

∞∑
n=1

(
1− 1

2
+

1

3
+ · · ·+ (−1)n−1

n
− ln 2

)
· ln n+ 1

n
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

For each integer m > 1, is easy to prove by induction that

m∑
n=1

(
1− 1

2
+

1

3
+ · · ·+ (−1)n−1

n

)
ln
n+ 1

n

15



=

(
1− 1

2
+

1

3
+ · · ·+ (−1)m−1

m

)
ln(m+ 1) +

m∑
n=2

(−1)n lnn

n
.

Since ∣∣∣∣∣1− 1

2
+

1

3
+ · · ·+ (−1)m−1

m
− ln 2

∣∣∣∣∣
=

1

m+ 1

(
1− m+ 1

m+ 2
+
m+ 1

m+ 3
− m+ 1

m+ 4
+ · · ·

)
<

1

m+ 1
,

so

lim
m→∞

(
1− 1

2
+

1

3
+ · · ·+ (−1)m−1

m
− ln 2

)
ln(m+ 1) = 0.

It is known [ E. R. Hansen: A Table of Series and Products, Prentice-Hall, Inc., 1975, p. 288

entry (44.1.8)] that
∞∑
n=2

(−1)n lnn

n
= γ ln 2− (ln 2)2

2
, where γ is Euler’s constant. Hence the

sum of the problem equals γ ln 2− (ln 2)2

2
= 0.1598 . . . .

Solution 2 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata Roma,” Italy

By writing qn = 1− 1
2 + 1

3 + . . .+ (−1)n−1

n − ln 2 the series is

∞∑
n=1

qn ln
n+ 1

n
=
∞∑
n=1

((qn ln(n+ 1)− qn−1 lnn) + lnn(qn−1 − qn))

∞∑
n=1

(qn ln(n+ 1)− qn−1 lnn) = lim
n→∞

qn ln(n+ 1).

The series

∞∑
n=1

(−1)n−1

n

is Leibniz and converges to ln 2 thus it satisfies

∣∣∣∣∣ln 2−
r∑

n=1

(−1)n−1

n

∣∣∣∣∣ ≤ 1

r + 1
.

Since this is a well known property of all Leibniz series present in all books on the subject, we
omit it. The immediate consequence is

lim
n→∞

qn ln(n+ 1) = 0.
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We remain with

∞∑
n=1

lnn(qn−1 − qn) =
∞∑
n=1

(−1)n

n
lnn = γ ln 2− 1

2
ln2 2

where γ is the Euler–Mascheroni constant. Also
∞∑
n=1

(−1)n

n
lnn = γ ln 2− 1

2
ln2 2 is a well

known result. Nevertheless we write it here. For p ≥ 4,

2p∑
k=2

(−1)k
ln k

k
=

p∑
k=1

ln 2

2k
+

p∑
k=1

ln k

2k
−

p−1∑
k=1

ln(2k + 1)

2k + 1
.

−
p−1∑
k=1

ln(2k + 1)

2k + 1
= −

2p−1∑
k=2

ln k

k
+

p−1∑
k=1

ln(2k)

2k
= −

2p−1∑
k=2

ln k

k
+

p−1∑
k=1

ln 2

2k
+

p−1∑
k=1

ln k

2k
.

By summing we get

p−1∑
k=1

ln 2

k
+

ln 2

2p
+

ln p

2p
−

2p−1∑
k=p

ln k

k
.

Now we employ the well known

n∑
k=1

1

k
= lnn+ γ + o(1). Moreover we observe that

∫ 2p

p

lnx

x
dx ≤

2p−1∑
k=p

ln k

k
=

∫ 2p−1

p−1

lnx

x
dx,

(Editor’s note: We note that the function
lnx

x
is decreasing for x ≥ e. So∫ k+1

k

lnx

x
dx ≤ ln k

k
≤
∫ k

k−1

lnx

x
dx. The claimed inequalities follow by summing over k from

k = p to k = 2p− 1.)

thus

2p−1∑
k=p

ln k

k
=

∫ 2p−1

p

lnx

x
dx+ o(1) =

1

2
(ln2(2p− 1)− ln2 p) + o(1)

=
ln2 2

2
+

ln2 p

2
+ ln 2 ln p+ ln(2p) ln(1− 1

2p
) +

1

2
ln2(1− 1

2p
)− ln2 p

2
+ o(1)

=
ln2 2

2
+ ln 2 ln p+ o(1).

We get
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p−1∑
k=1

ln 2

k
+

ln 2

2p
+

ln p

2p
−

2p−1∑
k=p

ln k

k
= ln 2(ln(p− 1) + γ)− ln2 2

2
− ln 2 ln p+ o(1)

= γ ln 2− ln2 2

2
, as p →∞.

Solution 3 by Anastasios Kotronis, Athens, Greece

We set

fm(x) =
m∑
n=1

(
−

n∑
k=1

xk

k
− ln(1− x)

)
ln

(
n+ 1

n

)
x < 1,

and we wish to find

lim
m→+∞

fm(−1).

For x < 1 we have

f
′
m(x) =

(
m∑
n=1

(
−

n∑
k=1

xk

k
− ln(1− x)

)
ln

(
n+ 1

n

))′

=
m∑
n=1

(
−
n−1∑
k=0

xk +
1

1− x

)
ln

(
n+ 1

n

)

=
m∑
n=1

(
−1− xn

1− x
+

1

1− x

)
ln

(
n+ 1

n

)

=
1

1− x

m∑
n=1

xn (ln (n+ 1)− lnn)

=
1

1− x

(
m∑
n=2

(
xn−1 − xn

)
lnn+ xm ln(m+ 1)

)

=
m∑
n=2

xn−1 lnn+
xm

1− x
ln(m+ 1).

So we integrate from 0 to y, where y < 1, to get

fm(y) =
m∑
n=2

yn

n
lnn+ ln(m+ 1)

∫ y

0

xm

1− x
dx

and set y = −1 to get
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fm(−1) =
m∑
n=2

(−1)n

n
lnn+ ln(m+ 1)

∫ −1
0

xm

1− x
dx

x=−t
===

m∑
n=2

(−1)n

n
lnn+ (−1)m+1 ln(m+ 1)

∫ 1

0

tm

1 + t
dt

= Am + (−1)m+1 ln(m+ 1)Bm. (1)

Now integrating by parts,

Bm =
tm+1

(m+ 1)(1 + t)

∣∣∣∣∣
1

0

+
1

m+ 1

∫ 1

0

tm+1

(1 + t)2
dt

≤ 1

2(m+ 1)
+

1

m+ 1

∫ 1

0

1

(1 + t)2
dt

=
1

m+ 1
<

1

m
(2)

and for Am, since it converges from Leibniz Criterion, (see:
http://mathworld.wolfram.com/Leibniz Criterion.html) we can write

lim
m→+∞

Am = lim
m→+∞

A2m

and

A2m =
2m∑
n=1

(−1)n

n
lnn

=
m∑
n=1

ln 2n

2n
−

m∑
n=1

ln(2n− 1)

2n− 1

=
ln 2

2

m∑
n=1

1

n
+

1

2

m∑
n=1

lnn

n
−
(

2m∑
n=1

lnn

n
−

m∑
n=1

ln 2n

2n

)

= ln 2Hm +
m∑
n=1

lnn

n
−

2m∑
n=1

lnn

n

= ln 2Hm −
m∑
n=1

ln(m+ n)

m+ n

= ln 2Hm −
m∑
n=1

lnm+ ln(1 + n/m)

m+ n

= ln 2Hm − lnm(H2m −Hm)− 1

m

m∑
n=1

ln(1 + n/m)

1 + n/m
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= Hm ln(2m)−H2m lnm− 1

m

m∑
n=1

ln(1 + n/m)

1 + n/m

Hm=lnm+γ+O(1/m)
= γ ln 2 +O(1/m)− 1

m

m∑
n=1

ln(1 + n/m)

1 + n/m
(3)

Now with (2) and (3), (1) will give

fm(−1)→ γ ln 2−
∫ 1

0

ln(1 + x)

1 + x
dx = γ ln 2− ln2 2

2
.

Comment: In fact, one can easily show that

1

m

m∑
n=1

ln(1 + n/m)

1 + n/m
=

ln2 2

2
+O(1/m), so

m∑
n=1

(
1− 1

2
+

1

3
− · · ·+ (−1)n−1

n
− ln 2

)
· ln

(
n+ 1

n

)
= γ ln 2− ln2 2

2
+O

(
m−1 lnm

)
.

Editor’s comment: The sum in (3) is a Riemann sum whose limit as m tends to infinity
equals the Riemann integral.

Solution 4 by Arkady Alt, San Jose, CA

Let hn =
n∑
k=1

1
k , an =

n∑
k=1

(−1)k−1

k − ln 2, and S =
∞∑
n=1

an ln n+1
n .

Note that

n∑
k=1

ak ln
k + 1

k
=

n∑
k=1

ak (ln (k + 1)− ln k)

=
n∑
k=1

ak ln (k + 1)−
n∑
k=1

ak ln k

=
n+1∑
k=2

ak−1 ln k −
n∑
k=2

ak ln k

= an ln (n+ 1)−
n∑
k=2

(ak − ak−1) ln k

= an ln (n+ 1)−
n∑
k=2

(−1)k−1 ln k

k

= an ln (n+ 1) +
n∑
k=2

(−1)k ln k

k
.

20



First we will prove lim
n→∞

an ln (n+ 1) = 0.

Since a2n+1 = a2n +
1

2n+ 1
then it suffices to prove

lim
n→∞

a2n ln (2n+ 1) = 0.

We have a2n = h2n − hn − ln 2 and, since lnn+ γ < hn < ln (n+ 1) + γ, where
γ = lim

n→∞
(hn − lnn) is Euler’s constant, then

ln 2n− ln (n+ 1)− ln 2 < a2n < ln (2n+ 2)− lnn− ln 2

⇐⇒ − ln
n+ 1

n
< a2n < ln

n+ 1

n

⇐⇒ |a2n| < ln
n+ 1

n
<

1

n(
1 +

1

n

)n
< e ⇐⇒ ln

n+ 1

n
<

1

n
.

Hence, 0 < |a2n| ln (2n+ 1) < ln(2n+1)
n yields lim

n→∞
ln(2n+1)

n = 0, and, therefore

lim
n→∞

a2n ln (2n+ 1) = 0.

Thus, S = lim
n→∞

n∑
k=2

sn, where sn :=
n∑
k=2

(−1)k ln k
k .

Since s2n+1 = s2n − ln(2n+1)
2n+1 and lim

n→∞
ln(2n+1)
2n+1 = 0 then S = lim

n→∞
s2n.

Let bn :=
n∑
k=1

ln k
k then

s2n =
2n∑
k=1

(−1)k ln k

k

=
n∑
k=1

ln 2k

2k
−

n∑
k=1

ln (2k − 1)

2k − 1

= 2
n∑
k=1

ln 2k

2k
−

2n∑
k=1

ln k

k

=
n∑
k=1

ln 2k

k
− b2n

=
n∑
k=1

ln 2

k
+

n∑
k=1

ln k

k
− b2n

= ln 2 · hn + bn − b2n.
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Consider now two sequences
(
bn − ln2(n+1)

2

)
n≥1

and
(
bn − ln2 n

2

)
n≥1

.

Since bn − ln2(n+1)
2 is increasing and bn − ln2 n

2 is decreasing in n then

b1 −
ln2 2

2
≤ bn −

ln2 (n+ 1)

2
< bn −

ln2 n

2
≤ b1

and, therefore, both sequences converges to the same limit.

Let δ = lim
n→∞

(
bn − ln2(n+1)

2

)
= lim

n→∞

(
bn − ln2 n

2

)
then

bn −
ln2 (n+ 1)

2
< δ < bn −

ln2 n

2
⇐⇒ ln2 n

2
+ δ < bn <

ln2 (n+ 1)

2
+ δ, n ∈ N.

Hence,

ln2 2n− ln2 (n+ 1)

2
< b2n − bn <

ln2 (2n+ 2)− ln2 n

2
⇐⇒

βn < b2n − bn − ln 2 · lnn < αn,

where αn =
ln2 (2n+ 2)− ln2 n

2
− ln 2 · lnn and βn =

ln2 2n− ln2 (n+ 1)

2
− ln 2 · lnn.

Noting that

ln2 2n− ln2 n

2
− ln 2 · lnn =

ln 2 (ln 2 + 2 lnn)

2
− ln 2 · lnn =

ln2 2

2
,we obtain

lim
n→∞

(
αn −

ln2 2

2

)
= lim

n→∞

(
ln2 (2n+ 2)− ln2 2n

2

)
=

1

2
lim
n→∞

ln

(
n+ 1

n

)
ln (4n (n+ 1)) = 0, and

lim
n→∞

(
βn −

ln2 2

2

)
= lim

n→∞
ln2 n− ln2 (n+ 1)

2
= −1

2
lim
n→∞

ln

(
n+ 1

n

)
ln (n (n+ 1)) = 0.

This gives us

lim
n→∞

(b2n − bn − ln 2 · lnn) = lim
n→∞

αn = lim
n→∞

βn =
ln2 2

2
.

Since lim
n→∞

(hn − lnn) = γ then

S = lim
n→∞

(bn − b2n + ln 2 · hn)

= lim
n→∞

(bn − b2n + ln 2 · lnn+ ln 2 · (hn − lnn))

= lim
n→∞

(bn − b2n + ln 2 · lnn) + lim
n→∞

ln 2 · (hn − lnn)
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= ln 2 ·
(
γ − ln 2

2

)
.

Also solved by Adrian Naco, Polytechnic University, Tirana, Albania; Albert
Stadler, Herrliberg, Switzerland, and the proposer.

Editor’s comment: Mea Culpa once again. I inadvertently gave credit to David Stone and
John Hawkins for having solved problem 5199 when they should have been credited for having
solved 5198. And I inadvertently forgot to acknowledge Achilleas Sinefakopoulos of
Larissa, Greece for having correctly solved 5184.
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