
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to  eisenbt@013.net¡. Solutions to previously stated problems
can be seen at  http://www.ssma.org/publications¡.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2020

• 5595: Proposed by Kenneth Korbin, New York, NY

Trapezoid ABCD with integer length sides is inscribed in a circle with diameter 233. Side
AB � 4439. Find the other three sides.

• 5596: Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA

V

A

B

C

x y

z

c

a

b

Let V be a vertex of a rectangular box. Let V A, V B and V C be the three edges meeting at
vertex V . Suppose the area of the triangle ABC is 6

?
26. The volume of the box is 144. And

the sum of the edges of the box is 76. Find the total surface area of the box.
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• 5597: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehedinti,
Romania

If x, y, z ¡ 0;xyz � 1 then:

�
x� y � 1?

z

	2
�
�
y � z � 1?

x

	2
�
�
z � x� 1?

y

	2
¥ 3

• 5598: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Apxq be a polynomial of degree n such that Apiq � 3i for 0 ¤ i ¤ n. Find the value of
Apn� 1q.

• 5599: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Let n ¥ 2 be an integer. Calculate

» π
2

0

sinx� cosx

sin2n�1 x� cos2n�1 x
dx.

• 5600: Proposed by Seán M. Stewart, Bomaderry, NSW, Australia

Evaluate: » π
0

log
�
1 � 2a cosx� a2

�
log
�
1 � 2b cosx� b2

�
dx,

if a, b P < are such that the product ab with |a|, |b|   1 satisfies the equation a2b2 � ab � 1.

Solutions

5577: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD with integer length sides is inscribed in a circle with diameter
AD � 625. Find the perimeter if

�
AB,BC,CD

� � 1.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let M be the centre of the circle. The triangles AMB,BMC,CMD are isosceles and their
vertex angles add up to π. Therefore

arcsin
AB

625
� arcsin

BC

625
� arcsin

CD

625
� π

2
.

We take the sines of both sides of the equation and use the identity

sinpa� b� cq � cos a cos b sin c� cos b cos c sin a� cos c cos a sin b� sin a sin b sin c
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to get d
1 �

�
AB

625


2
d

1 �
�
BC

625


2
CD

625
�
d

1 �
�
CD

625


2
d

1 �
�
AB

625


2
BC

625

�
d

1 �
�
BC

625


2
d

1 �
�
CD

625


2
AB

625
� AB

625

BC

625

CD

625
� 1.

An exhaustive computer search gives the following 60 feasible triples
�
AB,BC,CD

�
.

p0, 336, 527q p0, 527, 336q p25, 25, 623q p25, 623, 25q p47, 425, 425q p50, 50, 617q

p50, 617, 50q p75, 75, 607q p75, 607, 75q p100, 100, 593q p100, 593, 100q p113, 400, 400q

p125, 355, 433q p125, 433, 355q p150, 150, 553q p150, 553, 150q p175, 175, 527q p175, 527, 175q

p200, 200, 497q p200, 497, 200q p220, 336, 375q p220, 375, 336q p225, 225, 463q p225, 463, 225q

p233, 350, 350q p275, 275, 383q p275, 383, 275q p287, 325, 325q p300, 300, 337q p300, 337, 300q

p325, 287, 325q p325, 325, 287q p336, 0, 527q p336, 220, 375q p336, 375, 220q p336, 527, 0q

p337, 300, 300q p350, 233, 350q p350, 350, 233q p355, 125, 433q p355, 433, 125q p375, 220, 336q

p375, 336, 220q p383, 275, 275q p400, 113, 400q p400, 400, 113q p425, 47, 425q p425, 425, 47q

p433, 125, 355q p433, 355, 125q p463, 225, 225q p497, 200, 200q p527, 0, 336q p527, 175, 175q

p527, 336, 0q p553, 150, 150q p593, 100, 100q p607, 75, 75q p617, 50, 50q p623, 25, 25q.

The perimeter is the sum AB �BC � CD �AD. The only values the perimeter can assume
are

1298, 1342, 1382, 1418, 1478, 1488, 1502, 1522, 1538, 1556 1558, 1562.

Comments by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA. In their solution they coordinatized the quadrilateral by placing it into a
semicircle with the longest side of the quadrilateral being the diameter of the circle. Letting
the vertices of the quadrilateral be Ap�r, 0q, Bpb1, b2q, Cpc1, c2q, and Dpr, 0q they obtained
the lengths of the sides with AB � a,BC � b, CD � c and DA � d � 625. They restricted
the size of a so that B fell into the second quadrant and they supposed that a ¤ c. That is,

a ¤
?

2r � 441.9, with 1 ¤ a ¤ 441 and a ¤ c ¤ BD �
a

4r2 � a2. They claimed that given
such a solution they could always reflect the digram across the y�axis to force a ¥ c.

With the aide of a computer they showed that minimum perimeter was 1298 while the
maximum perimeter was 1562 and concluded their solution with the following comments:
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1) Perhaps the nicest quadrilateral which can be inscribed in our semicircle is to let
a � b � c � r � 312.5. That is, the quadrilateral is one-half of a regular hexagon. We’re not
allowing this one, because it doesn’t have integral sides. Note that its perimeter, 1562.5,
would be an upper bound for all of the inscribed quadrilaterals. In fact, two of ours,
p300, 337, 300, 625q and p325, 287, 325, 625q, have perimeter 1562, the maximum possible
using integer sides.

2) In this comment they showed how they obtained degenerate quadrilaterals, that is,
Pythagorean triangles inscribed in the semicircle: they did this by letting b � 0, the length
of BC. This produced four degenerate quadrilaterals. (Using the lengths as defined above)
they found them to be:

a c d P
175 600 625 1400
220 585 625 1430
336 527 625 1488
375 500 625 1500

3) In this comment they wrote: Surprisingly, we also found values for a, b and c which form
self-intersecting inscribed quadrilaterals with integral side lengths. Of course, they don’t
satisfy the requirements of our problem (and aren’t usually even considered when discussing
quadrilaterals). For instance, with AB � 355, CD � 575, we see that BD crosses AB and
CB � 125 (vertex C actually lies between A and B on the semicircle).

Observations by Ken Korbin, proposer of the problem on Stadler’s solution:


 It is interesting to see that 3 different quadrilaterals have perimeter 1538.

 Each of the quadrilaterals has just one side not a multiple of 5.

 Each of the trapezoids has 3 sides that are multiples of 25.

Also solved by Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA,
and the proposer.

5578: Proposed by Roger Izard, Dallas, TX

In triangle ABC points F,E, and D lie on lines segments AB,BC, and AC respectively,

such that
AF

BA
� BE

BC
� DC

AC
and =BAE � =CBD � =ACF . Prove or disprove: Triangle

ABC must be an equilateral triangle.

Solution 1 by Kee-Wai Lau, Hong Kong China

We prove that triangle ABC must be an equilateral triangle.

As usual, let AB � c,BC � a,CA � b, and let R be the circumradius.

Suppose that
AF

BA
� BE

BC
� DC

AC
� k and =BAE � =CBD � =ACF � θ,

where 0   k   1 and 0   θ   π

3
. Applying the sine formula to triangle BAE, we have
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sin θ

ka
� sinpB � θq

c
� sinB cos θ � cosB sin θ

c
,

so that cot θ � c� ka cosB

ka sinB
�
�p2 � kqc2 � ka2 � kb2

�
R

kabc
, by the sine and cosine formulas.

Similarly, by considering triangles CBD and ACF , we obtain respectively

cot θ �
�p2 � kqa2 � kb2 � kc2

�
R

kabc
and cot θ �

�p2 � kqb2 � kc2 � ka2
�
R

kabc
. Hence we have

p2 � kqc2 � ka2 � kb2 � p2 � kqa2 � kb2 � kc2, (1)

and

p2 � kqc2 � ka2 � kb2 � p2 � kqb2 � kc2 � ka2. (2)

Simplifying p1q, we have

pk � 1qc2 � kb2 � a2, (3)

and simplifying p2q, we have

c2 � ka2 � p1 � kqb2. (4)

By substituting c2 of p4q into p3q, we obtain pk2 � k � 1qpa� bqpa� bq � 0.

Since k2 � k � 1 ¡ 0, so a � b. By putting a � b into p3q, we obtain a � c. Thus ABC is
indeed an equilateral triangle.

Solution 2 Albert Natian, Los Angeles Valley College, Valley Glen, CA

Claim: Yes, triangle ABC must be an equilateral triangle.
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Proof.

A B

E

qA

C

H

m sinB

m sinA

θA

m sinC � qA cosB qA cosB

qA sinB

Assume the hypotheses in the statement of the problem. The sides of triangle ABC can be
expressed as m sinA, m sinB and m sinC for some positive number m, as shown. Let qA
denote length of line segment BE and let θA denote the measure of angle =BAE. Draw EH
perpendicular to side AB. Since =A�=B �=C � π, then =C � π � p=A�=Bq and so

sinC � sin pπ � p=A�=Bqq � sin p=A�=Bq � sinA cosB � sinB cosA.

Let ρA denote the ratio of BE � qA to BC � m sinA; i.e., ρA � qA{ pm sinAq. So

qA � mρA sinA.

From the above figure and results we have

cot θA � m sinC � qA cosB

qA sinB
� m psinA cosB � sinB cosAq �mρA sinA cosB

mρA sinA sinB
,

cot θA � 1

ρA
rp1 � ρAq cotB � cotAs ,

ρA cot θA � p1 � ρAq cotB � cotA.

Similar discussion with respect to vertices B and C will produce the results

ρB cot θB � p1 � ρB q cotC � cotB,

ρC cot θC � p1 � ρC q cotA� cotC

where θB � =CBD, θC � =ACF , ρB � DC{AC and ρC � AF {BA. Since

AF {BA � BE{BC � DC{AC and =BAE � =CBD � =ACF , then ρ :� ρA � ρB � ρC

and θ :� θA � θB � θC . So

ρA cot θA � ρB cot θB � ρC cot θC � ρ cot θ,

ρ cot θ � p1 � ρq cotB � cotA � p1 � ρq cotC � cotB � p1 � ρq cotA� cotC
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which implies

cotA � cotB � cotC � ρ

2 � ρ
cot θ

and since =A�=B �=C � π and two or more of the angles =A, =B, =C are acute, then

cotA � cotB � cotC � 1?
3

and =BAE � =CBD � =ACF � π{3.

Thus, triangle ABC is equilateral.

Also solved by Albert Stadler, Herrliberg, Switzerland, and the proposer.

5579: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”, Drobeta
Turnu-Severin, Romania

Prove: If a, b P <, a ¤ b, then log 5 �
» b
a

5x
2
dx� log 5 �

» b
a

5x4dx ¥ 5b � 5a.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

It is enough to prove that

5x
2 � 5x

4 ¥ 5x (*)

for all real values ofx because then

log 5

» b
a

5x
2
dx� log 5

» b
a

5x
4
dx ¥ log 5

» b
a

5xdx � 5b � 5a.

p�q holds true for x ¤ 0, because 5x
2 � 5x

4 ¥ 2 ¡ 1 ¥ 5x, if x ¤ 0.

p�q holds true for x ¥ 1, because 5x
2 � 5x

4 ¡ 5x
2 ¥ 5x, if x ¥ 1.

Let 0   x   1. Then, by the AM-GM inequality,

5x
2 � 5x

4 �
8̧

k�0

1

k!

�
x2k � x4k

	
¥ 2

8̧

k�0

1

k!
x3k � 2 � 5x

3

and it remains to prove that

fpxq :� log 2 � x3 log 5 � x log 5 ¥ 0

for 0   x   1, for then 2 � 5x
3 ¥ 5x. fpxq assumes a local minimum at x � 1?

3
and

f

�
1?
3



� logp2q � 2

3
?

3
log 5 ¡ 0,

which concludes the proof.

Solution 2 by Brian Bradie, Christopher Newport University, Newport News,
VA
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Because » b
a

5x dx � 5b � 5a

log 5
,

the desired inequality is equivalent to

» b
a
p5x2 � 5x

4 � 5xq dx ¥ 0.

If a � b, then » b
a
p5x2 � 5x

4 � 5xq dx � 0.

Next, suppose a   b, and consider the function

fpxq � 1

2
x4 � 1

2
x2 � x� log5 2.

Then f 1pxq � 2x3 � x� 1. An examination of the graphs of y � 2x3 and y � 1 � x reveals
there exists a unique real number, say c, for which 2c3 � 1 � c; that is, there exists a unique
real number c for which f 1pcq � 0. Moreover, for x   c, f 1pxq   0, and for x ¡ c, f 1pxq ¡ 0,
so f achieves an absolute minimum value at x � c. Now,

fpcq � 1

2
c4 � 1

2
c2 � c� log5 2 � 1

4
p2c4 � c2 � cq � 1

4
c2 � 3

4
c� log5 2

� 1

4
cp2c3 � c� 1q � 1

4

�
c� 3

2


2

� 9

16
� log5 2

� 1

4

�
c� 3

2


2

� 9

16
� log5 2.

With

f 1
�

1

2



� �1

4
  0 and f 1

�
3

5



� 4

125
¡ 0,

it follows that c   3{5 and

fpcq ¡ 1

4

�
3

5
� 3

2


2

� 9

16
� log5 2 � � 9

25
� log5 2 ¡ 0.

Thus,
1

2
x4 � 1

2
x2 � x� log5 2 ¡ 0 or x   1

2
x4 � 1

2
x2 � log5 2

for all x. Because 5x is an increasing function, it then follows that

5x   5
1
2
x4� 1

2
x2�log5 2 � 2 � 5

1
2
x4� 1

2
x2 � 2

a
5x4�x2 ¤ 5x

4 � 5x
2
,

where the final inequality arises from the arithmetic mean - geometric mean inequality.
Finally,

5x
2 � 5x

4 � 5x ¡ 0

for all x, so » b
a
p5x2 � 5x

4 � 5xq dx ¡ 0
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whenever a   b. In summary,

log 5 �
» b
a

5x
2
dx� log 5 �

» b
a

5x
4
dx ¥ 5b � 5a,

with equality holding if and only if a � b.

Solution 3 by Seán M. Stewart, Bomaderry, NSW, Australia

Consider the function gpxq � 5x
2�x � 5x

4�x � 1. Differentiating with respect to x we have

g1pxq � log 5 � 5�x
�

5x
2p2x� 1q � 5x

4p4x3 � 1q
	
.

Stationary points occur when g1pxq � 0. Since 5�x ¡ 0 for all x we have

5x
2p2x� 1q � 5x

4p4x3 � 1q � 0.

Solving this equation numerically, we find a single stationary point occurs when
x � x� � 0.578 632 089 . . .. At this stationary point we see that gpx�q � 0.147 392 262 . . . ¡ 0.
Differentiating again we find

g2pxq � 2 log 5 � 5x
2�x � 12 log 5 � 5x

4�xx2 � log2 5 � 5x
2�xp2x� 1q2

� log2 5 � 5x
4�xp4x3 � 1q2,

and is clearly positive for all x P R. Since g2pxq ¡ 0, g is concave up with x � x� being a
global minimum point. Since gpx�q ¡ 0, then gpxq ¡ 0 for all x P R, or

5x
2 � 5x

4 ¡ 5x, (1)

for all x P R since 5�x ¡ 0.
Now

log 5 �
» b
a

5x
2
dx� log 5 �

» b
a

5x
4
dx � log 5 �

» b
a

�
5x

2 � 5x
4
	
dx

¡
» b
a

log 5 � 5x dx

� 5x
���b
a
� 5b � 5a,

were we have made use of the inequaility given in2 (1). Noting that equality can only occur
when a � b, we can write

log 5 �
» b
a

5x
2
dx� log 5 �

» b
a

5x
4
dx ¥ 5b � 5a,

for a, b P R, a ¤ b, as required to prove.

Solution 4 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

Because

» b
a

5xdx � 5b � 5a

log 5
, the given inequality is equivalent to
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log 5 �
» b
a

5x
2
dx� log 5 �

» b
a

5x
4
dx ¥ log 5 �

» b
a

5xdx

which is equivalent to

» b
a

�
5x

4 � 5x
2 � 5x

	
dx ¥ 0.

This is true because

Claim: 5x
4 � 5x

2 � 5x ¥ 0 for all real x.

In this modern electronic age, we could graph fpxq � 5x
4 � 5x

2 � 5x and readily accept the
truth of this claim. In fact, the TI-83 graphing calculator shows that fpxq achieves an
absolute minimum of .360 at x � .5307.

We also present an analytic proof of the claim.

If x ¥ 1, then we can consider a piece of fpxq : fpxq ¥ 5x
2 � 5x ¥ 0, so fpxq ¥ 0.

Consider the derivative:

f 1pxq � 5x
4

log 5 � 4x3 � 5x
2

log 5 � 2x� 5x log 5 � log 5 � 5x
!

4x3 � 5x
4�x � 2x � 5x

2�x � 1
)

.

If x ¤ 0, then each term inside the brackets is negative, so f 1pxq ¤ 0.

Thus fpxq is decreasing to fp0q � 1, so fpxq ¡ 0.

Now we complete our argument by showing 5x
4 � 5x

2 ¥ 5x on r0, 1s by looking carefully at
the behavior on small subintervals.

For convenience, let gpxq � 5x
4 � 5x

2
and hpxq � 5x.

We have g1pxq � 5x
4

log 5 � 4x3 � 5x
2

log 5 � 2x � 2x log 5
!

2x2 � 5x
4 � 2x � 5x

2
)
.

Because g1pxq   0 for x   0 and g1pxq ¡ 0 for x ¡ 0, we see that gp0q � 2 is an absolute
minimum.

We know that gpxq and hpxq are both increasing on r0, 1s and hp0q � 1   gp0q � 2.

We show that hpxq lies below gpxq on the entire interval by showing it true on six
(exhaustive) subintervals. The intervals are chosen so that, on each one, hpxq increases from
its left-hand height to (almost) the left-hand height of gpxq, thus lying below gpxq
throughout the subinterval. One can imagine stair-steps, with the graph of gpxq lying (on
or) above each step and the graph of hpxq lying below the step.

On the subinterval r0, .43s, hpxq ¤ hp.43q � 5.43 � 1.998   2 � gp0q ¤ gpxq.
On the subinterval r.43, .54s, hpxq ¤ hp.54q � 5.54 � 2.385   2.403 � gp.43q ¤ gpxq.
On the subinterval r.54, .627s, hpxq ¤ hp.627q � 5.627 � 2.743   2.7455 � gp.54q ¤ gpxq.
On the subinterval r.627, .715s, hpxq ¤ hp.715q � 5.715 � 3.1606   3.165 � gp.627q ¤ gpxq.
On the subinterval r.715, .826s, hpxq ¤ hp.826q � 5.826 � 3.779   3.8 � gp.715q ¤ gpxq.
On the subinterval r.826, 1s, hpxqp1q � 51 � 5   5.114 � gp.826q ¤ gpxq.

Also solved by Michel Bataille, Rouen, France; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel, and the proposers.

5580: Proposed by D.M. Bătinetu-Giurgiu “Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, “George Emil Palade” School, Buzău, Romania
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Compute: lim
nÑ8

1�
n
a
p2n� 1q!!

	2
ņ

k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�
where rxs denotes the integer

part of x.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News,
VA

By the Stolz-Cesaro theorem

lim
nÑ8

1�
n
a
p2n� 1q!!

	2
ņ

k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�

� lim
nÑ8

°n�1
k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�
�°n

k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�
�
n�1
a
p2n� 1q!!

	2
�
�
n
a
p2n� 1q!!

	2

� lim
nÑ8

��
2pn�1q

a
pn� 1q! � 2pn�2q

a
pn� 2q!

	2�
�
n�1
a
p2n� 1q!!

	2
�
�
n
a
p2n� 1q!!

	2 .

Next, by Stirling’s approximation, n! � nn{en, so

2pn�1q
a
pn� 1q! �

c
n� 1

e
, 2pn�2q

a
pn� 2q! �

c
n� 2

e
,

and �
2pn�1q

a
pn� 1q! � 2pn�2q

a
pn� 2q!

	2
� 4n

e
.

Moreover,

n
a
p2n� 1q!! � n

c
p2nq!
2nn!

� 2n

e
, n�1

a
p2n� 1q!! � 2pn� 1q

e
,

and �
n�1
a
p2n� 1q!!

	2
�
�
n
a
p2n� 1q!!

	2
�
�

2pn� 1q
e


2

�
�

2n

e


2

� 8n

e2
.

Finally,

lim
nÑ8

1�
n
a
p2n� 1q!!

	2
ņ

k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�
� e2

8
lim
nÑ8

r4n{es
n

� e2

8
� 4

e
� e

2
.

Solution 2 by Moti Levy, Rehovot, Israel

Applying the Stirling’s approximation n! �
?

2πn
�n
e

	n
, we obtain p1q and p2q :
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p2n� 1q!! � p2nq!
2nn!

�
?

4πn
�
2n
e

�2n
2n
?

2πn
�
n
e

�n � 2n�
1
2nne�n,

n
a
p2n� 1q!! � 2n

e
, (1)

1�
n
a
p2n� 1q!!

	2 � e2

4n2
. (2)

Firstly, we get rid of the bracket by showing that

lim
nÑ8

1�
n
a
p2n� 1q!!

	2
ņ

k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�

� lim
nÑ8

1�
n
a
p2n� 1q!!

	2
ņ

k�1

�
2k
?
k! � 2pk�1q

a
pk � 1q!

	2
.

This follows from

1�
n
a
p2n� 1q!!

	2
�����
ņ

k�1

��
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�
�

ņ

k�1

�
2k
?
k! � 2pk�1q

a
pk � 1q!

	2�����

¤ 1�
n
a
p2n� 1q!!

	2n � e2

4n
Ñ 0 as nÑ8.

Again, applying the Stirling’s approximation, we get

2k
?
k! �

c
k

e
. (3)

Let bk :� 1

k

�
2k
?
k! � 2pk�1q

a
pk � 1q!

	2
then by (4) we have

lim
kÑ8

bk � 4

e
. (4)

Lemma: Let pbkq be a sequence of positive numbers, such that lim
kÑ8

bk � B, then

lim
nÑ8

1

n2

ņ

k�1

kbk � B

2
.

Proof : lim
kÑ8

bk � B implies that for every ε ¡ 0 there exists N such that |bk �B|   ε for

k ¡ N.

1

n2

ņ

k�1

kbk � 1

n2

Ņ

k�1

kbk � 1

n2

ņ

k�N�1

kbk ¥ 1

n2

Ņ

k�1

kbk � 1

n2

ņ

k�N�1

k pB � εq

1

n2

ņ

k�1

kbk � 1

n2

Ņ

k�1

kbk � 1

n2

ņ

k�N�1

kbk ¤ 1

n2

Ņ

k�1

kbk � 1

n2

ņ

k�N�1

k pB � εq

12



1

n2

ņ

k�N�1

k pB � εq ¤ lim
nÑ8

1

n2

ņ

k�1

kbk ¤ lim
nÑ8

1

n2

ņ

k�N�1

k pB � εq

lim
nÑ8

1

n2

ņ

k�N�1

k pB � εq � lim
nÑ8

pB � εq pN � 1 � nq pn�Nq
2n2

� B � ε

2
,

lim
nÑ8

1

n2

ņ

k�N�1

k pB � εq � lim
nÑ8

pB � εq pN � 1 � nq pn�Nq
2n2

� B � ε

2

B � ε

2
¤ lim

nÑ8

1

n2

ņ

k�1

kbk ¤ B � ε

2

Since ε can be arbitrarily small then lim
nÑ8

1

n2

ņ

k�1

kbk � B

2
.

Now we apply the Lemma, (2) and Equation (4) to complete the evaluation of the limit.

lim
nÑ8

1�
n
a
p2n� 1q!!

	2
ņ

k�1

�
2k
?
k! � 2pk�1q

a
pk � 1q!

	2

� lim
nÑ8

e2

4n2

ņ

k�1

�
2k
?
k! � 2pk�1q

a
pk � 1q!

	2

� lim
nÑ8

e2

4n2

ņ

k�1

kbk � e2

4

4
e

2
� e

2
.

Solution 3 by Michel Bataille, Rouen, France

The required limit is
e

2
.

For n P N, let an � 2n
?
n! and Sn �

ņ

k�1

�
pak � ak�1q2

�
, Tn �

ņ

k�1

pak � ak�1q2 .

Since pak � ak�1q2 � 1 ¤
�
pak � ak�1q2

�
¤ pak � ak�1q2, we have

Tn � n ¤ Sn ¤ Tn. (1)

We will use the known results
n
?
n! � n

e
, n

a
p2n� 1q!! � 2n

e
(see my solution to problem

5536). We deduce that
1�

n
a
p2n� 1q!!

	2 � e2

4n2
(2)

and

lim
nÑ8

pan � an�1q2
n{e � lim

nÑ8

�
n
?
n!

n{e �
n�1
a
pn� 1q!

pn� 1q{e � n� 1

n
� 2 2n

?
n! 2pn�1q

a
pn� 1q!

n{e

�
� 4,

13



hence pan � an�1q2 � 4n

e
as nÑ8. From the Stolz-Cesaro theorem, we deduce

Tn � 4

e

ņ

k�1

k � 4npn� 1q
2e

� 2n2

e
. (3)

Now, from p2q and p3q, we obtain

lim
nÑ8

Tn�
n
a
p2n� 1q!!

	2 � e

2
, lim

nÑ8

Tn � n�
n
a
p2n� 1q!!

	2 � e

2
� 0 � e

2
.

Finally, p1q and the squeeze theorem yields lim
nÑ8

Sn�
n
a
p2n� 1q!!

	2 � e

2
.

Also solved by Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5581: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c be the lengths of the sides of an acute triangle ABC. Prove thatc
a2 � 2bc

b2 � c2 � a2
�
c

b2 � 2ca

c2 � a2 � b2
�
c

c2 � 2ab

a2 � b2 � c2
¥ 3

?
3.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Since the Law of Cosines states that

c2 � a2 � b2 � 2ab cosC,

we obtain
a2 � b2 � c2 � 2ab cosC

and
c2 � 2ab � pa� bq2 � 2ab cosC.

As a result,

c2 � 2ab

a2 � b2 � c2
� pa� bq2 � 2ab cosC

2ab cosC

� pa� bq2
2ab cosC

� 1.

Because a, b, and cosC ¡ 0, the Arithmetic - Geometric Mean Inequality yields

pa� bq2 ¥
�

2
?
ab
	2

� 4ab and we get

c2 � 2ab

a2 � b2 � c2
¥ 4ab

2ab cosC
� 1

� 2

cosC
� 1

� 2 secC � 1. (1)

14



with equality if and only if a � b.

Similar steps lead to
a2 � 2bc

b2 � c2 � a2
¥ 2 secA� 1 (2)

with equality if and only if b � c and

b2 � 2ca

c2 � a2 � b2
¥ 2 secB � 1 (3)

with equality if and only if c � a.

Note that since 4ABC is acute, we have secA, secB, secC ¡ 1. Then, using the fact that
f pxq � ?

x is strictly increasing on p0,8q, conditions (1), (2), and (3) imply thatc
a2 � 2bc

b2 � c2 � a2
�
c

b2 � 2ca

c2 � a2 � b2
�
c

c2 � 2ab

a2 � b2 � c2

¥
?

2 secA� 1 �
?

2 secB � 1 �
?

2 secC � 1 (4)

with equality if and only if a � b � c.

If gpxq � ?
2 secx� 1 for 0   x   π

2
, then after some reorganization of terms, we obtain

g2 pxq � sec3 x p2 secx� 1q � secx tan2 x psecx� 1q
p2 secx� 1q 3

2

¡ 0,

and hence, g pxq is strictly convex on
�

0,
π

2

	
. By Jensen’s Theorem,

?
2 secA� 1 �

?
2 secB � 1 �

?
2 secC � 1 ¥ 3

d
2 sec

�
A�B � C

3



� 1

� 3

c
2 sec

�π
3

	
� 1

� 3
?

4 � 1

� 3
?

3, (5)

with equality if and only if A � B � C.

The desired inequality follows from conditions (4) and (5) and equality is attained if and
only if a � b � c, i.e., if and only if 4ABC is equilateral.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spainc
a2 � 2bc

b2 � c2 � a2
�
c

b2 � 2ca

c2 � a2 � b2
�
c

c2 � 2ab

a2 � b2 � c2
�

�
c
a2 � bc� bc

2bc cosA
�
c
b2 � ca� ca

2ca cosB
�
c
c2 � ab� ab

2ab cosC

¥
d

3
3
?
a2bcbc

2bc cosA
�
d

3
3
?
b2caca

2ca cosB
�
d

3
3
?
c2abab

2ab cosC

15



�
d

3
3
?
a2b2c2

2bc cosA
�
d

3
3
?
a2b2c2

2ca cosB
�
d

3
3
?
a2b2c2

2ab cosC

¥ 3
3

gffed3
3
?
a2b2c2

2bc cosA

d
3

3
?
a2b2c2

2ca cosB

d
3

3
?
a2b2c2

2ab cosC

¥ 3

3

gfffe
gffe �

3
3
?
a2b2c2

	3
8a2b2c2 cosA cosB cosC

� 3
6

c
27

8 cosA cosB cosC

¥ 3
6

gfffe 27

8

�
cosA� cosB � cosC

3




� 3

d
9

2pcosA� cosB � cosCq

� 9d
2

�
1 � 4 sin

A

2
sin

B

2
sin

C

2




� 9c
2
�

1 � r

R

	

¥ 9d
2

�
1 � 1

2


 � 3
?

3.

Equality occurs if and only if the sides of the given acute triangle are equal to one another;
that is, when triangle ABC is equilateral.

Solution 3 by Kevin Soto Palacios, Huarmey, Perú

We use the law of cosines, that in any triangle ABC, with side lengths a, b, c respectively
opposite the angles A,B,C, the following identities hold:

b2 � c2 � a2 � 2bc cosA, c2 � a2 � b2 � 2ca cosB, a2 � b2 � c2 � 2ab cosC.

16



We will also use the inequality that if x, y, z are positive real numbers then:

px� yqpy � zqpz � xq ¥ 8xyz.

Letting x � tanA, y � tanB, z � tanC implies that

px�yqpy�zqpz�xq � ptanA tanB tanCq psecA secB secCq ¥ tanA tanB tanC, and this implies

secA secB secC ¥ 8.

Using the AM¥GM inequality implies that:c
a2 secA

2bc
� secA�

c
b2 secB

2ca
� secB �

c
c2 secC

2ab
� secC

¥ 3 6

d�
a2 secA

2bc
� secA


�
b2 secB

2ca
� secB


�
c2 secC

2ab
� secC




¥ 3
6

d�
a2 secA

2bc

b2 secB

2ca

c2 secC

2ab
� 3
?

secA secB secC


3

� 3

d
3

c
secA secB secC

8
� 3
?

secA secB secC

¥ 3
?

1 � 2 � 3
?

3

Solution 4 by Michel Bataille, Rouen, France

We observe that a2 � 2bc � a2 � pb� cq2 � b2 � c2 � 4bc ¥ a2 � b2 � c2 � 4bc and, since
b2 � c2 � a2 � 2bc cosA, we deduce that

a2 � 2bc

b2 � c2 � a2
¥ 2

cosA
� 1.

If L denotes the left-hand side of the inequality, it follows that

L ¥ fpcosAq � fpcosBq � fpcosCq (1)

where fpxq � p2x�1 � 1q1{2. [as usual, A,B,C denote the angles of the triangle opposite the
sides a, b, c, respectively.]
Note that cosA, cosB, cosC P p0, 1q (the triangle ABC being acute).
We calculate

f 1pxq � �x�2p2x�1 � 1q�1{2, f2pxq � x�4p2x�1 � 1q�3{2p3 � 2xq
and deduce that f is decreasing (since f 1pxq   0) and convex (since f2pxq ¡ 0q on the
interval p0, 1q. Jensen’s inequality then provides

fpcosAq � fpcosBq � fpcosCq ¥ 3f

�
cosA� cosB � cosC

3



. (2)

Now, the function cos being concave on p0, π{2q, we have

cosA� cosB � cosC ¤ 3 cos

�
A�B � C

3



� 3

2
and so, recalling that f is decreasing,

f

�
cosA� cosB � cosC

3



¥ fp1{2q �

?
3. (3)
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From the results p1q, p2q, p3q, we readily obtain L ¥ 3
?

3, as desired.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Arkady Alt, San Jose, CA; Brian Bradie, Christopher Newport
University, Newport News, VA; Kee-Wai Lau, Hong Kong, China; Moti Levy,
Rehovot, Israel; Albert Stadler, Herrliberg, Switzerland, Ioannis D. Sfikas,
National and Kapodistrian University of Athens, Greece, and the proposer.

5582: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Calculate

lim
nÑ8

n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy.

Solution 1 by Bin Pan, San Mateo, CA

First note, @x, y, P r0, 1s, we have

x� y2 � x3 � � � � � x2n�1 � y2n ¤ 2n.

Therefore, the integral limit

lim
nÑ�8

n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy ¤ 2 (1)

On the other hand, for any ε ¡ 0, Dc and d, 0 ¤ c ¤ d ¤ 1, such that @x, y, P rc, ds, we have

x� y2 � x3 � � � � � x2n�1 � y2n ¥ p2 � εqn.
Therefore,

n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy ¥ n

d» d
c

» d
c
p2 � εqndxdy

¥ p2 � εq n
a
pd� cq2.

It follows,

lim
nÑ8

n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy ¥ 2 � ε. (2)

Because ε is arbitrary in p2q, together with p1q, we see

lim
nÑ�8

n

d» 1

0

» 1

0

�
x� y2 �3

x � � � � � x2n�1 � y2n

n


n
dxdy � 2.

Solution 2 by Albert Stadler, Herrliberg, Switzerland
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Clearly z2n ¤ zk ¤ 1 for z P r0, 1s and 0 ¤ k ¤ 2n. Therefore,

» 1

0

» 1

0

�
x2n � y2n

�n
dxdy ¤

» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy

¤
» 1

0

» 1

0
2ndxdy � 2n

By the AM�GM inequality, x2n � y2n ¥ 2xnyn. So,» 1

0

» 1

0

�
x2n � y2n

�n
dxdy ¥ 2n

» 1

0

» 1

0
pxnynqn dxdy � 2n

pn2 � 1q2 .

Finally,

2
n
a
pn2 � 1q2 ¤

n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy ¤ 2,

and

lim
nÑ8

n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy � 2.

Solution 3 by Moti Levy, Rehovot, Israel

Let

Jn :�
» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy

� 2n
» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

2n


n
dxdy. (1)

By the power mean inequality we have�°n
i�1 ai
n


n
¤ 1

n

ņ

i�1

ani , ai ¥ 0 for i � 1, 2, . . . (2)

Applying (2) on (1) we get

Jn ¤ 2n

n

» 1

0

» 1

0

�
xn � y2n � x3n � � � � � xp2n�1qn � y2n

2
	
dxdy

� 2n

�
1

n

ņ

k�1

1

p2k � 1qn� 1
� 1

p2kqn� 1

�

¤ 2n

�
1

n

ņ

k�1

1

p2k � 1qn� 1
� 1

p2k � 1qn� 1

�

¤ 2n

�
1

n2

ņ

k�1

2

p2k � 1q

�
¤ 2n

�
1

n2

ņ

k�1

2

p2k � 1q

�

¤ 2n
�

1

n2
2n



¤ 2n

�
2

n




19



By AM-GM inequality,�°n
i�1 ai
n


n
¥

n¹
i�1

ai ai ¥ 0 for i � 1, 2, . . . (3)

Applying (3) on (1) we get

Jn ¥ 2n
» 1

0

» 1

0

�
n¹
i�1

x2i�1

��
n¹
i�1

y2i

�
dxdy (4)

� 2n
» 1

0
xn

2
dx

» 1

0
ynpn�1qdy � 2n

1

1 � n2
1

1 � n pn� 1q

lim
nÑ8

n

d
2n
�

2

n



¥ lim

nÑ8

n
a
Jn ¥ lim

nÑ8

n

d
2n

1

1 � n2
1

1 � n pn� 1q

Now lim
nÑ8

n

d
2n
�

2

n



� lim

nÑ8

n

d
2n

1

1 � n2
1

1 � n pn� 1q � 2, hence (by the “sandwich rule”),

lim
nÑ8

n
a
Jn � 2.

Solution 4 by Kee-Wai Lau, Hong Kong, Chiina

We show that the limit equals 2.

Since x� y2 � x3 � � � � � x2n�1 � y2n ¤ 2n, so» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n



dxdy ¤ 2n.

By the AM-GM inequality, we have

x� y2 � x3 � � � � � x2n�1 � y2n

2n
¥ 2n

b
xpn2qynpn�1q � x

n
2 y

n�1
2 .

Hence,» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy ¥ 2n

» 1

0

» 1

0
x

�
n2

2

	
ynpn�1qdxdy

� 2n�1

pn2 � 2qpn2 � n� 1q .

It follows that

2

�
n

d
2

pn2 � 2qpn2 � n� 1q

�
¤ n

d» 1

0

» 1

0

�
x� y2 � x3 � � � � � x2n�1 � y2n

n


n
dxdy ¤ 2.
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Since lim
nÑ8

n

d
2

pn2 � 2qpn2 � n� 1q � 1, our result follows.

Solution 5 by Albert Natian, Los Angeles Valley College,Valley Glen, CA

Answer. 2.

Set

Qn :� n

d» 1

0

» 1

0

�
x� y2 � x3 � y4 � � � � � x2n�1 � y2n

n


n
dx dy.

Then

Qnn �
» 1

0

» 1

0

�
1

n

ņ

k�1

�
x2k�1 � y2k

	�n
dx dy ¤

» 1

0

» 1

0

�
1

n

ņ

k�1

�
12k�1 � 12k

	�n
dx dy,

Qnn ¤
» 1

0

» 1

0

�
1

n
� 2n


n
dx dy �

» 1

0

» 1

0
2n dx dy � 2n.

Also

Qnn �
» 1

0

» 1

0

�
1

n

ņ

k�1

�
x2k�1 � y2k

	�n
dx dy ¥

» 1

0

» 1

0

�
1

n

ņ

k�1

�
x2n�1 � y2n

��n
dx dy,

Qnn ¥
» 1

0

» 1

0

�
1

n
� n �x2n�1 � y2n

�
n
dx dy �

» 1

0

» 1

0

�
x2n�1 � y2n

�n
dx dy,

Qnn ¥
» 1

0

» 1

0
x2n�2y2n�1

�
x2n�1 � y2n

�n
dx dy � 2n�1 � 1

n pn� 1q pn� 2q p2n� 1q .

Combine two of the preceding inequalities to get

2n�1 � 1

n pn� 1q pn� 2q p2n�q ¤ Qnn ¤ 2n,

�
2n�1 � 1

n pn� 1q pn� 2q p2n� 1q

1{n

¤ Qn ¤ 2

which implies

2 � lim
nÑ8

�
2n�1 � 1

n pn� 1q pn� 2q p2n� 1q

1{n

¤ lim
nÑ8

Qn ¤ 2,

lim
nÑ8

Qn � 2,

whence

lim
nÑ8

n

d» 1

0

» 1

0

�
x� y2 � x3 � y4 � � � � � x2n�1 � y2n

n


n
dx dy � lim

nÑ8
Qn � 2.

Also solved by Hartef I. Arshagi, Guilford Technical Community College,
Jamestown, NC, and the proposers.
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Mea Culpa

Michel Bataille of Rouen, France should have been credited for having solve 5575. His
name was inadvertently omitted from the list of solvers.
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