
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2013

• 5265: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that

2x− y −
√

3x2 − 3xy + y2 = 2014,

with (x, y) = 1.

• 5266: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22, · · · and in general satisfy

Pn =
n(3n− 1)

2
, ∀n ≥ 1. The positive Jacobsthal numbers, which have applications in

tiling and graph matching problems, begin 1, 1, 3, 5, 11, 21, · · · with general term

Jn =
2n − (−1)n

3
, ∀n ≥ 1. Prove that there exists infinitely many pentagonal numbers

that are the sum of three Jacobsthal numbers.

• 5267: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “Geroge Emil Palade” General School,
Buzău, Romania

Let n be a positive integer. Prove that

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2,

where Fn and Ln represents the nth Fibonacci and Lucas Numbers defined by
F0 = 0, F1 = 1, and for all n ≥ 0, Fn+2 = Fn+1 + Fn; and L0 = 2, L1 = 1, and for all
n ≥ 0, Ln+2 = Ln+1 + Ln, respectively.

• 5268: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Let N = 121a + a3 + 24. Determine all positive integers a for which

a) N is a perfect square.

b) N is a perfect cube.
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• 5269: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let {an}n≥1 be the sequence defined by

a1 = 1, a2 = 5, a2n−1 − anan−2 + 4 = 0.

Show that all of the terms of the sequence are integers.

• 5270: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 1 be an integer. Calculate∫ 1

0

∫ 1

0
(x+ y)k (−1)

⌊
1
x
− 1

y

⌋
dxdy,

wherebxc denotes the integer part of x.

Solutions

• 5248: Proposed by Kenneth Korbin, New York, NY

A triangle with sides (a, a, b) has the same area and the same perimeter as a triangle
with sides (c, c, d) where a, b, c and d are positive integers and with

b2 + bd+ d2

b+ d
= 76.

Find the sides of the triangles.

Solution 1 by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX

First, note that the condition

b2 + bd+ d2

b+ d
= 76 (1)

implies that b 6= d and thus, we may assume that b > d. Further, the required equality
of the perimeters and areas of the triangles yields

2a+ b = 2c+ d, and (2)

b2(4a2 − b2) = d2(4c2 − d2) (3)

By (1), (2), and (3),

b2(2a− b) = d2(2c− d)

⇒ b2(2a+ b)− 2b3 = d2(2c+ d)− 2d3

⇒ (b2 − d2)(2a+ b) = 2(b3 − d3)
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⇒ (b+ d)(2a+ b) = 2(b2 + bd+ d2)

⇒ 2a+ b = 2c+ d = 2(76). (4)

It follows that b and d must be even.

Condition (1) can be re-written in the form

b2 + (d− 76)b+ d2 − 76d = 0

and hence,

b =
76 − d±

√
(d− 76)2 − 4(d2 − 76d)

2

=
76 − d±

√
(d+ 76)2 − 4d2

2
. (5)

Since b and d are even integers, there must exist an odd positive integer k such that

(d+ 76)2 − 4d2 = k2, or

(d+ 76)2 = 4d2 + k2.

Using known properties of Pythagorean Triples, there are positive integers s, m, and n
such that m > n, (m,n) = 1, m− n ≡ 1 (mod 2), and

d+ 76 = s(m2 + n2), k = s(m2 − n2), and 2d = s(2mn). (6)

Note that since k and m2 − n2 are odd, s must also be odd. Then (6) implies that s
divides d and s divides d+ 76 and hence, s divides 76. Therefore, s = 7r for some
r ∈ {0, 1, 2, . . . 6}.
Next it follows from (6) that

7r(m2 + n2) = d+ 76 = 7r(mn) + 76, or

m2 −mn+ n2 = 76−r. (7)

Using

m2 + n2 =
1

2

[
(m+ n)2 + (m− n)2

]
and mn =

1

4

[
(m + n)2 − (m − n)2

]
,

(7) can be re-written

(m+ n)2 + 3(m− n)2 = 4 · 76−r. (8)
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Also, (5) and (6) imply that

b =
7r(m− n)2 ± 7r(m2 − n2)

2

= 7rm(m− n) or 7rn(n −m).

Since m > n, we have b = 7rm(m− n) to go with d = 7rmn (from (6)). The fact that b
is even now forces m to be even and n to be odd.

We can now solve (8) for m and n and thereby solve for b and d. Our work is reduced by
the facts that m+ n and m− n are odd, (m+ n,m− n) = (m,n) = 1, and

4 · 76−r = (m+ n)2 + 3(m− n)2 > 4(m− n)2, i.e.,

m− n <
√

76−r.

Using these and some help from MuPAD, there are only two feasible solutions for (8),
namely

r m n b d

0 360 37 116,280 13,320
4 8 3 96,040 57,624.

Then, (4) may be employed to get the final solutions

a b c d

59,509 116,280 110,989 13,320

69,629 96,040 88,837 57,624.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

Without loss of generality, we assume b < d. Since 2a+ b = 2c+ d, we have
d− b = 2(a− c), so b and d have the same parity. But if both b and d are odd, then
b2 + bd+ d2 is odd and 76(b+ d) is even, a contradiction. Thus both b and d are even.
Letting b = 2x and d = 2y for positive integers x and y, we obtain y − x = a− c and
2(x2 + xy + y2) = 76(x+ y). Then

y =
76 − 2x±

√
(6x+ 76)(76 − 2x)

4
.

A quick search via computer program yields two possible solutions with x < y:

(x, y) = (6660, 58140) or (x , y) = (28812, 48020).

Next, since the areas of the two isosceles triangles must be equal, we have

1

2
b

√
a2 − 1

4
b2 =

1

2
d

√
c2 − 1

4
d2 and thus

b2(4a2 − b2) = d2(4c2 − d2).
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Since 2a+ b = 2c+ d, we obtain b2(2a− b) = d2(2c− d), or x2(a− x) = y2(c− y). Then
cy2 − ax2 = y3 − x3, so

c(y + x)(y − x) + x2(c− a) = (y − x)(x2 + xy + y2).

Applying y − x = a− c and x2 + xy + y2 = 76(x+ y)/2, we have

c(y + x)− x2 = 76(x+ y)/2 and hence

c = x2/(x+ y) + 76/2.

Similarly,
a = y2/(x+ y) + 76/2.

In particular, we note that this implies

2a+ b =
2(x2 + xy + y2)

x+ y
+ 76 = 2 · 76,

the perimeter of all such triangles.

Finally, we verify that the two possible solutions for (x, y) yield the required triangles:

(x, y) = (6660, 58140) ⇒ (a, b, c, d) = (110989, 13320, 59509, 116280).

(x, y) = (28812, 48020) ⇒ (a, b, c, d) = (88837, 57624, 69629, 96040).

In the first solution, both triangles have area 737,854,740. In the second solution, both
triangles have area 2,421,216,420. Also, the second solution may be written in the form
(a, b, c, d) = 74(37, 24, 29, 40).

Editor’s comments: David Stone and John Hawkins stated in their solution that it
would be nice if an analytical solution for b and d in the following could be found.

b2 + bd+ d2

b+ d
= 76,=⇒

b+
d2

b+ d
= 76, and

b2

b + d
+ d = 76, and b + d − bd

b + d
= 76.

This allowed them to put some conditions onto b and d. But then they stated: “we see
no path towards a complete solution. Finding integers b and d whose sum divides their
product seems to be a difficult problem.”

Ed Gray of Highland Beach, FL also reached the equation u2 + uv + v2 = 76 and
found that the general solution to

x2 + xy + y2 = z2

has been characterized parametrically by J. Neuburg and G.B. Mathews (See L. E.
Dickson’s, History of History of The Theory of Numbers, vol.II, 2005, Dover Books on
Mathematics, p.406). Specifically, 

x = p2 − q2
y = 2pq + q2

z = x2 + pq + q2.
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He then applied this generic solution to the problem by solving

x2 + xy + y2 = (73)2 = 3432.

There are two positive integer solutions to this equation: (x, y) = (18, 1) and
(x, y) = (14, 7). With these solutions it was possible for him, by retracing his steps, to
obtain two sets, wherein each set contains two isosceles triangles with sides (a, a, b) and
(c, c, d), and for which the triangles have the same perimeter, the same area, and for

which
b2 + bd+ d2

b+ d
= 76.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; David Stone and John Hawkins (jointly), Georgia Southern
University, Statesboro GA, and the proposer.

• 5249: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

(a) Let n be an odd positive integer. Prove that an + bn is the square of an integer for
infinitely many integers a and b.

(b) Prove that a2 + b3 is the square of an integer for infinitely many integers a and b.

Solution 1 by Arkady Alt, San Jose, CA

(a) Let a = x (xn + yn) , b = y (xn + yn) where x, y ∈ N then

an + bn = xn (xn + yn)n + yn (xn + yn)n = (xn + yn)n+1

and, since n = 2m− 1,m ∈ N then

an + bn = ((xn + yn)m)2 .

(b) We will show that equation a2 + b3 = c2 have infinitely many solutions in integers.
Assuming that c = 2a we obtain b3 = 3a2. Let a = 3t3, t ∈ Z then

b3 = 3 · 9t6 ⇐⇒ b = 3t2.

Thus, for (a, b) =
(
3t3, 3t2

)
, where t is any integer we have

a2 + b3 = 9t6 + 27t6 = 36t6 =
(
6t3
)2
.

Solution 2 by Pat Costello, Eastern Kentucky University, Richmond, KY

(a) Let n be an odd positive integer. Let a = 2 · 22j and b = 2 · 22j for an arbitrary
positive integer j. Then

an + bn = (2 · 22j)n + (2 · 22j)n

= 2n · 22nj + 2n · 22nj

= 2 ·
(
2n · 22nj

)
= 2n+1 · 22nj
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=
(
2(n+1)/2 · 2nj

)2
,

the square of an integer since n is odd.

(b) Let a = 23n and b = 2 · 22n for an arbitrary positive integer n. Then

a2 + b3 =
(
23n
)2

+
(
2 · 22n

)3
= 26n + 8 · 26n

= 9 · 26n

=
(
3 · 23n

)2
,

the square of an integer.

Solution 3 by David Stone and John Hawkins (jointly), Georgia Southern
University, Statesboro, Ga

(a) Let n = 2k + 1 for k ≥ 0. Then let a = b = 2m2, for any m ≥ 1. Then

an + bn = 2an = 2
(
2m2

)2k+1
= 22k+2m2(2k+1) =

(
2k+1m2k+1

)2
, which is square.

Of course, there is also a trivial solution; let a be any square and b = 0.

(b) Let a = m2
(
16m2 − 1

)
and b = 4m2, for any integer m. Then

a2 + b3 = m4
(
16m2 − 1

)2
+
(
4m2

)3
= m4

(
256m4 − 32m2 + 1

)
+ 64m6

= 256m8 + 32m4 + 1

=
(
16m4 +m2

)2
; a square.

In addition to the trivial solution, let a be any square and b = 0, there is also a
“semi-trivial” solution: For any c,m ≥ 1, let a = c3m, b = −c2m, so that

a2 + b3 =
(
c3m

)2
+
(
−c2m

)3
= c6m − c6m = 0; a square.

Solution 4 by Ken Korbin, New York, NY

(a) Let a = N2, b = 2N2 where N is a positive integer. Then a3 + b3 =
(
3N3

)2
, and it

follows that for n odd, an + bn is a perfect square.

(b) Let a = 4N3 + 6N2 + 3N , and b = 2N + 1, where N is a positive integer. Then

a2 + b3 =
(
4N3 + 6N2 + 3N + 1

)2
.

Also solved by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Brian D. Beasley, Presbyterian
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College, Clinton, SC; Roberto de la Cruz Moreno, Centre de Recerca
Matematica, Campus de Bellaterra, Barcelona, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Charles McCracken, Dayton, OH,
and the proposer.

• 5250: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a ∈
(

0,
π

2

)
and b, c ∈ (1,∞). Calculate:

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)
· sinx · dx.

Solution 1 by Anastasios Kotronis, Athens, Greece

We have

I =

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)

sinx dx
y=−x

= −
∫ a

−a
ln
(
b− sin3 x + c− sin3 x

)
sinx dx

=

∫ a

−a
ln

(
(bc)sin

3 x

bsin
3 x + csin

3 x

)
sinx dx

= ln(bc)

∫ a

−a
sin4 x dx− I.

So

I =
ln(bc)

2

∫ a

−a
sin4 x dx =

ln(bc)

2

(
3a

4
− sin(2a)

2
+

sin(4a)

16

)
.

Solution 2 by Paolo Perfetti, Department of Mathematics, University of Tor
Vergata Roma, Rome, Italy

Answer: 1
2

(
3
4a−

1
2 sin(2a) + 1

16 sin(4a)
)

ln(bc)

Proof: We observe

ln
(
bsin

3(−x) + csin
3(−x)

)
sin(−x) = − ln

(
b− sin3 x + c− sin3 x

)
sinx

= − ln
(
bsin

3 x + csin
3 x
)

sinx+ ln
(
(bc)sin

3 x
)

sinx

thus

2

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)

sinx dx =

∫ a

−a
sin4 xdx ln(bc)

=

∫ a

−a
sin2 x(1− cos2 x)dx
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=
x− sinx cosx

2

∣∣∣a
−a
−
∫ a

−a

1

4
(sin2(2x))dx

= a− 1

2
sin(2a)−

∫ 2a

−2a

1

8
(sin2 x)dx

= a− 1

2
sin(2a)− a

4
+

1

16
sin(4a)

Also solved by Arkady Alt, San Jose, CA; Roberto de la Cruz Moreno,
Centre de Recerca Matematica, Campus de Bellaterra, Barcelona, Spain;
Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
Adrian Naco, Polytechnic University, Tirana, Albania; Boris Rays,
Brooklyn, NY, and the proposers.

• 5251: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Compute the following sum:

∞∑
m=1

∞∑
n=1

(−1)m+n cos(m+ n)

(m+ n)2
.

Solution 1 by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

The sum equals
π2

12
− 1

4
− ln

(
2 cos

1

2

)
.

The problem is a particular case of the following theorem (see the first citation below
[Theorem 1, p. 2]).

Theorem 1. Suppose that both series

∞∑
k=1

ak and
∞∑
k=1

kak

converge and let σ and σ̃ denote their sums, respectively. Then, the iterated series

∞∑
n=1

∞∑
m=1

an+m,

converges and its sum s equals σ̃ − σ.

The following two formulae are well-known (see citation 2, [Formula 1.441(4), p. 44])

∞∑
k=1

(−1)k−1
cos kx

k
= ln

(
2 cos

x

2

)
, −π < x < π

and (citation 2 [Formula 1.443(4), p. 45])
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∞∑
k=1

(−1)k−1
cos kx

k2
=
π2

12
− x2

4
, −π ≤ x ≤ π.

Now, we apply the Theorem in citation 1 with ak = (−1)k · cos k

k2
, and we have that

σ =
∞∑
k=1

ak =
∞∑
k=1

(−1)k
cos k

k2
=

1

4
− π2

12

and

σ̃ =
∞∑
k=1

kak =
∞∑
k=1

(−1)k
cos k

k
= − ln

(
2 cos

1

2

)
.

It follows, based on the Theorem in citation 1, that

∞∑
n=1

∞∑
m=1

an+m = σ̃ − σ =
π2

12
− 1

4
− ln

(
2 cos

1

2

)
.

Citations:

1) Ovidiu Furdui and Tiberiu Trif, On the Summation of Certain Iterated Series,
Journal of Integer Sequences, Vol. 14, 2011, Issue 6, article 11.6.1, article available
online at https://cs.uwaterloo.ca/journals/JIS/VOL14/Furdui/furdui3.pdf

2) I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products Sixth
Edition, Academic Press, 2000

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the double sum by S. We show that

S =
π2 − 3− 6 ln (2(1 + cos 1))

12
= 0.00990 . . . .

Let m and M be positive integers with m ≤M. We have

∞∑
n=1

(−1)m+n cos(m+ n)

(m+ n)2
=

∞∑
k=m+1

(−1)k
cos k

k2
=

M2+1∑
k=m+1

(−1)k
cos k

k2
+ r,

where |r| ≤
∞∑

k=M2+2

1

k2
<

1

M2
. Hence,

M∑
m=1

∞∑
n=1

(−1)m+n cos(m+ n)

(m+ n)2
=

M2+1∑
k=2

(−1)k
(k − 1) cos k

k2
+R,

where |R| < 1

M
. By taking the limit as M tends to infinity, we have

S =
∞∑
k=2

(−1)k
(k − 1) cos k

k2
=
∞∑
k=2

(−1)k
cos k

k
−
∞∑
k=2

(−1)k
cos k

k2
.
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For −π < x < π, is known ([1], formula 17.2.6, p.239) that

∞∑
k=1

(−1)k cos kx

k
= − ln (2 (1 + cosx))

2
,

and ([1] formula 17.2.9, p.239) that

∞∑
k=1

(−1)k cos kx

k2
=

3x2 − π2

12
.

By putting x = 1, we obtain our result for S.

Reference: 1. E.R. Hansen: A Table of Series and Products, Prentice-Hall, Inc. (1975).

Also solved by Ed Gray, Highland Beach FL; Anastasios Kotronis, Athens,
Greece; Paolo Perfetti, Department of Mathematics, University of Tor
Vergata Roma, Rome, Italy, and the proposers.

• 5252: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let {an}n≥1 be the sequence of real numbers defined by a1 = 3, a2 = 5 and for all

n ≥ 2, an+1 =
1

2

(
a2n + 1

)
. Prove that

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

< Fn+2,

where Fn represents the nth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

By the Cauchy-Schwarz inequality(
n∑

k=1

√
Fk

1 + ak

)2

≤
(

n∑
k=1

Fk

)(
n∑

k=1

1

1 + ak

)
,

and since
n∑

k=1

Fk = Fn+2 − 1, it is enough to prove that
n∑

k=1

1

1 + ak
<

1

2
.

We will prove by induction that
n∑

k=1

1

1 + ak
=

an+1−1
2 − 1

an+1 − 1
, which is less than 1

2 .

Clearly it is true for n = 1. Let us suppose it holds for n. Then, for n+ 1 we have

n+1∑
k=1

1

1 + ak
=

n∑
k=1

1

1 + ak
+

1

1 + an+1

=
an+1−1

2 − 1

an+1 − 1
+

1

1 + an+1
by hypotesis of induction

=

a2n+1−1
2 − an+1 − 1 + an+1 − 1

a2n+1 − 1
=

a2n+1−1
2 − 2

a2n+1 − 1
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=
2an+2−2

2 − 2

2an+2 − 2
by the definition of sequence {an}

=
an+2−1

2 − 1

an+2 − 1
.

And, therefore, the conclusion follows.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

By the Cauchy-Schwarz inequality applied to the vectors
(√
F1, · · · ,

√
Fn
)

and(
1√

1+a1
, · · · , 1√

1+an

)
, we have for n ≥ 1

(
n∑

k=1

√
Fk

1 + ak

)2

=

(
n∑

k=1

√
Fk

1√
1 + ak

)2

≤
(

n∑
k=1

Fk

)(
n∑

k=1

1

1 + ak

)
(1)

The sequence {an}n≥1 is related to the Sylvester sequence {bn}n≥1 defined by b1 = 2
and for n ≥ 1, bn+1 = b2n − bn + 1, by the equality bn = 1

2 (an + 1), and it is known that
the sum of the reciprocals of the Sylvester sequence is 1. So for n ≥ 1, we have that

n∑
k=1

1

1 + ak
<

n∑
k=1

1

1 + ak
=
∞∑
k=1

1

2bk
=

1

2
. (2)

From (1) and (2) and the property 1 +
n∑

k=1

Fk = Fn+2, it follows that, for n ≥ 1

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

≤ 1 + 2

(
n∑

k=1

Fk

)(
n∑

k=1

1

1 + ak

)
< 1 +

n∑
k=1

Fk = Fn+2.

Solution 3 by Roberto de la Cruz Moreno, Centre de Recerca Matematica,
Campus de Bellaterra, Barcelona, Spain

Lemma. Let {bn}n≥1 be the sequence of real numbers defined by b1 = 5 and for all

n ≥ 1, bn+1 = 1
2(b2n + 1). Then:

m∑
k=1

1

bk + 1
=

1

4
− 1

bm+1 − 1
, ∀m ∈ Z+

Proof. By induction:
m = 1:

1

b1 + 1
=

1

6
=

1

4
− 1

12
=

1

4
− 1

b2 − 1

m⇒ m+ 1:

m+1∑
k=1

1

bk + 1
=

m∑
k=1

1

bk + 1
+

1

bm+1 + 1
=

1

4
− 1

bm+1 − 1
+

1

bm+1 + 1

=
1

4
− 2

b2m+1 − 1
=

1

4
− 1

bm+2 − 1
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Corollary.
m∑
k=1

1

ak + 1
<

1

2
, ∀m ∈ Z+

By Cauchy-Schwarz inequality:

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

≤ 1 + 2

(
n∑

i=1

Fi

) n∑
j=1

1

1 + aj



= 1 + 2(Fn+2 − 1)

 n∑
j=1

1

1 + aj

 < Fn+2

Also solved by Ed Gray, Highland Beach, FL; Adrian Naco, Polytechnic
University, Tirana, Albania, and the proposer.

• 5253: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy
dxdy.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the double integral equals
π4

30
.

For s, t ≥ 0 we have∫ 1

0

∫ 1

0

xs+tys

1− xy
dxdy =

∫ 1

0

∫ 1

0

∞∑
k=0

xk+s+tyk+sdxdy

=
∞∑
k=0

∫ 1

0

∫ 1

0
xk+s+tyk+sdxdy

=
∞∑
k=0

1

(k + s+ t+ 1)(k + s+ 1)
.

Differentiating with respect to t, then setting t = 0, we obtain∫ 1

0

∫ 1

0

lnx.xsys

1− xy
dxdy =

∞∑
k=0

−1

(k + s+ 1)3

Differentiating with respect to s, then setting s = 0, we obtain∫ 1

0

∫ 1

0

lnx. ln(xy)

1− xy
dxdy = 3

∞∑
k=0

1

(k + 1)4
.

Now it is well known that the sum
∞∑
k=0

1

(k + 1)4
equals

π4

90
. Hence the result.

Solution 2 by Anastasios Kotronis, Athens, Greece
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We have

∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy
dx dy 1 =

∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy
dy dx =

∫ 1

0

∫ 1

0

∑
k≥0

(xy)k lnx ln(xy) dy dx

xy=u
=

∫ 1

0

lnx

x

∫ x

0

∑
k≥0

uk lnu du dx

2 =

∫ 1

0

lnx

x

∑
k≥0

∫ x

0
uk lnu du dx

=

∫ 1

0

lnx

x

∑
k≥0

(
uk+1

k + 1
lnu

∣∣∣∣∣
x

0

− 1

k + 1

∫ x

0
uk du

)
dx

=

∫ 1

0

∑
k≥0

xk

k + 1
ln2 x dx−

∫ 1

0

∑
k≥0

xk

(k + 1)2
lnx dx

3 =
∑
k≥0

∫ 1

0

xk

k + 1
ln2 x dx−

∑
k≥0

∫ 1

0

xk

(k + 1)2
lnx dx

But integrating by parts twice and once respectively,∫ 1

0
xk ln2 x dx =

2

(k + 1)3
and

∫ 1

0
xk lnx dx = − 1

(k + 1)2
,

so ∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy
dx dy = 3

∑
k≥0

1

(k + 1)4
= 3ζ(4) =

π4

30
.

Notes:
1From Fubini’s theorem < http : //on.wikipedia.org/wiki/Fubini#27 >,
since the integrand doesn’t change sign.
2 Again from Fubini’s theorem
3 Again from Fubini’s theorem

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of
Mathematics, University of Tor Vergata Roma, Rome, Italy, and the
proposer.

Mea Culpa

Enkel Hysnelaj of the University of Technology in Sydney Australia and
Elton Bojaxhiu of Kriftel, Germany were inadvertently omitted from the list of
those having solved problem 5232 that appeared in the April issue this column. Once
again, sorry.
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