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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to  eisenbt@013.net¡. Solutions to previously stated problems
can be seen at  http://www.ssma.org/publications¡.
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Solutions to the problems stated in this issue should be posted before
December 15, 2020

• 5601: Proposed by Kenneth Korbin, New York, NY

Solve: a
xpx� 1q2
px� 1q2 �

?
77

36
.

• 5602: Proposed by Pedro Henrique Oliveira Pantoja. University of Campina Grande, Brazil

Prove that:
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• 5603: Proposed by Michael Brozinsky, Central Islip, NY

In an election 50 votes were cast for candidate A and 50 for candidate B. The candidates
decide to end the tie as follows; by tallying the votes at random and if A is ever in the lead by
3 votes, then Candidate A will be declared the winner. Otherwise Candidate B wins. What
is the probability that A wins?

• 5604: Proposed by Albert Natian, Los Angeles Vallet College, Valley Glen, CA

Prove: �
N

r



� lim

nÑ8
1

n

n�1̧

µ�0

e�irµ
2π
n

�
1� eiµ

2π
n

	N

where N, r P N and i2 � �1.
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• 5605: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let b and c be distinct coprime numbers. Find the smallest positive integer a for which

gcdpab � 1, ac � 1q � 100.

• 5606: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Let a, b ¡ 0, c ¥ 0 and 4ab� c2 ¡ 0. Calculate» 8
�8

x

aex � be�x � c
dx.

Solutions

• 5583: Proposed by Kenneth Korbin, New York, NY

(a) Given positive angles A and B with A � B � 180�. A circle with radius 16 and a circle
with radius 49 are each tangent to both sides of ∠A. The circles are also tangent to each
other. Find sine A.

(b) A circle with radius x and a circle with radius y are each tangent to both sides of ∠B.
These circles are also tangent to each other. Find positive integers x and y with px, yq � 1.

Solution 1 by David E. Manes, Oneonta, NY

In their solution to problem 5457: (this journal), Professors Stone and Hawkins of Georgia
Southern University proved the following: Let A be an angle, 0   A   π. If two circles, C1 of
radius r and C2 of radius R (r   R), are inscribed in A, with C2 tangent to C1, then

R �
�

1� sinα

1� sinα



r, α � 1

2
A.

Using this result in part (a), let R � 49 and r � 16. Then 49 �
�

1� sinα

1� sinα



16, where

α � A{2 and A�B � 180�. Solving for sinα, one obtains sinα � sinpA{2q � 33{65. Then

cosA � 1� 2 sin2

�
A

2



� 1� 2

�
33

65


2

� 2047

4225
.

Hence,

sinA �
a

1� cos2A �
a

1� p2047{4225q2 � 0.874 792 899 408

2



and arcsinp
a

1� p2047{4225q2q � 61.02� so that B � 180� �A � 118.98� and

β � B

2
� 1

2

�
�180� � arcsin

�
�
d

1�
�

2047

4225


2
�

�
� 59.49�.

For part (b), assume x   y and use the above result in the form

y �
�

1� sinβ

1� sinβ



x, β � 1

2
B.

Substituting integer values for x, one finds that if x � 9, then y � 121. Furthermore, one can
show inductively that if x is any positive integer, then y � p121{9qx. Therefore, if k ¥ 1 is a
positive integer and x � 9k, then y � 121k. Since x and y are relatively prime it follows that
the solution x � 9, y � 121 is unique.

Solution 2 by David A. Huckaby, Angelo State University, San Angelo, TX

For part (a), see the figure below, in which angle QPR is
A

2
.

We have
QR

PQ
� ST

PS
, that is,

16

PQ
� 49

PQ� 16� 49
, whence PQ � 1040

33
. So sin

�
A

2



�

16
1040
33

� 33

65
and cos

�
A

2



�
d

1�
�

33

65


2

� 56

65
.

So sinA � 2 sin

�
A

2



cos

�
A

2



� 2

�
33

65


�
56

65



� 3696

4225
.

For part (b), first note that angle A is indeed an actute angle as in the figure above: cosA �
1 � 2 sin2pA

2
q � 1 � 2p33

65
q2 � 2047

4225
¡ 0. So B is an obtuse angle as in the figure below, in

which angle WPX is
B

2
.
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Since A�B � 180�, we have
B

2
� 90� � A

2
, so that sin

�
B

2



� cos

�
A

2



� 56

65
.

So
WX

WP
� sin

�
B

2



� 56

65
, so that 56WP = 65WX. Now

WX

WP
� Y Z

Y P
, that is,

56

65
�

Y Z

Y Z �WX �WP
, whence 65Y Z � 56pY Z�WX�WP q, so that 9Y Z � 56WX�56WP �

56WX � 65WX � 121WX. In other words, 32Y Z � 112WX.

This equation holds, as does the condition px, yq � 1, if x � WX � 32 � 9 and y � Y Z �
112 � 121.

Solution 3 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Answer: sinA � 3696

4225
, x � 121, y � 9.

Computation: Given mutually tangent circles with radii r and R (r   R) that are also
tangent to the sides of an angle of measure θ, as shown, we glean the facts that

sin pθ{2q � R� r

R� r
and cos pθ{2q � 2

?
Rr

R� r
.
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r

r
R

θ{2
θ{2

R� r

r

2
?
Rr

From the above equations we get

sin θ � 2 sin pθ{2q cos pθ{2q � 4 pR� rq?Rr
pR� rq2 .

a) With r � 16, R � 49 we have sinA � sin θ � 24 � 3 � 7 � 11

52 � 132
� 3696

4225
.

b) Because A�B � 180�, then B{2 � 90� �A{2 and so

sin pB{2q � sin p90� �A{2q � cos pA{2q � 2
?

49 � 16

49� 16
,

cos pB{2q � cos p90� �A{2q � sin pA{2q � 49� 16

49� 16
.

Letting x take the place of R and y the place of r in the above figure, we see that

x� y

x� y
� sin pB{2q � 2

?
49 � 16

49� 16
� 23 � 7

5 � 13
� 56

65
,

2
?
xy

x� y
� cos pB{2q � 49� 16

49� 16
� 3 � 11

5 � 13
� 33

65
.

Solving either of the latter equations for the ratio x{y, we get x{y � 121{9. Since p121, 9q � 1,
then we have x � 121 and y � 9.

Solution 4 by Kee-Wai Lau of Hong Kong, China

We show that aq sinA � 3696

4225
and bq x � 9, y � 121 or x � 121, y � 9.

Clearly, we can only deal with the case y ¡ x. Let the distance between the center of the

smaller circle and the point of intersection of the common tangents be d. By similar triangles,

we have
d

d� x� y
� x

y
, so that d � xpx� yq

y � x
and sin

�
B

2



� y � x

y � x
.
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Hence cos

�
B

2



� 2

?
xy

y � x
and sinB � 2 sin

�
B

2



cos

�
B

2



� 4

?
xypy � xq
py � xq2 . In a similar way,

we obtain sinA � 4
a
p16qp49qp49� 16q
p49� 16q2 � 3696

4225
. Hence sinB � sinA � 3696

4225

and 924px� yq2 � 4225
?
xypy � xq. Squaring both sides, we obtain

9242px� yq4 � 42252pxyqpy � xq2 � 0,

or
p16x� 49yqp49x� 16yqp9x� 121yqp121x� 9yq � 0.

Since y ¡ x, so p49x� 16yqp121x� 9yq � 0. From A � π

2
, we see that

B � A and 49x� 16y � 0. Hence our result for x and y satisfying px, yq � 1.

Editor1s comment : David Stone and John Hawkins of Georgia Southern University
mentioned in their solution that the question is really “a two-dimensional version of the ice
cream cone problem: if we drop a (spherical) scoop of ice cream, with known radius, into a
cone with a known vertex angle, where does it lodge?”

They approached their solution by using two general lemmas, and then applying the data of
the problem the lemmas. Their lemmas were:

• Lemma 1: Suppose that a circle of radius r is inscribed in an angle θ, with 0   θ   π. Let w
be the distance from the vertex of the angle to the circle (measured along the angle bisector).

Then sin
θ

2
� r

w � r
.

That is, if two of the quantities θ, r and w are known, the third one is determined; in particular

θ � 2 sin�1

�
r

w � r



and w � r

�
csc

θ

2
� 1



.

They stated and proved their second lemma.

• Lemma 2: If two mutually tangent circles of radii r and R, thought R ¡ r, are inscribed in
an angle θ, then

paq sin
θ

2
� R� r

R� r
, cos

θ

2
� 2

?
rR

R� r
, sin θ � 4pR� rq?rR

R� r
.

bq R
r
� 1� sin θ

2

1� sin θ
2

.

Following their solution to the two-scoop situation, they made two comments; 1q Nothing in
Lemma 1 or Lemma 2 assumed that r and R are integers, so there are uncountably many
pairs of mutually tangent inscribed circles: x � 9z, y � 121z, for z any positive real.

2q Where do the scoops of ice cream lodge? The distance from the vertex of angle B to the

scoop of radius 9 is 1
25

56
, while the distance from the vertex out to the (large, chocolate) scoop

of radius 121 is 19
25

56
.

A note from Kenneth Korbin, proposer of the problem.
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We are given a pair of radii with lengths 16 and 49.

x

y
�
�
�1�

b
16
49

1�
b

16
49

�

2

�
�

1� 4
7

1� 4
7

�2

� 9

121
.

Similarly,

16

49
�
�
�1�

b
x
y

1�
b

x
y

�

2

.

So,

49� 16

49� 16
� 65

33

121� 9

121� 9
� 130

112
� 65

56

sinA � 2 � 33 � 56

332 � 562
� 3696

652

49

16
  121

9
, therefore,

A   B

Also solved by Michel Bataille, Rouen, France; Brian Bradie, Christopher New-
port University, Newport News, VA; Paul M. Harms, North Newton, KS; Ioannis
D. Sfikas, National Technical University of Athens, Greece; Albert Stadler, Her-
rliberg, Switzerland, and the proposer.

• 5584: Proposed by Michael Brozinsky, Central Islip, NY

Let a and n ¥ 2 be positive integers where 0 ¤ a ¤ n� 1.

Find the number of points of intersection of the curve C1 whose parametric equations are:

x � pn� 1q � cos

�
t

n� 1



� cosptq,

y � pn� 1q � sin
�

t

n� 1



� sinptq, where

a � pn� 1q � 2π
n

¤ t ¤ pa� 1q � pn� 1q � 2π
n

and the curve C2 whose parametric equations are:

x � pn� 1q � cos

�
t

n� 1



� cosptq,

y � pn� 1q � sin
�

t

n� 1



� sinptq, where

a � pn� 1q � 2π
n

¤ t ¤ pa� 1q � pn� 1q � 2π
n

7



Solution 1 by Ioannis D. Sfikas, National Technical University of Athens, Greece

Given two curves parametric equations, we can consider their intersection points and their
collision points.

• An intersection point is where the two equations have the same x and y values, but possibly
at different times.

• A collision point is where the two equations have the same x and y values at the same time.

Intersection points are points which are on both sets of equations (i.e., where the curves cross
each other). In general, this will happen at different values of t for the two sets of parametric
equations. Collision points are intersection points at which the parameter in both sets of
parametric equations have the same value. If the sets of parametric equations are thought
of as describing the motion of different particles and t is thought of as the time, intersection
points are points passed by both particles, but possibly at different times, and collision points
are intersection points reached by both particles at the same time.

To find intersection points: Create simultaneous equations for t and n by setting x � x and y
=y for the two sets of equations, and then see if there are any solutions (for t and n in their
designated intervals). If there are intersection points, the simultaneous equations will have
solutions. If there are no intersection points, the simultaneous equations will have no solution
or will lead to a contradiction.

To repeat: Set x in one set equal to x in the second set, and likewise with the y1s. This will
give two simultaneous equations, both involving n and t. Solve as simultaneous equations;
for example, solve one equation for n or t and plug into the second to obtain an equation for
just one variable. Sometimes it is more natural to solve for a function of the variable, such
as solving for sin t, rather than solving for t, if this makes the substitution into the second
equation easier. After completely solving for one variable, substitute back into its parametric
equations to find the points of intersection px, yq.
p1q If the resultant equation in one variable has no solutions, there are no points of intersection.

p2q Make sure the values of the parameters (n and t) are actually in the intervals specified for
the parametric equations.

p3q The number of different values for t, say, and the number of points of intersection may be
different, since different values of the parameter may give the same px, yq point. You can only
tell this by substituting back into the formulas for x and y.

(a) A hypocycloid is a special plane curve generated by the trace of a fixed point on a small
circle that rolls within a larger circle. It is comparable to the cycloid but instead of the circle
rolling along a line, it rolls within a circle. If the smaller circle has radius r, and the larger
circle has radius R � kr, then the parametric equations for the curve can be given by either:

x � pR� rq cos θ � r cos

�
R� r

r
θ



, y � pR� rq sin θ � r sin

�
R� r

r
θ



,

or:
x � rpk � 1q cos θ � r cosrpk � 1qθs, y � rpk � 1q sin θ � t sinrpk � 1qθs.

If k is an integer, then the curve is closed, and has k cusps (i.e., sharp corners, where the
curve is not differentiable). Specially for k � 2 the curve is a straight line and the circles are
called Cardano circles. Girolamo Cardano was the first to describe these hypocycloids and
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their applications to high-speed printing. If k is a rational number, say k � p

q
expressed in

simplest terms, then the curve has p cusps.

x � pn� 1q cos

�
t

n� 1



� cos t, y � pn� 1q sin

�
t

n� 1



� sin t.

Then, we have: r � n � 1, R � r � 1 � n and k � n

n� 1
. So, the hypocycloid has n ¥ 2

cusps.

(b) If the circle rolls on the outside of the fixed circle, the curve traced out by is called an
epicycloid. If the smaller circle has radius r, and the larger circle has radius R � kr, then the
parametric equations for the curve can be given by either:

x � pR� rq cos θ � r cos

�
R� r

r
θ



, y � pR� rq sin θ � r sin

�
R� r

r
θ



,

or:
x � rpk � 1q cos θ � r cos rpk � 1qθ, y � rpk � 1q sin θ � r sin rpk � 1qθs .

If k is a positive integer, then the curve is closed, and has k cusps (i.e., sharp corners, where

the curve is not differentiable). If k is a rational number, say k � p

q
expressed as an irreducible

fraction, then the curve has p cusps.

x � pn� 1q cos

�
t

n� 1



� cosptq, y � pn� 1q sin

�
t

n� 1



� sin t.

Then, we have: r � n � 1, R � 1 � r � 2 � n and k � 2� n

n� 1
. So, the epicycloid has 2 � n

cusps. Since n ¥ 2, then the epicycloid has 0 cusps.

The intersection points of the hypocycloid and the epicycloid are the common cusps-points,
so they don’t have intersection points, except at the end points of the curves.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We identify a point px, yq in the Euclidean plane with the complex number x � iy in the
complex plane. The parametric equations for C1 and C2 then read as

C1 : x� iy � pn� 1qe it
n�1 � e�it C2 : x� iy � pn� 1qe it

n�1 � e�it.

We need to find all pairs pu, vq with

2πapn� 1q
n

¤ u ¤ 2πpa� 1qpn� 1q
n

,
2πapn� 1q

n
¤ v ¤ 2πpa� 1qpn� 1q

n
, (*)

such that
pn� 1qe iu

n�1 � e�iu � npn� 1qe iv
n�1 � e�iv.

We take the squared modulus on both sides and find

pn� 1q2 � 1� 2pn� 1q cos

�
un

n� 1



� pn� 1q2 � 1� 2pn� 1q cos

�
vn

n� 1




9



or equivalently

2pn� 1q cos

�
un

n� 1



� 2pn� 1q cos

�
vn

n� 1



� 4n.

This equality holds if and only if cos

�
un

n� 1



� cos

�
vn

n� 1



� 1 which is equivalent to say

that
un

n� 1
� 0 pmod 2πq and

v.Tn

n� 1
� 0 pmod 2πq. Therefore there are integers j and k such

that u � 2πj
n� 1

n
and v � 2πk

n� 1

n
.

If t � u the pn� 1qe it
n�1 � e�it � ne

2πij
n .

If t � v the pn� 1qe it
n�1 � eit � ne

2πik
n .

From ne
2πij
n
�ne 2πik

n we deduce that j � kpmod nq.
To sum up: C1 and C2 if and only if t � u � 2πj

n� 1

n
in the parametric definition C1 and

t � v � 2πk
n� 1

n
in the parametric definition C2, where j and k are integers that satisfy

j � k pmod nq. In light of p�q this means that there are exactly two points of intersection,
namely the endpoints of the two curves.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that there are two points of intersection of the curves C1 and C2. At a point of
intersection, we have

pn� 1q � cos

�
t

n� 1



� cos t � pn� 1q � cos

�
s

n� 1



� cos s, (1)

and

pn� 1q � sin
�

t

n� 1



� sin t � pn� 1q � sin

�
t

n� 1



� sin s, (2)

where
a � pn� 1q � 2π

n
¤ t ¤ pa� 1q � pn� 1q � π

n
and

a � pn� 1q � 2π
n

¤ s ¤ pa� 1q � pn� 1q � π
n

.

We square both sides of p1q and p2q and then add up the resulting equations to obtain

pn� 1q2 � 1� 2pn� 1q
�

cos

�
t

n� 1



cos t� sin

�
t

n� 1



sin t




pn� 1q2 � 1� 2pn� 1q
�

cos

�
s

n� 1



cos s� sin

�
s

n� 1



sin s



.

Simplifying by using the well-known compound angle formulas for cospa� bq and cospa� bq,
we obtain

2n � pn� 1q cos

�
nt

n� 1



� pn� 1q cos

�
ns

n� 1



.
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or pn� 1q sin2

�
nt

2pn� 1q


� pn� 1q sin2

�
ns

2pn� 1q


� 0.

Hence sin

�
nt

2pn� 1q


� sin

�
ns

2pn� 1q


� 0, yielding t � 2πapn� 1q

n
,
2πpa� 1qpn� 1q

n

and s � 2πapn� 1q
n

,
2πpn� 1qpa� 1q

n
. It is easy to check that the entries

pt, sq �
�

2πapn� 1q
n

,
2πpa� 1qpn� 1q

n



and

�
2πpa� 1qpn� 1q

n
,
2πapn� 1q

n



are not

solutions to the simultaneous equations p1q and p2q.

If pt, sq �
�

2πapn� 1q
n

,
2πapn� 1q

n



,

�
2πpa� 1qpn� 1q

n
,
2πpa� 1qpn� 1q

n



, we have respec-

tively the points of intersection

�
n cos

2πa

n
, n sin

2πa

n



and

�
n cos

2πpa� 1q
n

, n sin
2πpa� 1q

n



.

These two points are distinct. For if cos
2πa

n
� cos

2πpa� 1q
n

and sin
2πpa� 1q

n
then we have

sin
2πpa� 1q

n
� cos

πp2a� 1q
n

� 0, which is impossible. Hence our claim.

Also solved by the proposer.

• 5585: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehedinti,
Romania

In ∆ABC the following relationship holds:

sin4A� sin4B � sin4C � sin4
�π

3
�A

	
� sin4

�π
3
�B

	
� sin4

�π
3
� C

	
¤ 27

8

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA

Note:

sin4
�
x� π

6

	
�

�?
3

2
sinx� 1

2
cosx


4

� 1

16
p9 sin4 x� 12

?
3 sin3 x cosx� 18 sin2 x cos2 x� 4

?
3 sinx cos3 x� cos4 xq,

sin4
�
x� π

6

	
� 1

16
p9 sin4 x� 12

?
3 sin3 x cosx� 18 sin2 x cos2 x� 4

?
3 sinx cos3 x� cos4 xq,

and

sin4
�
x� π

6

	
� sin4

�
x� π

6

	
� 1

8
p9 sin4 x� 18 sin2 x cos2 x� cos4 xq

� 1

8
p1� 8 sin2 xpsin2 x� 2 cos2 xqq

� 9

8
� cos4 x.

Thus,

sin4
�
x� π

6

	
� sin4

�
x� π

6

	
¤ 9

8
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for all x, with equality when x � π

2
� nπ for any integer n. Because

sin4 x� sin4
�
x� π

3

	
is just a translation of sin4

�
x� π

6

	
� sin4

�
x� π

6

	
by π{6, it follows that

sin4 x� sin4
�
x� π

3

	
¤ 9

8

for all x, with equality when x � π

3
� nπ for any integer n. Therefore, for any angles A, B,

and C,

sin4A� sin4B � sin4C � sin4
�π

3
�A

	
� sin4

�π
3
�B

	
� sin4

�π
3
� C

	
¤ 27

8
,

with equality when A � π

3
� n1π, B � π

3
� n2π, and C � π

3
� n3π for any integers n1, n2,

and n3. For the special case when A, B, and C are the angles in a triangle, this becomes

sin4A� sin4B � sin4C � sin4
�π

3
�A

	
� sin4

�π
3
�B

	
� sin4

�π
3
� C

	
¤ 27

8
,

with equality when A � B � C � π

3
.

Solution 2 by Moti Levy, Rehovot, Israel

Applying Power Means Inequality
�
M 1

4
¤M1

	
, we get

sin4A� sin4B � sin4C ¤ 1

27
psinA� sinB � sinCq4 (1)

and

sin4
�π

3
�A

	
�sin4

�π
3
�B

	
�sin4

�π
3
� C

	
¤ 1

27

�
sin
�π

3
�A

	
� sin

�π
3
�B

	
� sin

�π
3
� C

		4
(2)

It is well known that

sinA� sinB � sinC ¤ 3
?

3

2
. (3)

(see, for example, the bible of geometric inequalities, Bottema et al. paragraph 2.2, page 18).

We will prove that sin
�π

3
�A

	
� sin

�π
3
�B

	
� sin

�π
3
� C

	
¤ 3

?
3

2
.

sin
�
A� π

3

	
� sin

�
B � π

3

	
� 2 sin

�
A�B

2
� π

3



cos

�
A�B

2




¤ 2 sin

�
A�B

2
� π

3




� 2 sin

�
A�B

2



cos

�π
3

	
� 2 cos

�
A�B

2



sin
�π

3

	

� 2 cos

�
C

2



cos

�π
3

	
� 2 sin

�
C

2



sin
�π

3

	

12



sin
�π

3
�A

	
� sin

�π
3
�B

	
� sin

�π
3
� C

	
¤2 cos

�
C

2



cos

�π
3

	
� 2 sin

�
C

2



sin
�π

3

	
� sin

�
C � π

3

	

� cos

�
C

2



�
?

3 sin

�
C

2



� 1

2
sin pCq �

?
3

2
cos pCq

� cos

�
C

2



�
?

3 sin

�
C

2



� sin

�
C

2



cos

�
C

2



�
?

3

2

�
2 cos2

�
C

2



� 1




� cos

�
C

2



�
?

3

d
1� cos2

�
C

2



�
d

1� cos2
�
C

2



cos

�
C

2



�
?

3

2

�
2 cos2

�
C

2



� 1



.

Now let t :� cos

�
C

2



, and

f ptq :� t�
?

3
a

1� t2 � t
a

1� t2 �
?

3

2

�
2t2 � 1

�
,

then
sin
�π

3
�A

	
� sin

�π
3
�B

	
� sin

�π
3
� C

	
¤ f ptq .

To find the maximum of f ptq ,

df

dt
� 1?

1� t2

�a
1� t2 �

?
3t� 2t2 � 2

?
3t
a

1� t2 � 1
	
, (4)

d2f

dt2
� 2

?
3
�
1� t2

� 3
2 � 3t� 2t3 �?3

p1� t2q 32
. (5)

By solving (4), we find that f ptq has critical point at t �
?

3

2
and at t � �

?
3

2
. Since

d2f

dt2

�?
3

2



� �12

?
3   0, then the critical point t �

?
3

2
is maximum. Since

d2f

dt2

�
�
?

3

2



�

0 then the critical point t � �
?

3

2
is inflection point.

We conclude that

sin
�π

3
�A

	
� sin

�π
3
�B

	
� sin

�π
3
� C

	
¤ f

�?
3

2



� 3

?
3

2
. (6)

By (3) and (6) we get

sin4A�sin4B�sin4C�sin4
�π

3
�A

	
�sin4

�π
3
�B

	
�sin4

�π
3
� C

	
¤ 1

27

�
3
?

3

2


4

� 1

27

�
3
?

3

2


4

� 27

8
.

Solution 3 by Albert Stadler, Herrliberg, Switzerland
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We prove the stronger inequality

sin4 x� sin4
�
x� π

3

	
¤ 9

8

from which the claimed inequality immediately follows. It is not required that A� B � C �
π, A,B,C and be arbitrary.

We have

9

8
� sin4 x� sin4

�
x� π

3

	
� 9

8
� sin4

�
x� π

6
� π

6

	
� sin4

�
x� π

6
� π

6

	
�

� 9

8
�
�?

3

2
sin
�
x� π

6

	
� 1

2
cos

�
x� π

6

	
4

�
�?

3

2
sin
�
x� π

6

	
� 1

2
cos

�
x� π

6

	
4

�

� 9

8
� 9

8
sin4

�
x� π

6

	
� 9

8
sin2

�
x� π

6

	
cos2

�
x� π

6

	
� 1

8
cos4

�
x� π

6

	
�

� 9

8
� 9

8
sin4

�
x� π

6

	
� 9

8
sin2

�
x� π

6

	�
1� sin2

�
x� π

6

		
� 1

8

�
1� sin2

�
x� π

6

		2
�

1� 7

8
sin2

�
x� π

6

	
� 1

8
sin4

�
x� π

6

	
¥ 0.

Equality holds if and only if sin
�
x� π

6

	
� �1, ifx � π

3
p pdπ.

Solution 4 by Kevin Soto Palacios, Huarmey, Perú

It is sufficient to show that

sin4A� sin4
�π

3
�A

	
� sin4A� sin4

�
2π

3
�A



¤ 9

8
.

sin4A� 8 sin4

�
2π

3
�A



� 2 p1� cos 2Aq2 � 2

�
1� cos

�
4π

3
� 2A



2

�

� 4� 2

�
cos2 2A� cos2

�
4π

3
� 2A




� 4

�
cos 2A� cos

�
4π

3
� 2A




.

LHS � 6� cos 4A� cos

�
8π

3
� 4A



� 8 cos

�
2π

3



cos

�
2A� 2π

3



�

� 6� 2 cos

�
4π

3



cos

�
4A� 4π

3



� 4 cos

�
2A� 2π

3



.

LHS � 6�2 cos

�
4A� 4π

3



�4 cos

�
2A� 2π

3



� 7�2 cos2

�
2A� 2π

3



�4 cos

�
2A� 2π

3



�

� 9� 2

�
1� cos

�
2A� 2π

3



2

¤ 9.

14



ùñ sin4A� sin4
�π

3
�A

	
¤ 9

8

ùñ sin4A�sin4
�π

3
�A

	
�sin4B�sin4

�π
3
�B

	
�sin4C�sin4

�π
3
� C

	
¤ 9

8
� 9

8
� 9

8
� 27

8
.

Also solved by Michel Bataille, Rouen, France; Kee-Wai Lau, Hong Kong, China;
Ioannis D. Sfikas, National Technical University of Athens, Greece, and the pro-
poser.

• 5586: Proposed by Michel Bataille, Rouen, France

For n P N let

un � 1

n

ņ

k�1

kek{n
2
.

Find real numbers α, β such that lim
nÑ8 pun � αnq � β.

Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Starting with
ņ

k�1

kekt � et � nepn�2qt � pn� 1q epn�1qt

pet � 1q2

we obtain

un :� 1

n

ņ

k�1

kek{n
2 � e1{n

2 1� ne1{n�1{n2 � pn� 1q e1{n
n
�
e1{n2 � 1

�2 .

Substitution x � 1{n yields

un � ex
2
x� ex

�
ex

2 � 1� x
	

�
ex2 � 1

�2
�

�
1� x2 � 1

2
x4 �O

�
x6
�
 x� �1� x� 1

2x
2 � 1

6x
3 � 1

24x
4 �O

�
x5
�� ��x� x2 � 1

2x
4 �O

�
x6
��

�
x2 � 1

2x
4 � 1

6x
6 � � � � �2

� 1� x2 � 1
2x

4 �O
�
x6
�

x4
�
1� 1

2x
2 � 1

6x
4 �O px6q�2

�
1

2
x3 � 5

6
x4 � 5

8
x5 �O

�
x6
�
 � 1

2x
� 5

6
� 5

8
x�O

�
x2
�

as xÑ8. Therefore,

un � n

2
� 5

6
� 5

8n
�O

�
n�2

� pnÑ8q .

This implies

lim
nÑ8

�
un � 1

2
n



� 5

6
.

Solution 2 by Albert Natian, Los Angeles Valley College,Valley Green, CA

Answer. α � 1

2
, β � 5

6
.
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Computation. It’s rather immediate that

ņ

k�0

ekθ � epn�1qθ � 1

eθ � 1
,

and
ņ

k�1

kekθ � nepn�2qθ � pn� 1q epn�1qθ � eθ

peθ � 1q2
.

So

un � 1

n

ņ

k�1

kek{n
2 � 1

n
� ne

pn�2q{n2 � pn� 1q epn�1q{n2 � e1{n2�
e1{n2 � 1

�2 .

Set n � 1{x and write

Qn :� un � αn� β � x �
1
xe
px�2x2q � � 1x � 1

�
epx�x2q � ex

2�
ex2 � 1

�2 � α

x
� β,

Qn �
xepx�2x2q � x px� 1q epx�x2q � x2ex

2 � pα� βxq
�
ex

2 � 1
	2

x
�
ex2 � 1

�2 .

Since the denominator of the preceding fraction can be expressed as

x
�
ex

2 � 1
	2
� x5

� 8̧

k�1

x2pk�1q

k!

�2

and since

lim
xÑ0�

� 8̧

k�1

x2pk�1q

k!

�2

� 1,

then

lim
nÑ8Qn � lim

xÑ0�

xepx�2x2q � x px� 1q epx�x2q � x2ex
2 � pα� βxq

�
ex

2 � 1
	2

x5
.

In order to find α and β so that lim
nÑ8Qn � 0, we write the numerator N of the preceding

fraction in Taylor expansion, and then simplify the fraction:

N0 :

xepx�2x2q � x

�
1� �x� 2x2

�� 1

2

�
x� 2x2

�2 � 1

6

�
x� 2x2

�3 � 1

24

�
x� 2x2

�4 � � � �
,

�x px� 1q epx�x2q � �x px� 1q
�

1� �x� x2
�� 1

2

�
x� x2

�2 � 1

6

�
x� x2

�3 � 1

24

�
x� x2

�4 � � � �
,

x2ex
2 � x2

�
1� x2 � 1

2
x4 � � � �



,

�pα� βxq
�
ex

2 � 1
	2
� �x4 pα� βxq

�
1� 1

2
x2 � � � �


2

,
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D0: x
5.

Multiply N0 and D0 by 1{x and simplify to get:

D1 � x4,

N1 �
�

1� x� 5

2
x2 � 13

6
x3 � 73

24
x4 � � � �




�
�

1� 2x� 5

2
x2 � 8

3
x3 � 53

24
x4 � � � �




�
�
x� x3 � 1

2
x5 � � � �




� �αx3 � βx4 � αx5 � � � � �,
N1 �

�
1

2
� α



x3 �

�
5

6
� β



x4 � � � � �

�
1

2
� α



x3 �

�
5

6
� β



x4 �O

�
x5
�
.

We thus have

lim
nÑ8Qn � lim

xÑ0�

N1

D1
� lim

xÑ0�

�
1
2 � α

�
x3 � �56 � β

�
x4 �O

�
x5
�

x4
� 0

which implies

α � 1

2
and β � 5

6
.

Solution 3 by Brian Bradie, Christopher Newport University,Newport News, VA

We will show that α � 1

2
and β � 5

6
. We start with

lim
nÑ8pun � αnq � lim

nÑ8

°n
k�1 ke

k{n2 � αn2

n

� lim
nÑ8

�
n�1̧

k�1

kek{pn�1q2 �
ņ

k�1

kek{n
2 � αpn� 1q2 � αn2

�

� lim
nÑ8

�
pn� 1qe1{pn�1q � αp2n� 1q �

ņ

k�1

k
�
ek{pn�1q2 � ek{n

2
	�

,
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where the second line follows from the Stolz-Cesaro theorem. Now, as nÑ8,

pn� 1qe1{pn�1q � pn� 1q
�

1� 1

n� 1
�O

�
1

pn� 1q2




� n� 2�O

�
1

n



,

ek{pn�1q2 � ek{n
2 � k

�
1

pn� 1q2 �
1

n2



�O

�
k2n�5

�
� � 2n� 1

n2pn� 1q2k �O
�
k2n�5

�
, and

ņ

k�1

k
�
ek{pn�1q2 � ek{n

2
	

� � 2n� 1

n2pn� 1q2
ņ

k�1

k2 �O

�
1

n




� � p2n� 1q2
6npn� 1q �O

�
1

n



.

Hence,

lim
nÑ8pun � αnq � lim

nÑ8

�
p1� 2αqn� 2� α� p2n� 1q2

6npn� 1q �O

�
1

n




.

This limit exists if and only if 1� 2α � 0; that is, if and only if α � 1

2
. With α � 1

2
,

lim
nÑ8pun � αnq � lim

nÑ8

�
3

2
� p2n� 1q2

6npn� 1q �O

�
1

n




� 3

2
� 2

3
� 5

6
� β.

Solution 4 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC

We will show that α � 1

2
and β � 5

6
.

From ex � 1 � x

1!
� x2

2!
� x3

3!
� . . . , we conclude that ex ¡ 1 � x for all x ¥ 1 , and this

implies that for 1 ¤ k ¤ n, 1 � k

n2
  e

k
n2 , and

k

n

�
1� k

n2



� k

n
� k2

n3
  k

n
� e k

n2 , that is

k

n
� k2

n3
  k

n
� e k

2

n2 , and from this we can write

ņ

k�1

�
k

n
� k2

n3



  1

n

ņ

k�1

ke
k
n2 � un, (1)

It is known that
ņ

k�1

k � npn� 1q
2

and
ņ

k�1

k2 � npn� 1qp2n� 1q
6

p2q

then
ņ

k�1

�
k

n
� k2

n2



� npn� 1q

2n
� npn� 1qp2n� 1q

6n3
� 1

2
n� 5

6
� 3n� 1

6n2

and (1) becomes

18



1

2
n� 5

6
� 3n� 1

6n2
  un. (3)

For 0   x   1,

ex � 1� x

1!
� x2

2!
� x3

3!
� � � �   1� x� x2� � 1

1� x
,

from this we conclude that for n ¡ 1, and k ¤ n, we have

e
k
n2   1

1� k
n2

� 1� k

n2 � k
  1� k

n2 � n
,

or e
k
n2   1� k

n2 � n
, then

k

n

�
e
k
n2

	
  k

n

�
1� k

n2 � n



� k

n
� k2

npn2 � nq , and by using p2q,

un � 1

n

ņ

k�1

ke
k
n2  

ņ

k�1

�
k

n
� k2

npn2 � nq


� npn� 1q

2n
� npn� 1qp2n� 1q

6npn2 � nq �

� n� 1

2
� pn� 1qp2n� 1q

6pn2 � nq � 1

2
n� 5

6
� 5n� 1

6n2 � 6n
,

that is,

un   1

2
n� 5

6
� 5n� 1

6n2 � 6n
. (4)

Combining p3q and p4q, we write

1

2
n� 5

6
� 3n� 1

6n2
� αn   un � αn   1

2
n� 5

6
� 5n� 1

6n2 � 6n
� αn,

or

�
1

2
� α



n� 5

6
� 3n� 1

6n2
  un � αn  

�
1

2
� α



n� 5

6
� 5n� 1

6n2 � 6n
. (5)

Now, we argue that, we must have α � 1

2
.

If α   1

2
, then

1

2
� α ¡ 0, and

�
1

2
� α



n � 5

6
� 3n� 1

6n2
  un � αn, implies that lim

nÑ8pun �

αnq � 8, contradiction to lim
nÑ8pun � αnq � β, and if α ¡ 1

2
, then

1

2
� α   0, and un �

αn  
�

1

2
� α



n � 5

6
� 5n� 1

6n2 � n
, implies lim

nÑ8pun � αnq � �8, another contradiction to

lim
nÑ8pun � αnq � β, therefore α � 1

2
and for any large n , we rewrite the (5) as
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5

6
� 3n� 1

6n2
  un � αn   5

6
� 5n� 1

6n2 � 6n
(6)

and lim
nÑ8

�
5

6
� 3n� 1

6n2



� 5

6
� lim

nÑ8

�
5

6
� 5n� 1

6n2 � 6n



, then by the Squeeze Theorem from

p6q, we conclude that lim
nÑ8pun � αnq � 5

6
.

Also solved by G. C. Greubel, Newport News, VA; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; Albert Stadler, Herrliberg, Switzerland; Ioan-
nis D. Sfikas, National Technical University of Athens, Greece, and the proposer

• 5587: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f, g : < Ñ < be two real functions defined by fpxq � x4 � 1 and gpxq � a0 � a1x
3 �

a2x
5 � a3x

7 � x9 where a1   0, a2   0, a3   0 and a0 is a real number. Find the number of
real solutions to the equation

pg � fq pxq � pf � gq pxq.

Solution 1 by David E. Manes, Oneonta, NY

With the assumptions on a1, a2, a3   0, we will show that there are no solutions to the
equation pg � fqpxq � pf � gqpxq. Observe that the function

pf � gqpxq � fpgpxqq � pgpxqq4 � 1 � pa0 � a1x
3 � a2x

5 � a3x
7 � x9q4 � 1

has a total of 69 non constant terms before combining like terms. However, the constant term
is easy to evaluate; namely, pa0q4 � 1. The constant term for the function

pg � fqpxq � gpfpxqq � a0 � a1px4 � 1q3 � a2px4 � 1q5 � a3px4 � 1q7 � px4 � 1q9

is a0 � a1 � a2 � a3 � 1. Therefore, if there is a solution to the equation f � g � g � f , then
the constant terms for the two functions have to be equal. Thus,

pa0q4 � 1 � a0 � a1 � a2 � a3 � 1

which can be rewritten as pa0q4� a0 � a1� a2� a3� 2   �2 since a1, a2, a3   0. If a0 ¤ 0 or
a0 ¥ 1, then pa0q4 � a0 ¥ 0. If 0   a0   1, then �1   a0   0. Hence, for each of the possible
values for a0, the term pa0q4�a0 is not less than �2. Accordingly then, there are no solutions
to the equation pg � fqpxq � pf � gqpxq.

Solution 2 by Moti Levy, Rehovot, Israel

pg � fqpxq � a0 � a1
�
x4 � 1

�3 � a2
�
x4 � 1

�5 � a3
�
x4 � 1

�7 � �x4 � 1
�9

pf � gqpxq � �
a0 � a1x

3 � a2x
5 � a3x

7 � x9
�4 � 1

pg � fqp0q � a0 � a1 � a2 � a3 � 1

pf � gqp0q � pa0 � a1 � a2 � a3 � 1q4 � 1
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Since pg � fqp0q � pf � gqp0q, then

pa0 � a1 � a2 � a3 � 1q4 � 1 � a0 � a1 � a2 � a3 � 1.

Let A :� a0�a1�a2�a3� 1, then we seek real solution to A4�A� 1 � 0. But A4�A� 1 ��
A2 � 1

�2 �A2 ¡ 0.
Therefore the polynomial A4 �A� 1 has no real root and our equation has no real solution.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We claim that the equation has no real solutions. Suppose that there is a real value of x such
that

pg � fq pxq � gpx4 � 1q � g4pxq � 1 � pf � gqpxq.

We observe that x4�1�x � x4�p1�xq ¡ 0 for all real x, since x4�1�x � x4�p1�xq ¡ 0
for x   1, and x4 � 1� x � px4 � xq � 1 ¡ 0 for x ¥ 1.

Therefore
gpx4 � 1q � gpxq � g4pxq � 1� gpxq ¡ 0

for all real x.

By the mean-value theorem (https://.wikipedia.org/wiki/Meanvalue theorem) there is a real

y, such that x ¤ y ¤ x4 � 1 and for which gpx4 � 1q � gpxq � g1pyqpx4 � 1� xq.
This implies that g1pyq ¡ 0, since gpx4 � 1q � gpxq ¡ 0 and x4 � 1� x ¡ 0.

However, g1pyq � 3a1y
2�5a2y

4�7a3y
6�9y8 ¤ 0, since by assumption a1   0, a2   0, a3   0.

This contradiction shows that the equationpg � fq pxq �pf � gq pxq has no real solutions.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that the equation pg � fqpxq � pf � gqpxq has no real solutions. We have

pf � gqpxq � pg � fqpxq � pa0 � a1x
3 � a2x

5 � a3x
7 � x9q4 � 1� a0 � a1px4 � 1q3�

a2px4 � 1q5 � a3px4 � 1q7 � px4 � 1q9.

We consider pf � gqpxq � pg � fqpxq as a function of a0 and denote it by hpa0q.
To prove our claim, it suffices to show that hpa0q ¡ 0 for any real numbera0.

It is clear that lim
a0Ñ�8hpa0q � �8. Hence it remains to find its

stationary values. Since
dh

da0
� 4pa0 � a1x

3 � a2x
5 � a3x

7 � x9q3 � 1, so it vanishes if and

only if a0 � a�0 , where a0 � 1

22{3
� a1x

3 � a2x
5 � a3x

7 � x9.

Now hpa�0q �
1

28{3 � 1� 1

22{3 � a1
�px4 � 1q3 � x3

�� a2
�px4 � 1q5 � x5

�
�a2

�px4 � 1q7 � x7
�� px4 � 1q9 � x9.

For any odd positive integer n, it is clear that px4 � 1qn � xn ¡ 0 if x ¤ 0. If

x ¡ 0, then px4 � 1qn � xn ¡ 0 ðñ x4 � 1 ¡ x, which can be verified easily by
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considering the cases 0   x ¤ 1 and x ¡ 1 separately. Given that a1   0,

a2   0, a3   0, we conclude that hpa�0q ¡ 0, and hence our claim.

Also solved by the proposer.

• 5588: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Let a ¡ 1. Calculate

lim
xÑ8x

» 1

0
atpt�1qxdt.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

lim
xÑ8x

» 1

0
atpt�1qxdt � lim

xÑ8x
» 1

0
a

�
pt� 1

2q2� 1
4

	
x
dt

�loomoon
u � t� 1

2

lim
xÑ8x

» 1
2

� 1
2

apu2� 1
4qxdu

� lim
xÑ8 2x

» 1
2

0
apu2� 1

4qxdu

� lim
xÑ8

2x
³ 1
2
0 a

u2xdu

a
x
4

�loomoon
v � u

?
x

lim
vÑ8

2x
³?x

2
0 av

2
dv?

xa
x
4

�loomoon
w � ?

x
lim
wÑ8

2
³w

2
0 av

2
dv

w�1a
w2

4

�
� 8
8 � Indeterminate

�

�loomoon
L1Hôpital

lim
wÑ8

2a
u2

4
1
2

�w�2a
w2

4 � w�1a
w2

4 ln a2w
4

� lim
wÑ8

1

�w�2 � ln a
2

� 2

ln a
.

Solution 2 by Seán M. Stewart, Bomaderry, NSW, Australia

The limit will be shown to have a value equal to
2

ln a
, where a ¡ 1.

For x ¡ 0, denote the integral appearing in the limit by Ipxq. Then

Ipxq �
» 1

0
atpt�1qx dx �

» 1

0
etpt�1qx ln a dt,

or

Ipxq �
» 1

0
exp

�#�
t� 1

2


2

� 1

4

+
x ln a

�
dt,
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after completing the square. Here a ¡ 1. Substituting u � t� 1

2
gives

Ipxq �
» 1

2

� 1
2

exp

��
u2 � 1

4



x ln a

�
du

� 2 exp

�
�x ln a

4


» 1
2

0
ex ln au

2
du,

since the integrand is an even function between symmetric limits. Next, enforcing a substitu-
tion of u ÞÑ u{

?
x ln a yields

Ipxq � 2?
x ln a

exp

�
�x ln a

4


» 1
2

?
x ln a

0
eu

2
du

�
c

π

x ln a
exp

�
�x ln a

4



erfi

�
1

2

?
x ln a



.

Here erfipxq denotes the imaginary error function defined by

erfipxq � 2?
π

» x
0
eu

2
du.

Denoting the required limit to be found by `, we have

` � lim
xÑ8xIpxq �

?
π

ln a
lim
xÑ8

?
x ln a exp

�
�x ln a

4



erfi

�
1

2

?
x ln a



,

or

` �
?
π

ln a
lim
xÑ8

?
xe�

x
4 erfi

�
1

2

?
x



,

after a substitution of x ÞÑ x{ ln a in the limit has been enforced. The asymptotic expansion
for the imaginary error function as x Ñ 8 is known (see Eq. (42:6:4) on page 429 of Keith
Oldham, Jan Myland, and Jerome Spanier An Atlas of Functions (Second Edition), Springer,
New York, 2009). The result is

erfipxq � ex
2

x
?
π

8̧

n�0

p2nq!
4nn!x2n

.

Replacing x with
?
x{2 in the asymptotic expansion for the imaginary error function gives

erfi

�?
x

2



� 2?

πx
e
x
4

8̧

n�0

p2nq!
n!xn

� 2?
πx
e
x
4

�
1� 2

x
� 12

x2
�O

�
1

x3




,

as xÑ8. Thus

` � 2

ln a
lim
xÑ8

�
1� 2

x
� 12

x2
�O

�
1

x3




� 2

ln a
,

as announced.

Solution 3 by Michel Bataille, Rouen, France

The required limit is
2

lnpaq .
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First, we treat the case a � e. For x ¡ 0, let Ipxq �
» 1

0
etpt�1qx dt. The change of variables

t � 1

2
� u?

x
yields

Ipxq � 1?
x

» ?x{2
�?x{2

eu
2�x

4 du � 2e�x{4?
x

» ?x{2
0

eu
2
du.

Now, let fpuq � eu
2

2pu� 1q . The derivative f 1puq � eu
2p2u2 � 2u� 1q
2u2 � 4u� 2

satisfies f 1puq � eu
2

as

uÑ8, hence

» 8
0
f 1puq du is divergent and

» X
0
f 1puq du �

» X
0
eu

2
du as X Ñ8.

As a result, we obtain

» X
0
eu

2
du � fpXq � fp0q � eX

2

2pX � 1q �
1

2
� eX

2

2X

as X Ñ8. Returning to Ipxq, we see that

Ipxq � 2e�x{4?
x

� e
x{4
?
x
� 2

x

as xÑ8 and therefore lim
xÑ8xIpxq � 2.

Finally, since x

» 1

0
atpt�1qx dt � x

» 1

0
etpt�1qx lnpaq dt � 1

lnpaq ppx lnpaqqIpx lnpaqqq, we obtain

lim
xÑ8x

» 1

0
atpt�1qx dt � 2

lnpaq .

Solution 4 by G. C. Greubel, Newport News, VA

Define the complex error functions by

erfipxq � 2?
π

» x
eu

2
du

which has the series form

erfipxq � 2?
π

8̧

k�0

x2n�1

n! p2n� 1q
and has the asymptotic form

erfipxq � 1

i
� 1?

π x
ex

2

2F1

�
1,

1

2
;�;

1

x2



(2)

� 1

i
� 1?

π x
ex

2

�
1� 1

2x2
� 3

4x4
�O

�
1

x6




. (3)

Consider the integral

Ipaq �
» 1

0
ax tpt�1q dt.
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Using

x tpt� 1q � x

�
t� 1

2


2

� x

4

»
ax tpt�1q dt �

»
elnpaqx tpt�1q dt

� e�x ln a{4
»
ep
?
x ln a pt� 1

2qq2 dt

� 1?
x ln a

e�x ln a{4
»
eu

2
du where u �

?
x ln a

�
t� 1

2




� 1

2

c
π

x ln a
e�x ln a{4 erfi

�?
x ln a

�
t� 1

2




.

The integral in question, Ipaq, can be seen as

Ipaq �
c

π

x ln a
e�x ln a{4 erfi

�?
x ln a

2

�
.

The asymptotic form of the integral follows from

erfi

�?
x ln a

2

�
� �i� 2?

π ln a
ex ln a{4

�
1� 2

x ln a
� 12

x2 ln2 a
�O

�
1

x3





and is seen to be

Ipaq � �i
c

π

x ln a
e�x ln a{4 � 2

x ln a

�
1� 2

x ln a
� 12

x2 ln2 a
�O

�
1

x3




.

Since
lim
xÑ8

?
x e�x ln a{4 Ñ 0

it follows that

lim
xÑ8x

» 1

0
ax tpt�1q dt � lim

xÑ8x Ipaq

� �i
c

π

ln a
lim
xÑ8

?
x e�x ln a{4

� lim
xÑ8

2

ln a

�
1� 2

x ln a
� 12

x2 ln2 a
�O

�
1

x3





lim
xÑ8x

» 1

0
ax tpt�1q dt � 2

ln a
.

This last result is the desired result.

Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, German; Brian
Bradie, Christopher Newport University, Newport News,VA; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Albert Natian, Los Angeles Valley
College, Valley Glen, CA; Ioannis D. Sfikas, National Technical University of
Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposers.
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Editor1s Comment

The following solution by Michael Fried to 5578 arrived late, but it is so different in direction
from the solutions paths that were featured in the May issue of the column, that I thought it
would be instructive to also publish his solution.

5578: Problem poser: Roger Izard, Dallas, TX; Solution by Michael Fried, Ben-
Gurion University of the Negev, Beer-Sheva, Israel

In triangle ABC points F,E, and D lie on lines segments AB,BC, and AC respectively,

such that 1)
AF

BA
� BE

BC
� DC

AC
and 2) ∠BAE � ∠CBD � ∠ACF .

Prove or disprove that triangle ABC must be an equilateral triangle.

Solution:

We shall show that indeed if both
AF

BA
� BE

BC
� DC

AC
and ∠BAE � ∠CBD � ∠ACF , then

triangle ABC must be equilateral.

First, observe that when ABC is equilateral,
AF

BA
� BE

BC
� DC

AC
if and only if ∠BAE �

∠CBD � ∠ACF .

Suppose then that ABC is an arbitrary triangle for which conditions 1) and 2) hold. Since
any triangle can be mapped onto any other via an affine transformation, let T be an affine
transformation mapping ABC onto some equilateral triangle A1B1C 1. We might as well choose
one with the same centroid O as ABC for this will then be a fixed point for T . Since T is
affine, we will have

A1F 1

B1A1
� B1E1

B1C 1 �
D1C 1

A1C 1

(where T pF q � F 1 and so on).

However, by the observation above we will also have, ∠B1A1E1 � ∠C 1B1D1 � ∠A1C 1F 1. What
will show is that, in fact, at least one of these angles must be unequal to the others, unless
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T is a similarity in which case ABC was equilateral to begin with. Therefore, we will have
shown that there cannot be a triangle ABC which is not equilateral for which conditions 1)
and 2) hold.

To show that if T is not a similarity one of the angles ∠B1A1E1, ∠C 1B1D1, ∠A1C 1F 1 must be
unequal to the others, recall that it is always possible to represent an affine transformation as
the composition of a similarity and a compression (see reference below [p. 124]GTrans). By
the latter we mean a transformation K such that, for an appropriately chosen x and y axes,
KpP px, yq � P 1px1, y1q with x1 � x and y1 � ρy for some positive number ρ which can take,
without loss of generality to lie in the interval p0, 1s (thus the x-axis is a fixed line).

To investigate the effect of K (the compression part of T ) on the equal angles, draw the an-
gles ∠BAE, ∠CBD, ∠ACF through the centroid O keeping the sides of the angles parallel
to original angles. In the figure the thicker lines are parallel to the sides of the triangle: the
angles between those thicker lines are naturally the exterior angles at each vertex. Since O is
a fixed point the fixed axis and the compression axis for K must run through O.

The transformation K, being affine, takes parallel lines to parallel lines, so it will change these
angles at O in the same way that it changes the original angles. The similarity part of T has
no effect on the angles. Hence, we need only show that K will leave at least one of these
angles unequal to the others.

For convenience, define the position to be the position of its angle bisector. Thus, for example,
we will say that two angles are placed symmetrically with respect to an axis when their angle
bisectors form equal angles with the axis. This is actually an important case for us, for it is
clear that if two of the angles are placed symmetrically with respect to the horizontal fixed
axis or to the vertical compression axis, they will obviously be equal after compression. So,
by means of one or two reflections, we can place all three angles in the first quadrant.

Note that having transposed the angles into the first quadrant, two angles can be in the same
position, but not all three. For, if three angles are in the same position, two sides of the
original triangle must be parallel which is impossible.

Let us, then, consider the effect of K on an angle α whose position is x radians from A. In
the figure we are assuming the radius of the circle is 1 and AB is drawn tangent at A. So, let

∠BOC � α, ∠BOA� α

2
� ∠COA� α

2
� x, and ∠B1OC 1 � α1 � fpxq. By the compression
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K, then, AC 1 � ρAC and AB1 � ρAB.

The function fpxq is then:

fpxq � arctan
�
ρ tan

�
x� α

2

		
� arctan

�
ρ tan

�
x� α

2

		
The derivative of fpxq, after some simplifications, is,

f 1pxq � ρ

�
1

ρ2 � p1� ρ2q cos2
�
x� α

2

� � 1

ρ2 � p1� ρ2q cos2
�
x� α

2

�
�

From this one can check that this function has a minimum at x � 0 and a maximum at x � π

2
so that it is strictly increasing in the first quadrant. This means that the only way all three
angles can remain equal after compression is that they are all in the same position in the first
quadrant, which, as we said, is impossible.
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Mea� Culpa

Because of the Coronavirus and the chaos it caused in many countries, some solutions were
mailed on time but did not arrive on time for publication and acknowledgment. Such was the
case with the solution to 5571, by Paul M. Harms of North Newton, KS.
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