
Problems Ted Eisenberg, Section Editor

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to  eisenbt@013.net¡. Solutions to previously stated problems
can be seen at  http://www.ssma.org/publications¡.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2021

5607: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with integer area and with altitude CD. Find the sides if BC � AC�1 � CD�100.

5608: Proposed by Arsalan Wares,Valdosta State University, Valdosta, Georgia

Triangle A1A2A3 is a right isosceles triangle with =A1A2A3 � 90�. Point P is on side A1A2 such that
A1P

PA2
� 4

5
. Point Q is on side A2A3 and arc PQR, touching side A1A3 at point R, is semicircular.

If A1A2 � 3, find the exact length A1R.

5609: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain
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Evaluate the following limit without using derivatives:

lim
xÑ0

p1� a lnp1� bx3qq1{x � 1

x2
.

5610: Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Find the smallest positive number x such that the following three quantities a, b and c are all integers;

a � apxq � 4

gffe
1�

d
19�

c
x

15
� 4

d
1� 3

c
x

100
,

b � bpxq �
c

5x

48
� 3

c
26� x

20000
,

c � cpxq � 3

c
2x

25
.

5611: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let n ¥ 1 be an integer number. Prove that the following inequality holds:

ņ

k�1

d
k tan�1pkq

tan�1pkq � tan�1pn� kq ¤
pn� 1q?n

2
.

(Here, tan�1pxq represents arctanpxq for all real x.)

5612: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Let a, b P R with a� b � γ

2
. Calculate

lim
nÑ8

�
2e1�

1
2
����� 1

n
�a �?

ne1�
1
3
����� 1

2n�1
�b
	
.

(Note: γ is the Euler-Mascheroni constant, which is defined as the lim
nÑ8

pHn � lnpnqq. Here, Hn

denotes the nth harmonic partial sum 1� 1

2
� 1

3
� . . .� 1

n
.)

Solutions

2



• 5589: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of a triangle with integer length sides if it can be inscribed in a circle
with diameter 16

?
7.

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

Note that since the diameter of the circle is 16
?

7 � 42.33, the largest each of the triangle’s
sides a, b, and c can be is 42. The many possible triples pa, b, cq can be checked by computer,
but we will instead narrow the possibilities down to just a few triples.

From the well-known result that the radius of the circumcircle is

R � abc

4
a
sps� aqps� bqps� cq ,

where s � pa� b� cq, we have

16R2sps� aqps� bqps� cq � a2b2c2

16p8
?

7q2sps� aqps� bqps� cq � a2b2c2

7 � 210 � sps� aqps� bqps� cq � a2b2c2

7 � 210 � a� b� c

2

�
a� b� c

2
� a


�
a� b� c

2
� b


�
a� b� c

2
� c



� a2b2c2

7 � 26 � pa� b� cqpb� c� aqpa� c� bqpa� b� cq � a2b2c2

We will use the last equation to show that a, b, and c must each be divisible by 7, and we will
accomplish this by showing that the left side of the equation—and hence a2b2c2—is divisible
by 73. Since a, b, and c are each less than or equal to 42, and thus less than 49 � 72, this will
imply that each must then have exacly one 7 as a factor.

We begin by observing that since 7 is a factor of the left side of the equation, 7 must be a
factor of a2b2c2, and hence of at least one of a, b, or c. Due to the symmetry of a, b, and c in
the equation, we may assume without loss of generality that 7 divides a. Then since 72 divides
a2, 72 is a factor of the left side of the equation, and therefore 7 divides at least one of the last
four factors in the left side of the equation.

Because 7 divides a, 7 divides the factor a� b� c if and only if 7 divides the factor b� c� a.
Similarly, 7 divides the factor a� c� b if and only if 7 divides the factor a� b� c. We have
already established that 7 divides at least one of these four factors, hence 7 divides at least
two of them, so that the left side of the equation is indeed divisible by 73.

Having thus established that a, b, and c are each divisible by 7, we see that the left side of the
equation is divisible by 76. Combining this with the fact that a, b, and c each being divisible
by 7 implies that each of the last four factors on the left side has at least one 7 as a factor,
we have that exactly one of these last four factors has 72 as a factor. If we take a to be the
minimum of a, b, and c, then it is either the factor a � b � c or the factor b � c � a that is
divisible by 72. Because a, b, and c are each less than or equal to 42, we thus have a � b � c
equal to either 49 or 98 or b� c� a equal to 49.

3



We now consider the implications of both sides of the equation being divisible by 26. Again
noting that a, b, and c are each less than or equal to 42, we have that at least two of a, b, and
c are even. (Indeed, if only one were even, it would have to have a factor of 23, and with its
additional factor of 7, it would be divisible by 56, and so be larger than 42.)

So we have narrowed down the possibilities to triangles having one side that is a multiple of 7
and is less than or equal to 42 to go along with two even sides of 14 and 14, 14 and 28, 14 and
42, 28 and 28, 28 and 42, or 42 and 42, subject to the constraint that a � b � c equals 49 or
98 or b� c� a equals 49. Applying the constraint and checking the few remaining possibilities
yields the two solutions a � 28, b � 28, c � 42 and a � 28, b � 35, c � 42.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let a, b, and c be the integer lengths of the sides of triangle ABC, Let S be its area and
2R � 16

?
7, its circumscribing diameter.

From Heron’s formula, S2 � a� b� c

2
� �a� b� c

2
� a� b� c

2
� a� b� c

2
and from the

generalized theorem of sines, S � 1

2
ab sinC � 1

2
ab

c

2R
� abc

4 � 8?7
, so

448pa� b� cqp�a� b� cqpa� b� cqpa� b� cq � a2b2c2.

Moreover, since ABC is inscribed in a circle with diameter R � 8
?

7, then a, b.c   16
?

7;
taking into account that a, b, and c are integers, then a, b, c ¤ 42. Let us suppose without
loss of generality that a ¤ b ¤ c. Hence, we can check which of those integer pairs pa, bq with
1 ¤ a, b ¤ 42 satisfy the equality 448pa� b� cqp�a� b� cqpa� b� cqpa� b� cq � a2b2c2 when
c � 1, 2, . . . , 42.

Note also that a and b must satisfy the triangle inequalities, a� b ¡ c, a� b   c and b� a   c,
which are equivalent, since a ¤ b , to b� a   c   b� a.

The only case when that equality has a positive integer solution is when c � 42, and in that
case a � 28 and b P t28, 35u.
Hence, the dimensions of a triangle with integer length sides that can be inscribed in a circle
with diameter 16

?
7 are 28, 28 and 42 (which is an isosceles triangle) or 28, 35 and 42 (which

is a scalene triangle.)

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is well known that the diameter of the circle circumscribing the triangle with sides a, b and

c equals
2abca

pa� b� cqpa� b� cqpb� c� aqpc� a� bq , so that

8
a

7pa� b� cqpa� b� cqpb� c� aqpc� a� bq � abc � 0.

Since a, b, c ¤ 16
?

7, so with the help of a computer, we find that the sides of the triangles are
28, 28, 42 and 28, 35, 42.

Also solved by Brian D. Beasely, Presbyterian College, Clinton, SC; Pratik Donga,
India; Ronald Martins, Brasília, Brazil; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA;
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Daniel Văcaru, Piteşti, Romania; Titu Zvonaru, Comănesti, Romania, and the
proposer.

• 5590: Proposed Albert Natian, Los Angeles Valley College, Valley Glen, CA

V

A

B

C

x y

z

c

a

b

Let V be a vertex of a rectangular box. Let V A, V B and V C be the three edges meeting at vertex
V . We are given that the perimeter of the triangle 4ABC is (28�

?
106), the total surface area of

the box is 426, and the length of the main diagonal of the box is 5
?

10. Find the area of the triangle
4ABC.

Editor1s Comment: This problem has a hidden subtlety buried in it that was missed by almost
everyone, and for some who noticed it, they ended up assuming it anyway. Different approaches
eventually yielded an equation for which the authors assumed had a unique solution; and in finding
this solution they assumed that the dimensions of the box x, y, z were integers. But nowhere in
the problem is this stated. In effect they solved the problem using data that was not stated, and

obtained the correct answer that the area of 4ABC � 3

2

?
1921.

Albert Natian proposed this problem and he and I have exchanged many e-mails over some of
the solutions submitted. In each one discussed he found an unstated assumption being used. An
exception to this is the solution submitted by Titu Zvonaru, With respect to this solution Albert
wrote:

“On the other hand, the Solution by Titu Zvonaru is excellent and very rigorous. As you can see,
there’s a lot of work that he had to do in order to reach a solution. I commend him for his hard
work and success!"

Although most of the submitted solutions solved the problem by assuming along their paths that the
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sides lengths of the box were integers, some were very novel and instructive; one of them is included
below.

Albert’s solution to this problem is long, and so I have moved it to the end of this column, along with
some insightful and instructive comments he made in our correspondence about problem solving in
general.

Solution 1 by Titu Zvonaru, Comănesti, Romania

We have x2� y2� z2 � 250, xy� yz� zx � 213 and this yields that x� y� z � 26. It follows thata
x2 � y2 �

a
y2 � z2 �

a
z2 � x2 � 28�

?
106

2px2�y2�z2q�2
�a

px2 � y2qpy2 � z2q �
a
py2 � z2qpz2 � z2q �

a
pz2 � x2qpx2 � y2q

	
� 890�56

?
106

a
px2 � y2qpy2 � z2q �

a
py2 � z2qpz2 � x2q �

a
pz2 � x2qpx2 � y2q � 195� 28

?
106

x4�y4�z4�3
�
x2y2 � y2z2 � z2x2

��2
a
px2 � y2qpy2 � z2qpz2 � x2q

�a
x2 � y2 �

a
y2 � z2 �

a
z2 � x2

	
�

�
195� 28

?
106
	2

x2y2�y2z2�z2x2�2p28�
?

106q
a
x2 � y2qpy2 � z2qpz2 � x2q �

�
195� 28

?
106
	2
�px2�y2�z2q2

2132 � 2xyzpx� y � zq � 2p28�
?

106q
a
px2 � y2 � z2qpx2y2 � y2z2 � z2x2q � x2y2z2 �

�
195� 28

?
106
	2
� 2502

�52xyz � 2p28�
?

106q
a

250p2132 � 52xyzq � x2y2z2 � 13260� 10920
a

106q

�26xyz � p20�
?

106q
a

250p2132 � 52xyzq � x2y2z2 � 6630� 5460
?

106

p28�
?

106q2p250 � 2132 � 250 � 52xyz � x2y2z2q � p6630� 5460
?

106� 26xyzq2 p1q
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The quadratic equation (1),with unknown xyz, has two real roots: one is equal to 540 and the other
is negative. It results that xyz � 540. Since x� y� z � 26, xy� yz � zx � 216 andxyz � 540, the
real numbers x, y, z are the roots of the equation t3 � 26t2 � 213t� 540 � 0.

We obtain px, y, zq � p5, 9, 12q since a2 � 225, b2 � 169, c2 � 106. If F is the area the triangle
ABC, then:

16F 2 � 2a2b2 � 2b2c2 � 2c2a2 � a4 � b4 � c4 � 69156 � 36 � 1921 ùñ F � 3
?

1921

2
.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

We let P � a� b� c � 28�
?

106. Then x2 � y2 � z2 � 250, xy � yz � zx � 213, anda
y2 � z2 �

a
z2 � x2 �

a
x2 � y2 � P .

This implies px�y�zq2 � 250�2p213q � 676, so x�y�z � 26. Hence x2�y2�p26�x�yq2 � 250,
or equivalently x2 � y2 � xy � 26x� 26y � 213 � 0 (the equation of an ellipse). Since we also havea

250� x2 �
a

250� y2 �
a
x2 � y2 � P ,

there are six points in the intersection of the graphs of these two equations (see below), yielding
the solution tx, y, zu � t5, 9, 12u. Hence ta, b, cu � t

?
106, 13, 15u, so the area of triangle ∆ABC is

3
?

1921{2.

Addenda. (1) Here is a graph in the first quadrant of the equations x2�y2�xy�26x�26y�213 � 0

(in red) and
a

250� x2 �
a

250� y2 �
a
x2 � y2 � P (in blue).
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(2) The corresponding equations for a, b, and c are a2 � b2 � ab� Pa� Pb� 1

2
P 2 � 250 � 0 and

a
250� a2 �

a
250� b2 �

a
a2 � b2 � 250 � 26.

The six points in their intersection yield the solution ta, b, cu � t
?

106, 13, 15u.

Comment by Albert Natian, proposer of the problem. This solution involves the graphs of two
curves and the visual inspection of their intersections, which, by design, have integral coordinates.
If these coordinates were chosen to be non-integer, graphing techniques may be unsuccessful at
solving the problem.

Also solved (meaning a correct answer was submitted; names followed with an � means
that this particular solution was not discussed with Albert.) Bruno Salgueiro Fanego�,
Viveiro, Spain; Kee-Wai Lau�, Hong Kong, China; David E. Manes, Oneonta, NY;
Ronald Martins, Brasília, Brazil; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA; Daniel Văcaru, Piteşti, Romania, and the proposer.

5591: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu," Mehedinti, Ro-
mania

Solve for real numbers:

3cosx�cos y�cos z � 3cos
2 x�cosx � 3cos

2 y�cos y � 3cos
2 z�cos z.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA

The given equation is equivalent to

3cos
2 x�cos y�cos z � 3cos

2 y�cosx�cos z � 3cos
2 z�cosx�cos y � 1.

By Jensen’s inequality,

3cos
2 x�cos y�cos z � 3cos

2 y�cosx�cos z � 3cos
2 z�cosx�cos y

¥ 3 � 3 1
3
pcos2 x�2 cosx�cos2 y�2 cos y�cos2 z�2 cos zq

� 3
1
3
pcosx�1q2� 1

3
pcos y�1q2� 1

3
pcos z�1q2

¥ 1.

At the first inequality, equality holds if and only if cos2 x� cosx � cos2 y� cos y � cos2 z� cos z; at
the second inequality, equality holds if and only if cosx � cos y � cos z � 1. Thus,

3cos
2 x�cos y�cos z � 3cos

2 y�cosx�cos z � 3cos
2 z�cosx�cos y � 1

if and only if cosx � cos y � cos z � 1. The solutions to

3cosx�cos y�cos z � 3cos
2 x�cosx � 3cos

2 y�cos y � 3cos
2 z�cos z
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are therefore the ordered triples px, y, zq � p2πj, 2πk, 2π`q for any integers j, k, and `.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality

3cos
2 x�cosx � 3cos

2 y�cos y � 3cos
2 z�cos z ¥ 3 � 3 cos2 x�cos x�cos2 y�cos y�cos2 z�cos z

3
.

Hence,

3cosx�cos y�cos z�1� cos2 x�cos x�cos2 y�cos y�cos2 z�cos z
3 �

� 3�
pcos x�1q2�pcos y�1q2�pcos z�1q2

3 ¥ 1,

which implies pcosx � 1q2 � pcos y � 1q2 � pcos z � 1q2 ¤ 0, cosx � cos y � cos z � 1, and finally,
x� y � z � 0pmod 2πq.

Solution 3 by Pratik Donga, India

Let cosx � a, cos y � b, and cos z � c. This implies:

3a�b�c � 3a
2�a � 3b

2�b � 3c
2�c

ñ 3a � 3b � 3c � 3a
2 � 3b2 � 3b � 3c2 � 3

ñ 1 � 3a
2�b�c � 3b

2�a�c � 3c
2�a�b p1q

In Eq (1) if a2 � b� c � b2 � a� c � c2 � a� b � �1, then

1 � 3�1 � 3�1 � 3�1 � 1

3
� 1

3
� 1

3
� 1

3
p3q � 1.

This implies, to make Eq (1) true, that the LHS=RHS, that is:

a2 � b� c � b2 � a� c � c2 � a� b � �1, (A)

Now,

a2 � b� c � b2 � a� cñ a2 � a � b2 � bñ a2 � b2 � b� a (2)

Similarly,

b2 � a� c � c2 � a� bñ b2 � b � c2 � b � cñ b2 � c2 � c� b (3)
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In Eq(2) a2 � b2 � b� añ a� b � �1 ñ c2 � �2, and
in Eq(3) b2 � c2 � c � b ñ b � c � �1 ñ a2 � �2, which are not possible for any real numbers.
Therefore, we cannot divide Eq(2) by a� b nor Eq(3) by b� c.

So a� b � b� c � 0 ñ a � b � c and also

a2 � a � b2 � b � c2 � cñ a � b � c (4)

Put Eq(4) into Eq (A). So

a2 � b� c� 1 � a� a� 1 ñ �
a� 1q2 � 0 ñ a � 1.

But since a � b � c we have a � b � c � 1 so cosx � cos y � cos z � 1 and since

x � cos�1 1, y � cos�1 1, z � cos�1 1 Ñ x � y � z � t2kπ|k P Zs
x=2kπ, y � 2lπ, and z � 2mπ, with k, l and m being integers.

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Michel Bataille, Rouen, France; David E. Manes, Oneonta NY; Kee-Wai Lau,
Hong Kong, China; Titu Zvonaru, Comănesti, Romania, and the proposer.

5592: Proposed by Michel Bataille, Rouen, France

Let n be a positive integer. Evaluate
ņ

k�1

ak where

ak �
�

k¹
i�1

p2i� 1q
�
�
�
� n¹

j�k�1

pk � jq
�

.

[The second factor is 1 if k � n.]

Solution 1 by Seán M. Stewart, Bomaderry, NSW, Australia

We will show the desired sum is equal to n!p2n � 1q.

We begin by first proving the following binomial identity
ņ

k�0

�
n� k

k



1

2k
� 2n. (1)

Let

fpnq �
ņ

k�0

�
n� k

k



1

2k
.

Then

fpn� 1q �
n�1̧

k�0

�
n� k � 1

k



1

2k
,

10



which, on application of Pascal’s identity�
n� 1

k



�
�
n

k



�
�

n

k � 1



,

can be rewritten as

fpn� 1q �
n�1̧

k�0

��
n� k

k



�
�
n� k

k � 1


�
1

2k
�

n�1̧

k�1

�
n� k

k � 1



1

2k
�

n�1̧

k�0

�
n� k

k



1

2k
.

Reindexing the first sum by k ÞÑ k � 1 we have

fpn� 1q � 1

2

ņ

k�0

�
n� k � 1

k



1

2k
�

n�1̧

k�0

�
n� k

k



1

2k

� 1

2

�
n�1̧

k�0

�
n� k � 1

k



1

2k
�
�

2n� 2

n� 1



1

2n�1

�

�
ņ

k�0

�
n� k

k



1

2k
�
�

2n� 1

n� 1



1

2n�1

� 1

2
fpn� 1q � fpnq � 1

2n�2

��
2n� 1

n� 1



�
�

2n� 2

n� 1


�
. (2)

Noting that

2

�
2n� 1

n� 1



�
�

2n� 2

n� 1



� 0,

the expression for (3), after rearranging, reduces to

fpn� 1q � 2fpnq.

Observing that

n � 0 : fp1q � 2fp0q
n � 1 : fp2q � 2fp1q � 22fp0q
n � 2 : fp3q � 2fp2q � 23fp0q.

As fp0q � 1, from induction on n we see that fpnq � 2nfp0q � 2n, as required to prove.

Now for the sum of interest. Since

k¹
i�1

p2i� 1q � 1 � 3 � 5 � � � p2k � 1q � p2kq!
2kk!

,

and
n¹

j�k�1

pk � jq � p2k � 1qp2k � 2q � � � pk � nq � pk � nq!
p2kq! ,
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for the term ak we have

ak �
�

k¹
i�1

p2i� 1q
�
�
�
� n¹

j�k�1

pk � jq
�



� p2kq!
2kk!

� pk � nq!
p2kq!

� pk � nq!
2kk!

�
�
k � n

k



n!

2k
.

So for the sum we have
ņ

k�1

ak � n!
ņ

k�1

�
k � n

k



1

2k

� n!

�
ņ

k�0

�
k � n

k



1

2k
� 1

�

� n!p2n � 1q,
where we have made use of the binomial identity given in (1), as announced.

Editorial Comment by Solver :

The binomial identity given in (1) seems to be reasonably well known. It appears as Eq. (5.20) on
page 167 of Concrete Mathematics (2nd ed.) by R. L. Graham, D. E. Knuth, and O. Patashnik
(Addison-Wesley: Massachusetts, 1994) and as Identity 60 on page 40 of The Art of Proving Binomial
Identities by M. Z. Spivey (CRC Press: Boca Raton, 2019). ]

Solution 2 by Brian Bradie, Christopher Newport University, Newport News, VA

First,
k¹

i�1

p2i� 1q � p2kq!
2kk!

and
n¹

j�k�1

pk � jq � pn� kq!
p2kq! ,

so
ak � pn� kq!

2kk!
.

Now, consider the sum
ņ

k�0

1

2k

�
n� k

k



.

We have
ņ

k�0

1

2k

�
n� k

k



�

n�1̧

k�0

1

2k

�
n� 1� k

k



�

n�1̧

k�0

1

2k�1

�
n� k

k



� 1

2n

�
2n� 1

n




�
n�1̧

k�0

1

2k

�
n� 1� k

k



� 1

2

ņ

k�0

1

2k�1

�
n� k

k



� 1

2n�1

�
2n

n



� 1

2n

�
2n� 1

n



.
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Because
� 1

2n�1

�
2n

n



� 1

2n

�
2n� 1

n



� 1

2n

�
2n� 1

n


�
1� 2n

2n



� 0,

it follows that

ņ

k�0

1

2k

�
n� k

k



� 2

n�1̧

k�0

1

2k

�
n� 1� k

k



� 4

n�2̧

k�0

1

2k

�
n� 2� k

k



� � � � � 2n

0̧

k�0

1

2k

�
k

k



� 2n.

Finally,

ņ

k�1

ak �
ņ

k�1

pn� kq!
2kk!

� n!
ņ

k�1

1

2k

�
n� k

k



� n!

�
ņ

k�0

1

2k

�
n� k

k



� 1

�
� n!p2n � 1q.

Solution 3 by David E. Manes, Oneonta, NY

If n is a positive integer, then the sum a1 � a2 � � � � � an � n!p2n � 1q.

We will use the following identity:
ņ

k�1

1

2k

�
n� k

k



� 2n�1, a combinatorial proof of which occurs in

A. Engel’s book, Problem-Solving Strategies, Springer-Verlag, New York, 1998, pp 96-97(E18).

Observe that if n is a positive integer, then the terms a1, a2, . . . , an are given by

a1 �
�

1¹
i�1

p2i� 1q
�
�
�

n¹
j�2

p1� jq
�
� p1q � p3 � 4 . . . pn� 1qq,

a2 �
�

2¹
i�1

p2i� 1q
�
�
�

n¹
j�3

p2� jq
�
� p1 � 3q � p5 � 6 . . . pn� 2qq,

...

an�1 �
�

n�1¹
i�1

p2i� 1q
�
�
�

n¹
j�n

pn� 1� jq
�
� p1 � 3 . . . p2n� 3qq � p2n� 1q,

an �
�

n¹
i�1

p2i� 1q
�
�
�

n¹
j�n�1

pn� jq
�
� p1 � 3 . . . p2n� 3q � p2n� 1qq � p1q.

13



Therefore,
ņ

k�1

ak �
ņ

k�1

�
k¹

i�1

p2i� 1q
�
�
�
� n¹

j�k�1

pk � jq
�



�
ņ

k�1

p1 � 3 � � � p2k � 1qq �
�pn� kq!

p2kq!



�
ņ

k�1

p1 � 3 � � � p2k � 1qq �
� pn� kq!
p1 � 3 � � � p2k � 1qqp2 � 4 . . . p2kqq




�
ņ

k�1

pn� kq!
2k � k!

� pn!q
ņ

k�1

1

2k

�pn� kq!
n! � k!




� pn!q
ņ

k�1

1

2k
�
�
n� k

k




� n!p2n � 1q,
by the identity stated at the start of the solution. This completes the solution.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that

ņ

k�1

ak � p2n � 1qn!. (1)

It is easy to check that ak � 2�k

�
n� k

k



n!, and so p1q will follow from

ņ

k�0

2�k

�
n� k

k



� 2n. (2)

Denote the left side of p2q by Sn. By the well-known relation

�
m� 1

j



�
�
m

j



�
�

m

j � 1



for positive integers satisfying 1 ¤ j ¤ m, we have

Sn�1 � 1�
n�1̧

k�1

2�k

��
n� k

k



�
�
n� k

k � 1





�
n�1̧

k�0

2�k

�
n� k

k



�

ņ

k�0

2�pk�1q

�
n� 1� k

k




14



�
ņ

k�0

2�k

�
n� k

k



�

n�1̧

k�0

2�pk�1q

�
n� 1� k

k



� Sn � Sn�1

2
.

Hence Sn�1 � 2Sn, and by induction we obtain p2q. This completes the solution.

Solution 5 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Answer. n! p2n � 1q.

Computation. Since ak depends on both k and n, then we write apn, kq :� ak. We have

apn, kq �
�

k¹
i�1

p2i� 1q
�
�
�
� n¹

j�k�1

pk � jq
�

� p2kq!

k! � 2k �
pn� kq!
p2kq! � n! �

�
n� k

n



1

2k
.

Define

Qn :�
ņ

k�0

�
n� k

n



1

2k
.

Then
n�1̧

k�1

�
n� k

n� 1



1

2k
�

ņ

j�0

�
n� 1� j

n� 1



1

2j�1
� �

�
2n� 2

n� 1



1

2n�2
� 1

2
Qn�1.

Now

Qn�1 �
n�1̧

k�0

�
n� 1� k

n� 1



1

2k
� 1�

n�1̧

k�1

��
n� k

n



�
�
n� k

n� 1


�
1

2k
,

Qn�1 � 1�
n�1̧

k�1

�
n� k

n



1

2k
�

n�1̧

k�1

�
n� k

n� 1



1

2k
,

Qn�1 �
ņ

k�0

�
n� k

n



1

2k
�
�

2n� 1

n



1

2n�1
�
�

2n� 2

n� 1



1

2n�2
� 1

2
Qn�1.

Since �
2n� 1

n



1

2n�1
�
�

2n� 2

n� 1



1

2n�2
� 0,

then
Qn�1 � Qn � 1

2
Qn�1,

Qn�1 � 2Qn.

Since Q0 � 1, Q1 � 2, thenA
Qn � 2n.

Thus
ņ

k�1

ak �
ņ

k�1

apn, kq � n!
ņ

k�1

�
n� k

n



1

2k
� n! p�1�Qnq � n! p2n � 1q .

Solution 6 by Moti Levy, Rehovot, Israel
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k¹
i�1

p2i� 1q � p2kq!
2kk!

,
n¹

j�k�1

pk � jq � pn� kq!
p2kq! .

ak � p2kq!
2kk!

pn� kq!
p2kq! � pn� kq!

k!

�
1

2


k

The required sum is

Sn :�
ņ

k�1

ak � n!
ņ

k�1

�
n� k

n


�
1

2


k

.

Now we show by mathematical induction that

ņ

k�1

�
n� k

n


�
1

2


k

� 2n�1 � 2n � 1.

For n � 1,
1̧

k�1

�
1� k

n


�
1

2


k

� 1 � 22 � 2� 1.

Suppose
ņ

k�1

�
n� k

n


�
1

2


k

� 2n�1�2n�1 is true, then we have to show that
n�1̧

k�1

�
n� 1� k

n� 1


�
1

2


k

�

2n�2 � 2n�1 � 1.

We apply the binomial identity,�
n� 1� k

n� 1



�
�
n� k

n� 1



�
�
n� k

n



.

n�1̧

k�1

�
n� 1� k

n� 1


�
1

2


k

�
n�1̧

k�1

�
n� k

n� 1


�
1

2


k

�
n�1̧

k�1

�
n� k

n


�
1

2


k

� 1

2

ņ

k�0

�
n� 1� k

n� 1


�
1

2


k

�
ņ

k�1

�
n� k

n


�
1

2


k

�
�

2n� 1

n


�
1

2


n�1

� 1

2
� 1

2

ņ

k�1

�
n� 1� k

n� 1


�
1

2


k

�
ņ

k�1

�
n� k

n


�
1

2


k

�
�

2n� 1

n


�
1

2


n�1

� 1

2
� 1

2

n�1̧

k�1

�
n� 1� k

n� 1


�
1

2


k

� 1

2

�
2n� 2

n� 1


�
1

2


n�1

�
ņ

k�1

�
n� k

n


�
1

2


k

�
�

2n� 1

n


�
1

2


n�1

.

Since
1

2

�
2n� 2

n� 1


�
1

2


n�1

�
�

2n� 1

n


�
1

2


n�1

, we get

n�1̧

k�1

�
n� 1� k

n� 1


�
1

2


k

� 1

2
� 1

2

n�1̧

k�1

�
n� 1� k

n� 1


�
1

2


k

�
ņ

k�1

�
n� k

n


�
1

2


k

,

16



or
n�1̧

k�1

�
n� 1� k

n� 1


�
1

2


k

� 1� 2

�
ņ

k�1

�
n� k

n


�
1

2


k
�
� 2n�2 � 2n�1 � 1.

We conclude that
ņ

k�1

ak � n!
�
2n�1 � 2n � 1

�
.

Also solved by Albert Stadler, Herrliberg, Switzerland, and the proposer.

5593: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let A be the set of quadruples of positive integers pi, j, k, lq such that i� j � k � l � 23. Compute
the following sum ¸

pi,j,k,lqPA

ijkl.

Solution 1 by Seán M. Stewart, Bomaderry, NSW, Australia

We show the desired sum is equal to
�

26

7



� 657800.

Let
Sn �

¸
i�j�k�l�n

ijkl,

where n ¥ 4 is an integer. The sum we require is S23.

Recalling
1

1� x
�
¸
n¥0

xn,

differentiating with respect to x gives
1

p1� xq2 �
¸
n¥0

nxn�1,

or
x

p1� xq2 �
¸
n¥0

nxn, (3)

after multiplying both sides of the expression by x. We now find a generating function for the
sequence tSnun¥0. Now

¸
n¥0

Snx
n �

¸
n¥0

�
� ¸

i�j�k�l�n

ijkl

�

xn

�
�¸

n¥0

nxn

�4

�
�

x

p1� xq2

4

� x4

p1� xq8 ,

17



where we have made use of the result given in (3). As Sn is the coefficient of xn in the generating
function we have

Sn � rxns
�

x4

p1� xq8



� 1

7!
pn� 3qpn� 2q � � � pn� 2qpn� 3q

� pn� 3q!
7!pn� 4q!

�
�
n� 3

7



, n ¥ 4.

Thus
S23 �

�
26

7



� 657 800,

as announced.

Solution 2 by David E. Manes, Oneonta, NY

Let N denote the set of natural numbers and let S �
¸

pi,j,k,lqPA

ijkl. If A � tpi, j, k, lq | i� j�k� l �

23u, then S � 657, 800.

We will use the following result: the number of partitions of the integer 23 consisting of exactly 4
parts is 94. The number of those partitions such that no two of the positive integers i, j, k, l are
equal is 39. They start with the partition p17, 3, 2, 1q with product 102 and end with p8, 6, 5, 4q with
product 960. Note that each of these 39 partitions contributes a total of 24 quadruples in the set
A by permuting the entries of the quadruple. The number of partitions in which exactly two of the
integers i, j, k and l are equal is 48. Examples of such partitions are p19, 2, 1, 1q with product 38
and p7, 6, 5, 5q with product 1050. Note that each of these 48 partitions contributes a total of 12
quadruples in A. Finally, there are 7 partitions of 23 in which three of the four integers i, j, k, l are
equal. They are p20, 1, 1, 1q, p17, 2, 2, 2q, p14, 3, 3, 3q, p11, 4, 4, 4q, p8, 5, 5, 5q, p7, 7, 7, 2q and p6, 6, 6, 5q.
Each of these seven partitions contributes 4 quadruples in the set A and the sum of the products
for the seven partitions is 4, 004.

The partitions of 23 such that no two of i, j, k, l are equal are:

(17, 3, 2, 1) (16, 4, 2, 1) (15, 5, 2, 1) (15, 4, 3, 1) (14, 6, 2, 1) (14, 5, 3, 1) (14, 4, 3, 2)
(13, 7, 2, 1) (13, 6, 3, 1) (13, 5, 4, 1) (13, 5, 3, 2) (12, 8, 2, 1) (12, 7, 3, 1) (12, 6, 4, 1)
(12, 6, 3, 2) (12, 5, 4, 2) (11, 9, 2, 1) (11, 8, 3, 1) (11, 7, 4, 1) (11, 7, 3, 2) (11, 6, 5, 1)
(11, 6, 4, 2) (11, 5, 4, 3) (10, 9, 3, 1) (10, 8, 4, 1) (10, 8, 3, 2) (10, 7, 5, 1) (10, 7, 4, 2)
(10, 6, 5, 2) (10, 6, 4, 3) (9, 8, 5, 1) (9, 8, 4, 2) (9, 7, 6, 1) (9, 7, 5, 2) (9, 7, 4, 3)
(9, 6, 5, 3) (8, 7, 6, 2) (8, 7, 5, 3) (8, 6, 5, 4)

Note that the sum of the products of these 39 partitions is 16, 016.
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The partitions of 23 such that exactly two of the integers i, j, k, l are equal are:

(19, 2, 1, 1) (18, 3, 1, 1) (18, 2, 2, 1) (17, 4, 1, 1) (16, 5, 1, 1) (16, 3, 2, 2) (16, 3, 3, 1)
(15, 6, 1, 1) (15, 4, 2, 2) (15, 3, 3, 2) (14, 7, 1, 1) (14, 5, 2, 2) (14, 4, 4, 1) (13, 8, 1, 1)
(13, 6, 2, 2) (13, 4, 3, 3) (13, 4, 4, 2) (12, 9, 1, 1) (12, 7, 2, 2) (12, 5, 5, 1) (12, 5, 3, 3)
(12, 4, 4, 3) (11, 10, 1, 1) (11, 8, 2, 2) (11, 6, 3, 3) (11, 5, 5, 2) (10, 10, 2, 1) (10, 9, 2, 2)
(10, 7, 3, 3) (10, 6, 6, 1) (10, 5, 5, 3) (10, 5, 4, 4) (9, 9, 4, 1) (9, 9, 3, 2) (9, 8, 3, 3)
(9, 6, 6, 2) (9, 6, 4, 4) (9, 5, 5, 4) (8, 8, 6, 1) (8, 8, 5, 2) (8, 8, 4, 3) (8, 7, 7, 1)
(8, 7, 4, 4) (8, 6, 6, 3) (7, 7, 6, 3) (7, 7, 5, 4) (7, 6, 6, 4) (7, 6, 5, 5)

The sum of the products of these 48 entries is 21, 450. Hence, the sum S of the products enumerated
by set A is

S �
¸

pi,j,k,lqPA

ijkl � 24p16, 016q � 12p21, 450q � 4p4004q � 657, 800.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We note that

¸
i�j�n,i¥1,j¥1

ij �
n�1̧

i�1

ipn� iq �
n�1̧

ik�1

i

"�
n� i� 1

2



�
�
n� i

2


*
�

�
n�1̧

i�1

i

�
n� i� 1

2



�

ņ

i�2

pi� 1q
�
n� i� 1

2



�

n�1̧

i�1

�
n� i� 1

2



�

�
n�1̧

i�1

"�
n� i� 2

3



�
�
n� i� 1

3


*
�
�
n� 1

3



.

¸
i�j�k�n,i¥1,j¥1,k¥1

ijk �
n�2̧

i�1

i
¸

j�k�n�i,j¥1,k¥1

jk �
n�2̧

i�1

i

�
n� i� 1

3



�

�
n�2̧

i�1

i

"�
n� i� 2

4



�
�
n� i� 1

4


*
�

n�2̧

i�1

i

�
n� i� 2

4



�

n�1̧

i�2

ti� 1

�
n� i� 2

4



�

�
n�2̧

i�1

�
n� i� 2

4



�

n�2̧

i�1

"�
n� i� 3

5



�
�
n� i� 2

5


*
�
�
n� 2

5



,

and finally (using the same line of arguments),

¸
i�j�k�l�n,i¥1,j¥1,k¥1,l¥1

ijkl �
�
n� 3

7



.

In particular, if n � 23 then
�
n� 3

7



�
�

26

7



� 657800.
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Solution 4 by Moti Levy, Rehovot, Israel

Let S :�
¸

pi,j,k,lqPA

ijkl. Let pnq8n�1 be the sequence 1, 2, 3, . . . .

The generating function of the sequence pnq8n�1 is

N pzq :�
8̧

n�1

nzn � z

pz � 1q2 .

The sum S is the 23-rd coefficient of four consecutive convolutions of the sequence pnq8n�1 with itself.
The generating function of the four convolutions is pN pzqq4 .
Then

S � �z23�� z

pz � 1q2

4

� �z23� z4

pz � 1q8 �
�
z19
� 1

pz � 1q8 � p�1q19
��8

19




�
�

19� 8� 1

19



� 657800.

Solution 5 by Albert Natian, Los Angeles Valley College, Valley Glen, Ca

Answer: n! p2n � 1q.

Computation: Since ak depends on both k and n, then we write apn, kq :� ak. We have

apn, kq �
�

k¹
i�1

p2i� 1q
�
�
�
� n¹

j�k�1

pk � jq
�

� p2kq!

k! � 2k �
pn� kq!
p2kq! � n! �

�
n� k

n



1

2k
.

Define

Qn :�
ņ

k�0

�
n� k

n



1

2k
.

Then
n�1̧

k�1

�
n� k

n� 1



1

2k
�

ņ

j�0

�
n� 1� j

n� 1



1

2j�1
� �

�
2n� 2

n� 1



1

2n�2
� 1

2
Qn�1.

Now

Qn�1 �
n�1̧

k�0

�
n� 1� k

n� 1



1

2k
� 1�

n�1̧

k�1

��
n� k

n



�
�
n� k

n� 1


�
1

2k
,

Qn�1 � 1�
n�1̧

k�1

�
n� k

n



1

2k
�

n�1̧

k�1

�
n� k

n� 1



1

2k
,

Qn�1 �
ņ

k�0

�
n� k

n



1

2k
�
�

2n� 1

n



1

2n�1
�
�

2n� 2

n� 1



1

2n�2
� 1

2
Qn�1.
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Since �
2n� 1

n



1

2n�1
�
�

2n� 2

n� 1



1

2n�2
� 0,

then
Qn�1 � Qn � 1

2
Qn�1,

Qn�1 � 2Qn.

Since Q0 � 1, Q1 � 2, then
Qn � 2n.

Thus
ņ

k�1

ak �
ņ

k�1

apn, kq � n!
ņ

k�1

�
n� k

n



1

2k
� n! p�1�Qnq � n! p2n � 1q .

Also solved by Kee-Wai Lau, Hong Kong, China, and the proposer.

5594: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Let k ¡ 1. Calculate:


rpaqs L � lim
nÑ8

» 1

0

�
k

n
?
x� k � 1


n

dx


rpbqs lim
nÑ8

n

�
L�

» 1

0

�
k

n
?
x� k � 1


n

dx
�
.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA

With
k

n
?
x� k � 1

� 1

1� 1
k p1� elnx{nq

� 1� lnx

kn
� pk � 2q ln2 x

2k2n2
�

8̧

j�3

fjpkq ln
j x

nj
,

it follows that

n ln

�
k

n
?
x� k � 1



� � lnx

k
� pk � 1q ln2 x

2k2n
�

8̧

j�3

f̃jpkq lnj x

nj�1
,

and �
k

n
?
x� k � 1


n

� x�1{k

�
1� pk � 1q ln2 x

2k2n
�

8̧

j�3

f̂jpkq lnj x

nj�1

�
,

where each function fj , f̃j , and f̂j is bounded for k ¡ 1. Because» 1

0
x�1{k lnj x dx
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is finite for each j,» 1

0

�
k

n
?
x� k � 1


n

dx �
» 1

0
x�1{k dx� k � 1

2k2n

» 1

0
x�1{k ln2 x dx�O

�
1

n2




� k

k � 1
� k

pk � 1q2n �O

�
1

n2



.

Hence,

L � lim
nÑ8

» 1

0

�
k

n
?
x� k � 1


n

dx � k

k � 1

and

lim
nÑ8

n

�
L�

» 1

0

�
k

n
?
x� k � 1


n

dx

�
� k

pk � 1q2 .

Solution 2 by Seán M. Stewart, Bomaderry, NSW, Australia

If k ¡ 1 we will show that

(a) L � lim
nÑ8

» 1

0

�
k

n
?
x� k � 1


n

dx � k

k � 1
, and

(b) lim
nÑ8

n

�
L�

» 1

0

�
k

n
?
x� k � 1


n

dx

�
� k

pk � 1q2 .

For large n the asymptotic expansion for the integrand of the integral found in the limit L is�
k

n
?
x� k � 1


n

� x�
1
k � k � 1

2nk2
x�

1
k log2pxq �O

�
1

n2



.

Let

In �
» 1

0

�
k

n
?
x� k � 1


n

dx,

then

In �
» 1

0
x�

1
k dx� k � 1

2nk2

» 1

0
x�

1
k log2pxq dx�O

�
1

n2



. (1)

The first of the integrals to the right of the equality is elementary. The result is» 1

0
x�

1
k dx � k

k � 1
.

For the second integral to the right of the equality, enforcing a substitution of x ÞÑ xk gives» 1

0
x�

1
k log2pxq dx � k3

» 1

0
xk�2 log2pxq dx.

Integrating by parts twice leads to» 1

0
x�

1
k log2pxq dx � 2k3

pk � 1q3 .
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Thus (1) becomes

In � k

k � 1
� k

pk � 1q2n �O
�

1

n2



. (2)

Using the result given in (2) we are now in a position to answer the questions given in (a) and (b).
For (a)

L � lim
nÑ8

In � lim
nÑ8

�
k

k � 1
� k

pk � 1q2n �O
�

1

n2


�
� k

k � 1
,

as announced. And for (b)

lim
nÑ8

npL� Inq � lim
nÑ8

n

�
k

k � 1
�
"

k

k � 1
� k

pk � 1q2n �O
�

1

n2


*�

� lim
nÑ8

�
k

pk � 1q2 �O
�

1

n


�

� k

pk � 1q2 ,

as announced.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

Let

Ik,n �
» 1

0

�
k
n
?
x
k � 1


n

dx.

We perform three variable transforms,

first x � yn, dx � nyn�1dy:

Ik,n �
» 1

0

�
k

y � k � 1



nyn�1dy,

second, y � 1� z, dy � �dz:

Ik,n �
» 1

0

�
k

k � z


n

np1� zqn�1dz � n

» 1

0

�
1� z

k

	�n
p1� zqn�1dz,

third t � 1� z

1� z
k

, z � k
1� t

k � t
, dz � �kpk � 1q

pk � tq2 :

Ik,n � kn

» 1

0

tn�1

k � t
dt.

This representation allows us to drive the full asymptotic expansion of Ik,n in terms of decreasing
powers of n by applying repeated integration by parts. Indeed,
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Ik,n � ktn

k � t

����
1

0

� k

» 1

0

tn

pk � tq2dt �
k

k � 1
� k

» 1

0

tn

pk � tq2dt �

� k

k � 1
� k

pk � 1q2pn� 1q �
2k

n� 1

» 1

0

tn�1

pk � tq3dt �

� k

k � 1
� k

pk � 1q2pn� 1q �O
�

1

n2



,

Since 0 ¤
» 1

0

tn�1

pk � t3q ¤
1

pk � 1q3
» 1

0
tn�1dt � 1

pk � 1q3pn� 2q .

Therefore, L � k

k � 1
and

lim
nÑ8

n

�
L�

» 1

0

�
k

n
?
x� k � 1


n

dx



� k

pk � 1q2 .

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that the limit L in paq equals k

k � 1
and in pbq equals k

pk � 1q2 .

To prove these results, we need to prove that for positive integers n,

» 1

0

�
k

n
?
x� k � 1


n

dx � k

k � 1
� k

pn� 1qpk � 1q2 �
2kn

n� 1

» 1

k�1
k

p1� tqn�1

t3
dt. (1)

Denote the integral on the left side of (1) by In. By means of the substitution

x �
�pk � 1qp1� tq

t


n

, we see that In � nkn
» 1

k�1
k

p1� tqn�1

t
dt. Integrating by parts,

we obtain In � k

k � 1
� kn

» 1

k�1
k

p1� tqn
t2

dt. Integrating by parts again, we obtain (1).

Denote the integral on the right side of (1) by Jn. Then

|Jn| ¤
» 1

k�1
k

p1� tqn�1�
k�1
k

�3 dt � 1

pn� 2qpk � 1q3kn�1
.

It follows that In � k

k � 1
� k

pn� 1qpk � 1q2 �O

�
1

n2



, where the constant implied by O
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depends at most on k. Hence, our claimed results for paq and pbq.

Solution 5 by Michel Bataille, Rouen France

Let In �
» 1

0

�
k

n
?
x� k � 1


n

dx. The change of variables x � pk � 1qntn
pk � tqn (t P r0, 1s) gives n

?
x �

k � 1 � kpk � 1q
k � t

and dx � nkpk � 1qn tn�1

pk � tqn�1
dt so that

In � nk

» 1

0

tn�1

k � t
dt.

Integrating by parts, we obtain

In � k

��
tn

k � t

�1
t�0

�
» 1

0

tn

pk � tq2 dt
�
� k

k � 1
� kJn

where Jn �
» 1

0

tn

pk � tq2 dt.
From a well-known result [see for example Focus On... No 35,Crux Mathematicorum,
45(3), March 2019, p. 138], we have

lim
nÑ8

nJn �
�

1

pk � tq2
�
t�1

� 1

pk � 1q2 .

First, we deduce that Jn � 1

pk � 1q2 �
1

n
as nÑ8, hence lim

nÑ8
Jn � 0 and therefore

L � lim
nÑ8

In � k

k � 1

and, second,

lim
nÑ8

npL� Inq � kpnJnq � k

pk � 1q2 .

Solution 6 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Answer:

paq L � k

k � 1

pbq lim
nÑ8

n

�
L�

» 1

0

�
k

n
?
x� k � 1


n

dx

�
� k

pk � 1q2

Computation: Set

Qn :�
» 1

0

�
k

n
?
x� k � 1


n

dx
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and
y � fpxq :�

�
k

n
?
x� k � 1


n

so that

x �
�
k � rk � 1s n

?
y
�n

y
.

From the graph of y � fpxq �
�

k
n
?
x� k � 1


n

, we see that

Qn �
» 1

0
fpxq dx � 1�

» p k
k�1qn

1

�
k � rk � 1s n

?
y
�n

y
dy.

Now set u � n
?
y so that y � un, dy � nun�1 du, and

Qn � 1� n

» k
k�1

1

1

u
pk � rk � 1suqn du.

x

y

p1, 1q1

�
k

k � 1


n

f

1

Now set
v � 1

k
pk � rk � 1suq

so that
k � rk � 1su � kv, u � k

k � 1
p1� vq , du � k

k � 1
p�dvq

and

Qn � 1� nkn
» 1{k

0

vn

1� v
dv.

Integrating by parts p times, we have» 1{k

0

vn

1� v
dv � 1

kn

p̧

j�1

p�1qj�1 pj � 1q!
pk � 1qj±j

t�1 pn� tq
� p�1qp p!±p

t�1 pn� tq
» 1{k

0

vn�p

p1� vqp�1 dv.
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Then for any positive integer m:

1� n
2m̧

j�1

p�1qj�1 pj � 1q!
pk � 1qj±j

t�1 pn� tq
¤ Qn ¤ 1� n

2m�1¸
j�1

p�1qj�1 pj � 1q!
pk � 1qj±j

t�1 pn� tq
.

For m � 1:

1� n

�
1

pk � 1q pn� 1q �
1

pk � 1q2 pn� 1q pn� 2q

�
¤ Qn ¤ 1� n

�
1

pk � 1q pn� 1q
�

which, upon sending nÑ8, collapses to

1� 1

k � 1
¤ Q8 ¤ 1� 1

k � 1

and so
Q8 � k

k � 1

which means

L � lim
nÑ8

» 1

0

�
k

n
?
x� k � 1


n

dx � Q8 � k

k � 1
.

For m � 2:

n

�
k

k � 1
� 1� n

3̧

j�1

p�1qj�1 pj � 1q!
pk � 1qj±j

t�1 pn� tq

�

¤ n rL�Qns ¤

n

�
k

k � 1
� 1� n

4̧

j�1

p�1qj�1 pj � 1q!
pk � 1qj±j

t�1 pn� tq

�

which, upon sending nÑ8, collapses to

k

pk � 1q2 ¤ lim
nÑ8

n rL�Qns ¤ k

pk � 1q2

and so
lim
nÑ8

n rL�Qns � k

pk � 1q2
which means

lim
nÑ8

n

�
L�

» 1

0

�
k

n
?
x� k � 1


n

dx

�
� lim

nÑ8
n rL�Qns � k

pk � 1q2 .

Also solved by Moti Levy, Rehovot, Israel, and the proposers.
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The following solution uses the 3-dimensional analog of the Pythagorean Theorem.

Solution to 5590 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Let V be a vertex of a rectangular box. Let V A, V B and V C be the three edges meeting at vertex
V . We are given that the perimeter of the triangle 4ABC is (28�

?
106), the total surface area of

the box is 426, and the length of the main diagonal of the box is 5
?

10. Find the area of the triangle
4ABC.

V

A

B

C

x y

z

c

a

b

Solution:

Let x, y and z respectively denote the lengths of V A, V B and V C; i.e., x � V A, y � V B and
z � V C. In 4ABC, let a, b and c respectively denote the lengths of BC, CA and AB; i.e., a � BC,
b � CA and c � AB. So a �

a
y2 � z2, b �

a
z2 � x2, c �

a
x2 � y2. The perimeter p � 28�

?
106

can be written as
p � c� a� b �

a
x2 � y2 �

a
y2 � z2 �

a
z2 � x2.

For the total surface area S � 426 of the box we have: S � 2 pxy � yz � zxq � 426. We let
σ � S{2 � 213. So S � 2σ and

σ � xy � yz � zx.

For the length D of the main diagonal of the box we have D �
a
x2 � y2 � z2 � 5

?
10. We let

d � D2 � x2 � y2 � z2

So d � 250. For the volume v of the box we have

v � xyz.
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We let the notation A p4TRIq denote the area of a triangle 4TRI and invoke the 3-dimensional
Pythagorean Theorem to write:

rA p4AV Bqs2 � rA p4BV Cqs2 � rA p4CV Aqs2 � rA p4ABCqs2 .

Let A� � A p4ABCq. Clearly A p4AV Bq � xy{2, A p4BV Cq � yz{2, A p4CV Aq � zx{2.

So
A2
� �

�xy
2

	2
�
�yz

2

	2
�
�zx

2

	2
� �x2y2 � y2z2 � z2x2

� {4.
We let

α � 4A2
� � x2y2 � y2z2 � z2x2.

Our task is to find A� in terms of (or as a function of) p, D and S. However, we will first find α in
terms of p, d and σ where d � D2 and σ � S{2.

From
a �

a
y2 � z2, b �

a
z2 � x2, c �

a
x2 � y2

we get
a2 � b2 � c2 � �y2 � z2

�� �z2 � x2
�� �x2 � y2

� � 2px2 � y2 � z2q � 2d.

In short,
a2 � b2 � c2 � 2d. p�1�q.

We have
x2 � y2 � z2 � d,�
x2 � y2 � z2

�2 � d2,

x4 � y4 � z4 � 2
�
x2y2 � y2z2 � z2x2

� � d2,

x4 � y4 � z4 � 2α � d2,

x4 � y4 � z4 � d2 � 2α. p�2�q
Since

α � x2y2 � y2z2 � z2x2, a2 � y2 � z2, b2 � z2 � x2, c2 � x2 � y2,

then
c2a2 � �x2 � y2

� �
y2 � z2

� � x2y2 � y2z2 � z2x2 � y4 � α� y4,

a2b2 � �y2 � z2
� �
z2 � x2

� � x2y2 � y2z2 � z2x2 � z4 � α� z4,

b2c2 � �z2 � x2
� �
x2 � y2

� � x2y2 � y2z2 � z2x2 � x4 � α� x4.

So, by p�2�q,

a2b2 � b2c2 � c2a2 � 3α� x4 � y4 � z4 � 3α� d2 � 2α � α� d2,

a2b2 � b2c2 � c2a2 � α� d2. p�3�q
Let e � x� y � z so that

e2 � px� y � zq2 � x2 � y2 � z2 � 2 pxy � yz � zxq � d� 2σ.
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Numerically e �
?
d� 2σ � ?

250� 426 �
?

676 � 26.

Recall xy � yz � zx � σ. So
pxy � yz � zxq2 � σ2,

x2y2 � y2z2 � z2x2 � 2 pxyyz � yzzx� zxxyq � σ2,

α� 2xyzpx� y � zq � σ2,

α� 2ve � σ2,

v � σ2 � α

2e
,

v2 �
�
σ2 � α

�2
4e2

,

v2 �
�
σ2 � α

�2
4 pd� 2σq . p�4�q

We now find an expression for pabcq2. Recall a �
a
y2 � z2, b �

a
z2 � x2, c �

a
x2 � y2. So

a2b2c2 � �y2 � z2
� �
z2 � x2

� �
x2 � y2

�
� �x2 � y2 � z2 � x2

� �
x2 � y2 � z2 � y2

� �
x2 � y2 � z2 � z2

�
� �d� x2

� �
d� y2

� �
d� z2

�
� d3 � px2 � y2 � z2qd2 � �x2y2 � y2z2 � z2x2

�
d� x2y2z2

� d3 � pdqd2 � pαq d� v2

� αd� v2

� αd�
�
σ2 � α

�2
4 pd� 2σq by p�4�q

� 4 pd� 2σqαd� �σ2 � α
�2

4 pd� 2σq

� 4 pd� 2σqαd� σ4 � 2σ2α� α2

4 pd� 2σq .

So

pabcq2 � �α2 � �4 pd� 2σq d��2σ2
�
α� σ4

4 pd� 2σq . p�5�q

Recall a� b� c � p. So
pa� b� cq2 � p2,

a2 � b2 � c2 � 2pa� b� cq � p2,

2d� 2pab� bc� caq � p2 by p�1�q,
2pab� bc� caq � p2 � 2d,
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r2pab� bc� caqs2 � �p2 � 2d
�2
,

4
�
a2b2 � b2c2 � c2a2 � 2 pabbc� bcca� caabq� � �p2 � 2d

�2
,

4
�
α� d2 � 2abcppq� � p4 � 4p2d� 4d2 by p�3�q.

Continuing,
4α� 4d2 � 8abcp � p4 � 4p2d� 4d2,

8abcp � p4 � 4p2d� 4α,

64 pabcq2 p2 � p8abcpq2 � ��p4 � 4p2d
�� 4α

�2
.

By p�5�q, the preceding can be re-written as:

64

�
�α2 � �4 pd� 2σq d��2σ2

�
α� σ4

4 pd� 2σq

�
p2 � �p2 �p2 � 4d

�� 4α
�2
,

16
�
� α2 � �4 pd� 2σq d� 2σ2

�
α� σ4

	
p2 � pd� 2σq �p2 �p2 � 4d

�� 4α
�2
.

Now we re-express the latter as a quadratic in α. The quadratic re-expression is:

16
�
p2 � d� 2σ

�
α2 � 8p2

�
4σ2 � pd� 2σqpp2 � 4dq�α� �16σ4p2 � pd� 2σqp4pp2 � 4dq2� � 0

which can be re-written as
kα2 � `α�m � 0

where

k � 16
�
p2 � d� 2σ

�
,

` � 8p2
�
4σ2 � pd� 2σqpp2 � 4dq�,

m � p2
�
16σ4 � pd� 2σqp2pp2 � 4dq2�.

Recall d � D2 and 2σ � S. So 4σ2 � S2 and 16σ4 � S4. So,

k � 16
�
p2 �D2 � S

�
,

` � 8p2
�
S2 � pD2 � Sqpp2 � 4D2q�,

m � p2
�
S4 � pD2 � Sqp2pp2 � 4D2q2�.

By quadratic formula, we have:

α � `�?
`2 � 4km

2k
.

Since A� � 1

2

?
α, then

A� � 1

2

d
`�?

`2 � 4km

2k
.

At this point of the solution we have essentially come up with the answer to the original question.
To produce a numerical answer, all that remains to do is brute computation, which is not shown
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here. However, the two solutions, as approximations for A�, are 65.7438 and 392.2613. It’s worth
mentioning that a box satisfying the above given numerical values for p, S and D is one with di-
mensions 5� 9� 12, which coincides with the answer 65.7438.

Finally, a result worth mentioning is:

256
�
p2 �D2 � S

�
A4
� � 32p2

�
S2 � pD2 � Sqpp2 � 4D2q

�
A2
� � p2

�
S4 � pD2 � Sqp2pp2 � 4D2q2

�
� 0.

Comments by Albert Natian:

Take a look at the last quadratic-type equation with A� as the root. It’s a beauty! It’s a result
that I think will intrigue many of your column readers. I’d be curious as to what their take on that
equation will be. This problem has actually a very important psychological and logical lesson to
teach us all, especially to me, which I’ve learned well. And it is this, that no amount of work that
ends nowhere is no proof that there is no solution. To prove that there is no solution (of a certain
kind) one needs to produce positive knowledge that demonstrates there is no such solution – itself
often as difficult as the original problem.

I remember all those many days I tried to reach a destination with this problem, but failed every
time. And also I remember all those times I was so close to deciding that there is no hope at finding a
definitive solution. But somehow I lucked out and, by not giving up, succeeded in finding a solution.

It’s notable that there are, by my reckoning, two solutions for the area of triangle ABC; namely,
65.7438 and 392.2613 (as approximations). While I am comfortable with the smaller solution as
genuine, I am wondering as to what POSITIVE dimensions (if any) of the box the larger number
corresponds.

Thank you,

Albert
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