
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2019

• 5553: Proposed by Kenneth Korbin, New York, NY

A triangle with sides (x, x, 57) has the same area as a triangle with sides (x+1, x+1, 55).
Find x.

• 5554: Proposed by Michel Bataille, Rouen, France

Find all pairs of complex numbers (a, b) such that the polynomial x5 + x2 + ax + b has
two roots of multiplicity 2.

• 5555: Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy

Show that xx − 1 ≤ x1−x2ex−1 (x− 1) for 0 < x ≤ 1.

• 5556: Proposed by Pedro Jesús Rodŕıguez de Rivera (student) and Ángel Plaza, Univer-
sidad de Las Palmas de Gran Canaria, Spain

Let αk =
k +
√
k2 + 4

2
. Evaluate lim

k→∞

∞∏
n=1

(
1 +

(k − 1)αk + 1

αnk + αk

)
αk

.

• 5557: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n ≥ 2 be an integer. If for all k ∈ {1, 2, . . . , n} we have

Ak =

(
k + 1 k
k + 3 k + 2

)
,

compute the value of
∑

1≤i<j≤n
det (Ai +Aj).

• 5558: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania
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Find all continuous functions f : < → < such that∫ 0

−x
f(t)dt+

∫ x

0
tf(x− t)dt = x,∀x ∈ <.

Solutions

• 5535: Proposed by Kenneth Korbin, New York, NY

Given positive angles A and B with A+B = 180o. A circle with radius 3 and a circle of
radius 4 are each tangent to both sides of ∠A. The circles are also tangent to each other
Find sinA.

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

See the figure below, in which angle QPR is
A

2
.

We have
QR

PQ
=
ST

PS
, that is,

3

PQ
=

4

PQ+ 7
, whence PQ = 21. So sin

(
A

2

)
=

1

7
and

cos

(
A

2

)
=

√
1−

(
1

7

)2

=
4
√

3

7
.

So sinA = 2 sin

(
A

2

)
cos

(
A

2

)
= 2

(
1

7

)(
4
√

3

7

)
=

8
√

3

49
.

Solution 2 by David E. Manes, Oneonta, NY

The value of sinA is 8
√

3/49.

Let X,Y denote the centers of the circles with radii 3 and 4, respectively. From vertex
A, draw the line through the centers X and Y . This line splits the circles and the angle
into two equal parts so that it is the angle bisector of ∠A. Construct the radius vector
XR from the center of the circle with radius 3 to the point of tangency R with angle A.
Similarly, Y S is the radius vector from the circle of radius 4 to the point of tangency S
of angle A. Then triangles AXR and AY S are similar right triangles with right angles at
points R and S, respectively. If x denotes the hypotenuse AX of 4AXR, then x+7 is the
hypotenuse AY of 4AY S. By the similarity of the two right triangles, it follows that the
ratio of corresponding sides are equal. Therefore, AX/XR = AY/Y S or x/3 = (x+ 7)/4
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implies x = 21. Let s denote the side length AR. Then s2 + 32 = 212 or s = 12
√

3.
Therefore,

sin(A/2) = XR/AX = 3/21 = 1/7 and cos(A/2) = AR/AX = 12
√

3/21 = 4
√

3/7.

Hence,
sinA = 2 sin(A/2) cos(A/2) = 2(1/7)(4

√
3/7) = 8

√
3/49 = sinB.

Solution 3 by Ed Gray, Highland Beach, FL

Let:

∠A = ∠DAC, where AC lies on the x-axis, and the coordinates of vertex A = (0, 0).

Let O = center of circle with radius 3, O′ = center of circle with radius 4. The angle
bisector passes through both circle centers. Let OP be perpendicular to AC, and AP = x.
The coordinates of O = (x, 3). Let O′Q be perpendicular to AC, and PQ = y.

AQ = x+y, and the coordinates of O′ = (x+y, 4). The distance from O to O′ = 3+4 = 7.

(1) tan(A/2) = 3/x = 4/(x+ y).

(2) 4x = 3x+ 3y, and x = 3y.

(3) Let T have coordinates (x+ y, 3), so that OT is parallel to AC.

(4) OTO′ is a right triangle with legs of 1 and y, and hypotenuse of 7.

(5) Then y2 + 1 = 49, y2 = 48, and y = 4
√

3, x = 3y = 12
√

3.

(6) sin(A) = sin[2(A/2)] = 2 sin(A/2) cos(A/2) = 2

(
1

7

)(
y

7

)
=

2y

49
=

8
√

3

49
.

Solution 4 by Michel Bataille, Rouen, France

Let γ and γ′ be the circles with radii 3 and 4, respectively. The circle γ (resp. γ′) is
tangent to the sides of ∠A at T and U (resp. at T ′ and U ′) [see figure]. Note that the
centres C and C ′ of γ and γ′ lie on the internal bisector of ∠A. Let O be the vertex of
∠A. The homothety with centre O and scale factor 4

3 transforms γ into γ′ and C into C ′.

Thus, we have OC′

OC = 4
3 and, since γ and γ′ are tangent to each other, CC ′ = 4 + 3 = 7.

It follows that
OC ′

4
=
OC

3
=
OC ′ −OC

4− 3
=
CC ′

1
= 7.

As a result, we obtain OC = 21 and so sin A
2 = CT

OC = 3
21 = 1

7 . In addition, since

0 < A
2 < 90◦, we have cos A2 > 0 hence cos A2 =

√
1− sin2 A

2 = 4
√
3

7 . We can now conclude

that

sinA = 2 sin
A

2
cos

A

2
=

8
√

3

49
.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Ioannis D. Sfikas, National and Kapodistrian Univer-
sity of Athens, Greece; Albert Stadler, Herrliberg, Switzerland; David Stone
and John Hawkins, Georgia Southern University, Statesboro, GA, and the
proposer.

• 5536: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu,“George Emil Palade” School, Buzău, Romania

If a ∈ (0, 1) then calculate lim
n→∞

n
√

(2n− 1)!!

(
sin

(
a · n+1

√
(n+ 1)!

n
√
n!

)
− sin a

)
.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News,
VA

By Stirling’s approximation,

n! ∼ nn

en
,

so
n
√
n! ∼ n

e
and n+1

√
(n+ 1)! ∼ n+ 1

e
.

Moreover,

(2n− 1)!! =
(2n)!

2nn!
∼ (2n)2n/e2n

2nnn/en
=

2nnn

en
,

so
n
√

(2n− 1)!! ∼ 2n

e
.

It follows that

n
√

(2n− 1)!!

(
sin

a n+1
√

(n+ 1)!
n
√
n!

− sin a

)
∼ 2n

e

(
sin a

(
1 +

1

n

)
− sin a

)
.

Using the identity

sinA− sinB = 2 sin
A−B

2
cos

A+B

2

with

A = a

(
1 +

1

n

)
and B = a,

we find

sin a

(
1 +

1

n

)
− sin a = 2 sin

a

2n
cos

(
a+

1

2n

)
.

Thus,

n
√

(2n− 1)!!

(
sin

a n+1
√

(n+ 1)!
n
√
n!

− sin a

)
∼ 4n

e
sin

a

2n
cos

(
a+

1

2n

)
=

2a

e

sin a
2n
a
2n

cos

(
a+

1

2n

)
.
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Finally,

lim
n→∞

n
√

(2n− 1)!!

(
sin

a n+1
√

(n+ 1)!
n
√
n!

− sin a

)
= lim

n→∞

2a

e

sin a
2n
a
2n

cos

(
a+

1

2n

)
=

2a

e
cos a.

Note the restriction a ∈ (0, 1) is not necessary.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

The solution is lim
n→∞

n
√

(2n− 1)!!

(
sin

(
a · n+1

√
(n+ 1)!

n
√
n!

)
− sin a

)
=

2a cos a

e
.

Note first that by Stirling formula n
√

(2n− 1)!! ∼ 2n

e
, and also that

n+1
√

(n+ 1)!
n
√
n!

→ 1,

for n → ∞, and therefore, by Taylor expassion of sin ax at x = 1, it follows that the
proposed limit, say L, is

L =
2

e
lim
n→∞

−1
2(x− 1)2

(
a2 sin(a)

)
+ a(x− 1) cos(a) + sin(a)− sin(a)

1

n

=
2

e
lim
n→∞

−1
2(x− 1)2

(
a2 sin(a)

)
+ a(x− 1) cos(a)

1

n

=
2a cos a

e
,

where we have used x =
n+1
√

(n+ 1)!
n
√
n!

, so, by the Stolz-Cezaro Lemma,

lim
n→∞

x− 1
1

n

= lim
n→∞

n+1
√

(n+ 1)!− n
√
n!

n√
n!
n

= e lim
n→∞

n+1
√

(n+ 1)!

n+ 1
= 1

and consequently lim
n→∞

(x− 1)2

1

n

= 0, and the conclusion follows.

Solution 3 by Michel Bataille, Rouen, France

The required limit is
2a cos a

e
.

Recall the well-known asymptotic expansion of ln(n!) as n→∞:

ln(n!) = n ln(n)− n+ o(n) (1).

From (1), we deduce n
√
n! ∼ n

e as n→∞ [because n
√
n! = e

ln(n!)
n = eln(n)−1+o(1) = n

e ·e
o(1)

so that lim
n→∞

e
n ·

n
√
n! = 1]. It follows that

n
√

(2n− 1)!! ∼ 2n

e
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as n→∞. Indeed, since (2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1 = (2n)!
2nn! , we have

n
√

(2n− 1)!! =

(
2n
√

(2n)!
)2

2 n
√
n!

∼ 1

2
· (2n/e)2

n/e
=

2n

e
.

To address the second factor, we first remark that un =
n+1
√

(n+1)!
n√
n!

satisfies un ∼ n+1
e ·

e
n =

n+1
n so that lim

n→∞
un = 1. Since ln(x) ∼ x− 1 as x→ 1, it follows that

un − 1 ∼ ln(un) =
1

n+ 1
(ln(n+ 1) + ln(n!))− 1

n
ln(n!)

=
1

n+ 1

(
ln(n+ 1)− 1

n
ln(n!)

)
=

1

n

(
1 +

1

n

)−1(
ln

(
1 +

1

n

)
+ ln(n)− 1

n
ln(n!)

)
and so un − 1 ∼ 1

n as n→∞ (note that (1) gives lim
n→∞

(
ln(n)− 1

n ln(n!)
)

= 1).

Now, since sinx ∼ x as x→ 0, we obtain

sin(aun)− sin a = 2 sin
a(un − 1)

2
cos

a(un + 1)

2
∼ (2 cos a) · a(un − 1)

2
∼ (a cos a) · 1

n

as n→∞ and deduce that the desired limit is

lim
n→∞

2n

e
· (a cos a) · 1

n
=

2a cos a

e
.

Editor′s comment: The statement that there is no need to restrict a to (0, 1) was also
noted in the solution submitted by Moti Levy of Rehovot Israel. Indeed, the result
is valid for a ∈ C .

Also solved by Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel;
Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece;
Albert Stadler, Herrliberg, Switzerland and the proposer.

• 5537: Proposed by Mohsen Soltanifar, Dalla Lana School of Public Health, University of
Toronto, Canada

Let X,Y be two real-valued continuous random variables on the real line with associated
mean, median and mode x, x̃, x̂, and y, ỹ, ŷ, respectively. For each of the following condi-
tions, show that there are variables X,Y satisfying them or prove such random variables
do not exist.

(i) x ≤ y, x̃ ≤ ỹ, x̂ ≤ ŷ, (v) x > y, x̃ ≤ ỹ, x̂ ≤ ŷ
(ii) x ≤ y, x̃ ≤ ỹ, x̂ > ŷ, (vi) x > y, x̃ ≤ ỹ, x̂ > ŷ
(iii) x ≤ y, x̃ > ỹ, x̂ ≤ ŷ, (vii) x > y, x̃ > ỹ, x̂ ≤ ŷ
iv) x ≤ y, x̃ > ỹ, x̂ > ŷ, (viii) x > y, x̃ > ỹ, x̂ > ŷ

Solution 1 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We provide examples that satisfy each of the 8 conditions. They can all happen.
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Note that examples satisfying conditions (i) through (iv) with strict inequality satisfy
conditions (viii), (vii), (vi), and (v) respectively, if X and Y are reversed. For example, if
X and Y satisfy condition (i), then Y and X satisfy condition (viii); (ii) and (vii), (iii)
and (vi), and (iv) and (v). So we only need four examples.

We’ll define the random variables, X,Y1, Y2, Y3, Y4.

The probability density function for X:

fX(t) =


0, t < 0;

2.5t, 0 ≤ t ≤ .8;

10(1− t), .8 ≤ t ≤ 1;

0, 1 < t.

It is straightforward to verify that

∫ ∞
−∞

fX (t) dt = 1.

Then the cumulative distribution function is FX(x) =

∫ x

−∞
fx (t) dt.

The mean of X is

X =

∫ ∞
−∞

tfX(t)dt =

∫ .8

0
t(2.5t)dt+

∫ 1

.8
10(1− t)tdt =

32

75
+

13

75
= .6.

To find the median of X, we must find the value for x which makes

FX(x) =

∫ x

−∞
fX(t)dt =

1

2
.

By the definition of the pdf, this spot must occur before x = .8. So either by geometry

or solving

∫ x

0
2.5tdt =

1

2
, we find that the median is x̃ =

√
2

5
=

√
10

6
≈ .63246.

The maximum value of the pdf fX is .4, which occurs at x = .8.
That is the mode of X is x̂ = .8.

Conditions (viii) and (i).

We define Y1 by the density function

fY1(t) =


0, t < −.5;

4(t+ .5), −.5 ≤ t ≤ 0;

4(.5− t), 0 ≤ t ≤ .5;

0, .5 < t.

As above, we calculate our three measures:
Mean of Y1 : y1 = 0.
Median of Y1 : ỹ1 = 0.
Mode of Y1 : ŷ1 = 0.
We see that
x = .6 > y1 = 0.
x̃ = .6325 > ỹ1 = 0.
x̂ = .8 > ŷ1 = 0.
Thus, X and Y1 satisfy condition (viii). Reversing X and Y1 gives an example which
satisfies condition (i)

Conditions (iv) and (v).
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We define Y2 by the density function

fY 2(t) =


0, t < .12;

4(t− .12), .12 ≤ t ≤ .62;

4(1.12− t), .62 ≤ t ≤ 1.12;

0, 1.12 < t.

As above, we calculate our three measures:
Mean of Y2 : y2 = .62.
Median of Y2 : ỹ2 = .62.
Mode of Y2 : ŷ2 = .62
We see that
x = .6 < y2 = .62
x̃ = .6325 > ỹ2 = .62
x̂ = .8 > ŷ2 = .62.
Thus, X and Y2 satisfy condition (iv),

Reversing X and Y2 gives an example which satisfies condition (v)

Conditions (ii) and (vii).

We define Y3 by the density function

fY3(t) =



0, t < .2;

4(t− .2), .2 ≤ t ≤ .7
4(1.2− t), .7 ≤ t ≤ 1.2;

0, 1.2 < t.

As above, we calculate our three measures:
Mean of Y3 : y3 = .7.
Median of Y3 : ỹ3 = .7.
Mode of Y3 : ŷ3 = .7.

We see that
x = .6 < y3 = .7
x̃ = .6325 < ỹ3 = .7
x̂ = .8 > ŷ3 = .7.
Thus, X and Y3 satisfy condition (ii), Reversing X and Y3 gives an example which satisfies
condition (vii)

Conditions (iii) and (vi).

We define Y4 by the density function, which is piecewise continuous and defined for all
real numbers. Thus the cumulative distribution function for Y4 is also continuous and
defined everywhere. Thus Y4 is a continuous random variable.
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fY4(t) =



0, t < .47;

10/3, .47 ≤ t ≤ .62

8.33/3, .62 ≤ t ≤ .8

2000000(t− 8), .8 ≤ t ≤ .80001

2000000(.80002− t), .80001 ≤ t ≤ .80002

0, .80002 < t.

It is more tedious, but we calculate our three measures:
Mean of Y4 : y4 = .62736.
Median of Y4 : ỹ4 = .62.
Mode of Y4 : ŷ4 = .80001

We see that
x = .6 < y4 = .62736
x̃ = .6325 > ỹ4 = .62
x̂ = .8 < ŷ4 = .80001.
Thus, X and Y4 satisfy condition (iii)

Reversing X and Y4 gives an example which satisfies condition (vi).

So for each condition (i) . . . (viii), we have an example satisfying it.

Note: If a random variable that has a continuous probability density function is desired,
the following can be used for the definition of Y4, (but the mathematics to compute its
mean and median is much more tedious):

fY4(t) =



0, t < .45;
29167
9303 (t− .45), .45 ≤ t < .46

29167
9303 , .46 ≤ t ≤ .61

(
833
3 −

2916700
9303

)
(t− .61) + 29167

9303 , .61 < t < .62

8.33
3 , .62 < t ≤ .8

5167000
3 (t− .8) + 8.33

3 , .8 ≤ t ≤ .80001

60
.000025835(.80001− t) + 20, .8000 ≤ t ≤ .80001 + .000025835

3

0, t > .80001 + .000025835
3
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Solution 2 by Albert Stadler, Herrliberg, Switzerland

Let 0 < r < s < 1, u > 0, v > 0, w > 0 such that

(i) ur + v(s− r)/2 = 1,
(ii) v(s− r)/2 + w(1− s) = 1.

Let p(x) be the continuous probability density function that is zero in ] −∞, 0] ∪ [1,∞[
and piecewise linear in [0, 1] such that the graph of p(x) consists of line segments joining
the points (0, 0) and (r/2, u), (r/2, u) and (r, 0), (r, 0) and ((r + s)/2, v), ((r + s)/2, v)
and (s, 0), (s, 0) and ((s+ 1)/2, w), ((s+ 1)/2, w) and (1, 0). p(x) is a probability density
function with three “peaks.”

Let X be the random variable whose probability density function is p(x). Let r, s, v be
given. We solve (i) and (ii) for u and w and find:

u =
2− v(s− r)

2r
,

w =
2− v(s− r)

2(1− s)
.

Clearly, v <
2

s− r
, since both u > 0 and v > 0.

We next calculate the mean, median and mode of X, and express these quantities in terms
of r, s, v:

x =

∫ 1

0
xp(x)dx =

∫ r/2

0
x

(
2u

r
x

)
dx+

∫ r

r/2
x

(
−2u

r
(x− r)

)
dx+

∫ (r+s)/2

r
x

(
2v

s− r
(x− r)

)
dx+

+

∫ s

(r+s)/2
x

(
− 2v

s− r
(x− s)

)
dx+

∫ (s+1)/2

s
x

(
2w

1− s
(x− s)

)
dx+

∫ 1

(s+1)/2
x

(
− 2w

1− s
(x− 1)

)
dx =

=
1

4

(
r2u− r2v + s2v + w − s2w

)
=

1 + r + s

4
+ v

(s− r)(r + s− 1)

8
.

Clearly, x̃ =
r + s

2
, since

∫ x̃

0
p(x)dx =

1

2
by (i).

The mode x̂ is defined as the value x̂ for which we have p(x̂) = max(u, v, w).

We have

x̂ =
r

2
, if u > v and u > w which is equivalent to v <

2

r + s
and r + s < 1.

x̂ =
r + s

2
, if v > w and v > u which is equivalent to v >

2

r + s
and v >

2

2− r − s
.

x̂ =
s+ 1

2
, if w > u and w > v which is equivalent to v <

2

2− r − s
and r + s > 1.

We have three free parameters at our disposal, namely r, s, v, we can play with. It turns
out that by a suitable choice of these parameters all 8 variants can be realized as is
evidenced by the subsequent table:
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case r s u v w Mean Median Mode

(i) 0.296 0.615 0.528 5.289 0.406 0.459 0.456 0.456
0.301 0.728 0.513 3.961 0.567 0.513 0.515 0.515

(ii) 0.301 0.509 0.547 8.031 0.336 0.413 0.405 0.405
0.143 0.824 2.459 1.904 1.998 0.486 0.484 0.072

(iii) 0.407 0.881 2.214 0.418 7.571 0.579 0.644 0.941
0.299 0.944 1.449 1.757 7.739 0.595 0.622 0.972

(iv) 0.502 0.953 1.652 0.758 17.640 0.633 0.728 0.977
0.536 0.849 0.234 5.590 0.829 0.680 0.693 0.693

(v) 0.155 0.720 2.970 1.910 1.644 0.452 0.438 0.078
0.260 0.630 0.462 4.756 0.325 0.448 0.445 0.445

(vi) 0.364 0.845 1.224 2.306 2.874 0.581 0.605 0.923
0.485 0.744 1.603 1.719 3.037 0.570 0.615 0.872

(vii) 0.250 0.619 2.460 2.087 1.614 0.455 0.435 0.125
0.269 0.452 3.507 0.620 1.721 0.426 0.361 0.135

(viii) 0.595 0.763 0.879 5.675 2.208 0.632 0.679 0.679
0.371 0.752 1.401 2.521 2.096 0.546 0.562 0.562

The table was generated by a computer program that selected values for r, s, v randomly,
thereby creating instances of the random variables X and Y, until a pair of random
variables was found for each of the eight cases.

Editor′s comment: This problem asked us to determine if certain relationships can exist
between the mean, median, and mode in two sets of data that are subject to certain
constrains. If the constraints on the data are relaxed, and by focusing on the mean,
median, and mode on small finite sets of data, one can easily determine the validity of
the relationships in this question.

Also solved by the proposer.

• 5538: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve for all real numbers x 6= π

2
(2k + 1), k ∈ Z.

2− 2019x = etanx + 3sinx + tan−1 x.

Solution 1 by Michel Bataille, Rouen, France

For k ∈ Z, let Ik denote the open interval
(
π
2 (2k − 1), π2 (2k + 1)

)
. We first show that the

equation has no solution in Ik for k ≥ 1.
If t ∈ Ik is a solution to the equation, then we have 2− 3sin t− tan−1 t = etan t + 2019t and
so

11



2019t < 2019t+ etan t = 2− 3sin t − tan−1 t < 2− 1

3
+
π

2

(since 3sin t ≥ 3−1 and tan−1 t > −π
2 ). It follows that t < 1

2019

(
5
3 + π

2

)
< π

2 and so we
must have k ≤ 0.

Now, we consider the function f defined by f(x) = etanx + 3sinx + tan−1 x + 2019x
whose derivative is f ′(x) = (1 + tan2 x)etanx + (ln 3)(cosx)3sinx + 1

1+x2
+ 2019.

Since |(ln 3)(cosx)3sinx| ≤ (ln 3)3sinx ≤ 3 ln 3, we have (ln 3)(cosx)3sinx + 2019 > 0,
hence f ′(x) > 0. It follows that the restriction fk of f to the interval Ik, which is con-
tinuous and strictly increasing, is a bijection from Ik onto the interval (αk, βk) where
αk = lim

x→π
2
(2k−1)

fk(x) and βk = lim
x→π

2
(2k+1)

fk(x). Since etanx tends to 0 when tanx tends

to −∞ and to ∞ when tanx tends to ∞, it is readily seen that for k ≤ 0, αk < 0 and
βk = ∞. Thus, the equation fk(x) = 2 has a unique solution xk in Ik for k ≤ 0; in par-
ticular x0 = 0. Therefore the given equation has infinitely many solutions, the numbers
xk = f−1k (2) for k ≤ 0.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that there are infinitely many solutions, one of which is zero and the rest of
which are negative real numbers.

For each integer k, let Dk be the interval (π(2k− 1)/2, π(2k+ 1)/2). Let D = ∪∞k=−∞Dk.
Define f(x) = 3sinx + tan−1 x+ 2019x− 2 for each x in R, and define g(x) = f(x) + etanx

for each x in D. Then

f ′(x) = (cosx)3sinx(ln 3) + 1/(1 + x2) + 2019

and g′(x) = f ′(x) + (sec2 x)etanx. Since |(cosx)3sinx(ln 3)| ≤ 3 ln 3 for all real numbers
x, we have f ′(x) > 0 on R and g′(x) > 0 on D. Thus f is increasing on R, while g is
increasing on each Dk.

Next, we note that on each Dk,

lim
x→π

2
(2k−1)+

g(x) = f
(π

2
(2k − 1)

)
and lim

x→π
2
(2k+1)−

g(x) =∞.

Then there is exactly one zero of g(x) in Dk if and only if f
(
π
2 (2k − 1)

)
< 0. Since

f(−π/2) < 0 and f(π/2) > 0, we have exactly one zero xk of g(x) in Dk if and only if k is
a non-positive integer. In particular, x0 = 0, x−1 ≈ −1.693068317, x−2 ≈ −4.820854357,
x−3 ≈ −7.956873841, etc.

Graph of g(x) = etanx + 3sinx + tan−1 x+ 2019x− 2:
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Also solved by Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5539: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let α, β, γ be nonzero real numbers. Find the minimum value of∑
cyclic

(
1 + sin2 α sin2 β

sin2 α

)3
1/3

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

If we let: a = tanα, b = tanβ, and c = tan γ then,

sin2 α =
tan2 α

1 + tan2 α
=

a2

1 + a2

sin2 β =
tan2 β

1 + tan2 β
=

b2

1 + b2
sin2 γ =

tan2 γ

1 + tan2 γ
=

c2

1 + c2
.

Since 0 ≤ sin2 x ≤ 1, then 0 ≤ tan2 x

1 + tan2 x
≤ 1 for x ∈ {α, β, γ}. So, we have:

1 + sin2 α sin2 β

sin2 α
=

(1 + a2)(1 + b2) + a2b2

a2(1 + b2)
=

1 + a2

a2
+

b2

1 + b2
≥ 1 +

1 + a2

a2
.

Since lim
a→±∞

(
1 +

1 + a2

a2

)
= 2, then

1 + sin2 α sin2 β

sin2 α
≥ 3, and:

∑
cyclic

(
1 + sin2 α sin2 β

sin2 α

)3
1/3

≥ 3
3
√

3 ≈ 4.32674871.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the expression of the problem by E. We show that the minimum of E is 2 3
√

3.

Since ∑
cyclic

1 + sin2 α sin2 β

sin2 α
=

∑
cyclic

1

sin2 α
+
∑
cyclic

sin2 β

13



=
∑
cyclic

(
1

sin2 α
+ sin2 α

)

=
∑
cyclic

((
1

sinα
− sinα

)2

+ 2

)

≥ 6,

so by Hölder’s inequality, we have E ≥ 3−2/3
∑
cyclic

1 + sin2 α sin2 β

sin2 α
≥ 2

3
√

3.

When α = β = γ =
π

2
, we obtain E = 2 3

√
3 and hence our claimed minimum.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We claim that the minimum value equals 2 3
√

3 and is assumed for α = β = γ =
π

2
.

Let u = sinα, v = sinβ,w = sin γ. The by the AM-GM inequality,

3)

√√√√∑
cyclic

(
1 + sin2 α2β

sin2 α

)
=

3

√(
1

u
+ v

)3

+

(
1

v
+ w

)3

+

(
1

w
+ u

)3

≥

≥ 3

√(
2

√
v

u

)3

+

(
2

√
w

v

)3

+

(
2

√
u

w

)3

≥ 2
3
√

3 3

√
v

u
· w
v
· u
w

= 2
3
√

3.

Also solved by Brian Bradie, Christopher Newport University, Newport News,
VA; Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL; Moti Levy
Rehovot, Israel; David E. Manes, Oneonta, NY, and the proposer.

• 5540: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Ro-
mania

Let A ∈ M2(<) be a matrix which has real eigenvalues. Prove that if sinA is similar to
A then sinA = A.

Solution 1 by Moti Levy, Rehovot, Israel
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The matrix A ∈ M2 (R), with real eigenvalues must be similar (according to the Jordan

canonical form) to

[
λ1 0
0 λ2

]
, or to

[
λ1 1
0 λ1

]
.

If A = P−1
[
λ1 0
0 λ2

]
P then An = P−1

[
λn1 0
0 λn2

]
P and it follows that

sinA =

∞∑
n=1

anA
n = P−1

[ ∑∞
n=1 anλ

n
1 0

0
∑∞

n=1 anλ
n
2

]
P = P−1

[
sinλ1 0

0 sinλ2

]
P. (1)

If A = P−1
[
λ1 1
0 λ1

]
P then An = P−1

[
λn1 nλn−11

0 λn2

]
P and it follows that

sinA =

∞∑
n=1

anA
n = P−1

[ ∑∞
n=1 anλ

n
1

∑∞
n=1 nanλ

n−1
1

0
∑∞

n=1 anλ
n
2

]
P = P−1

[
sinλ1 cosλ1

0 sinλ1

]
P.

(2)
Similar matrices have the same eigenvalues, hence from (1)

sinλ1 = λ1,

sinλ2 = λ2,

which implies λ1 = λ2 = 0. In this case A = sinA = P−1
[

0 0
0 0

]
P =

[
0 0
0 0

]
.

Similarly, it follows from (2) that

sinλ1 = λ1,

cosλ1 = 1,

which implies λ1 = 0. In this case A = sinA = P−1
[

0 1
0 0

]
P =

[
0 1
0 0

]
.

Solution 2 by Michel Bataille, Rouen, France

Let λ1, λ2 be the eigenvalues of A. First, we suppose that λ1 6= λ2 and we show that sinA
cannot be similar to A in that case. Since its eigenvalues are distinct, the matrix A is

diagonalizable, that is, A = PDP−1 where D =

(
λ1 0
0 λ2

)
and P ∈ GL2(R). Then

sinA = P (sinD)P−1 = P

(
sin(λ1) 0

0 sin(λ2)

)
P−1

so that the eigenvalues of sinA are sin(λ1) and sin(λ2). If sinA were similar to A,
then we would have {λ1, λ2} = {sin(λ1), sin(λ2)}. However, sin(λ1) = λ1, sin(λ2) =
λ2 implies λ1 = λ2(= 0) contradicting λ1 6= λ2. Nor can the remaining possibility
sin(λ1) = λ2, sin(λ2) = λ1 occur; indeed, in that case λ1, λ2 ∈ [−1, 1] and sin(sin(λ1)) =
λ1, sin(sin(λ2)) = λ2. But the function φ : x 7→ x− sin(sinx) is strictly increasing, hence
injective, on [−1, 1] (its derivative x 7→ 1 − (cosx) cos(sinx) is nonnegative and vanishes
only at 0 since 0 < cosx < 1 for x ∈ [−1, 1], x 6= 0). Thus, from φ(λ1) = φ(λ2) we deduce
λ1 = λ2, again a contradiction.
Suppose now that A has a unique eigenvalue λ.
If A is diagonalizable, then A = λI2 and so sinA = (sinλ)I2. If sinA is similar to A, then
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sinλ = λ, hence λ = 0 and we conclude that sinA = A(= O2).

If A is not diagonalizable, the A is similar to its Jordan form J =

(
λ 1
0 λ

)
: A = QJQ−1

for some matrix Q ∈ GL2(R). Since Jn =

(
λn nλn−1

0 λn

)
for any positive integer n (easy

induction), we obtain that

sinA = Q

( ∞∑
n=0

(−1)n

(2n+ 1)!
J2n+1

)
Q−1 = Q

[ ∞∑
n=0

(−1)n

(2n+ 1)!

(
λ2n+1 (2n+ 1)λ2n

0 λ2n+1

)]
Q−1,

that is,

sinA = Q

(
sin(λ) cos(λ)

0 sin(λ)

)
Q−1.

Now, if sinA is similar toA, then sinλ = λ, hence λ = 0 and thereforeA = Q

(
0 1
0 0

)
Q−1 =

sinA.
We conclude that sinA = A whenever sinA is similar to A.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Let λ1 and λ2 be the real eigenvalues of A, so that the eigenvalues of sinA are sinλ1 and
sinλ2. Since sinA and A are similar, they have the same eigenvalues. Thus either a)
sinλ1 = λ1, sinλ2 = λ2 or b) sinλ1 = λ2, sinλ2 = λ1 .

For case a) let f(x) = x− sinx, where x is any real number. We have f ′(x) = 1− /cosx,
so that f(x) is strictly increasing for x ∈ (−1, 0) ∪ (0, 1). Since f(0) = 0 and f(x) is
nondecreasing in general, so f(x) = 0 if and only if x = 0. It follows that λ1 = λ2 = 0.

For case b), we have sin(sinλ1) = λ1 and sin(sinλ2) = λ2. For real numbers x let
g(x) = x = sin(sinx) so that g′(x) = 1 − cosx cos(sinx). Similar to a), we see that
g(x) = 0 if and only if x = 0. Again λ1 = λ2 = 0.

It is known ([1] p.200, Theorem 4.11) that if A has equal eigenvalues λ, then = (cosλ)A+
(sinλ− λ cosλ)I2, where I2 is the identity matrix of order 2.

Since λ = 0, so sinA = A, as desired.

Reference 1. V. Pop, O. Furdui: Square Matrices of Order 2, Springer, 2017

Solution 4 by Albert Stadler, Herrliberg, Switzerland

Let a, b be the eigenvalues of A which are assumed to be real. Any matrix A (with real or
complex entries) is similar to an upper triangular matrix whose diagonal entries are the
eigenvalues of A, i.e. there is an invertible 2 by 2 matrix T such that

T−1AT =

(
a ∗
0 b

)
.

We conclude that

T−1 sinAT = T−1

( ∞∑
k=0

(−1)k

(2k + 1)!
Ak

)
T =

∞∑
k=0

(−1)k

(2k + 1)!

(
T−1AT

)k
=

(
sin a ∗

0 sin b

)
.
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By assumption A and sinA are similar. Similar matrices have the same eigenvalues.
Therefore {a, b} = {sin a, sin b}. So either a = sin a and b = sin b or a = sin b and
b = sin a.

In the first case we have a = b = 0, since a and b are real. In the second case we
have a = sin sin a and b = sin sin b which implies again a = b = 0 . (Note that for
x 6= 0| sinx| < |x|.)

Thus A = T

(
0 ∗
0 0

)
T−1. which implies that Ak is the null-matrix for all k > 1 and

therefore

sinA =
∞∑
k=0

(−1)k

(2k + 1)!
Ak = A.

Also solved by the proposer.
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