Problems Ted Eisenberg, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems
can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before
February 15, 2021

e 5613: Proposed by Kenneth Korbin, New York, NY

Given the equations:

V312 4+6x+1=y++/3y?—3

and
ax® +by? + cay +dr+ey+ f = 0.

Find integers (a, b, ¢, d, e, f) so that infinitely many pairs of positive integers (x, y) satisfy both
equations.

e 5614: Proposed by Michael Brozinsky, Central Islip, NY

Solve:

cos? 0 4 6 cos(f) cos <§> + 9 cos? (g) = sin? § — 6sin A sin <§> + 9 sin? (g) .

e 5615: Proposed by Pedro Henrique Oliveira Pantoja, University of Campina Grande, Brazil

Solve in & x R the system:

o +24V4—x+2—x=2

/20 -2y + VT —y+ 33y +5=2

e 5616: Proposed by D.M. Batinetu-Giurgiv “Matei Basarb” National College, Bucharest and
Neculai Stanciu, “George Emil Palade” Secondary School Buzau, Romania

Prove that in all tetrahedrons [ABC D] the following inequality holds:

hbh 4/ hd hdh 5/ Pahy 1
hb h2 hd h2 r’




where r is the radius of the insphere of the tetrahedron.

5617: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Let a,b, ¢ be the roots of the equation 23 + r& + s = 0. Without the aid of a computer,
calculate

2bc — a® 2 b?
det 2 2ca — b? a’
b? a’ 2ab — ?

5618: Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Let k& > 0 be a real number. Calculate

Tl (A R ——
im n* | — cee )
n—00 n3 (7’L + ]{)3 (n + 2]/6)3

Solutions

5595: Proposed by Kenneth Korbin, New York, NY

Trapezoid ABCD with integer length sides is inscribed in a circle with diameter 23%. Side
AB = 4439. Find the other three sides.

Solution by Kee-Wai Lau, Hong Kong, China

We show that the other three sides are 2717, 4439, and 10051.

121
Let O be the center and r = %67 be the radius of the circle.

Case I: AB = 4439 and C'D = 4439 are the legs of the trapezoid.
Let BC =s,AD =t,/AOB = Z/DOC = 6 and Z/BPC = ¢.

a) O lies outside the trapezoid.

205343
I il i h >s. Th =
t suffices to consider the case t > s en cos 6 570841
sinf = W cos LA V148035889 — and sin p_o_3 so that
279841 2 12167 2 12167’
o Py — A 29336\/42 (148035889 — 52) + 205343s
t=2rsin (9 + 2) =2r (811102 + cos 0 sin 2) = 57041 .

Since s < t < 2r = 12167, we have 1 < s < 8927. By a computer search, we find that
s = 2717,t = 10051 is the only solution in integers.

b) O lies inside the trapezoid.



29336 \/42(148035889 — s2) 4 2053435

279841
A computer search finds no integral solutions for ¢.

We still have t =

, but here we have 8928 < 12167.

Case II: AB = 4439 is one of the parallel sides of the trapezoid.
Let AD = BC =x and CD =y.
a) O lies outside the trapezoid and 1 <y < 4439

. (38635 +152,/42(148035889 — x2)>
6436343
b) O lies outside the trapezoid and 4439 < y < 12167. Here we have

Here we have y = 4439 — , where 1 < z < 2258.

1:(3861:—-152\/42(148035889 —-x2))
6436343
c¢) O lies inside or on the trapezoid so that 1 <y < 12167. We still have

y = 4439 —

, where 1 < x < 6856.

v (3862 — 152,/42(148035889 — 27))

— 4439 —
y 6436343

, but here we have 6857 < x < 11955.

A computer search for cases Ila), IIb) and Ilc) finds no integral solutions for y.

This completes the solution.

Observations made by Ken Korbin, proposer of the problem:

Diameter = (23)(23)(23).

Sides of inscribed trapezoid are (4439,2717,4439,10051).

4439 =(2)(19)(19)(23)-(23)(23)(23)

10051 = (19)(23)(23)

2717 = (3)(19)(23)(23) — (4)(19)(19)(19).

If the 19 is replaced by an 18, the inscribed trapezoid will have sides (2737, 5238, 2737, 9522).

Also solved by Ioannis D. Sfikas, National Technical University of Athens, Greece,
and the proposer.



e 5596: Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Let V be a vertex of a rectangular box. Let VA, VB and VC be the three edges meeting at
vertex V. Suppose the area of the triangle ABC is 64/26. The volume of the box is 144. And
the sum of the edges of the box is 76. Find the total surface area of the box.

Solution 1 by Titu Zvonaru, Comanesti, Romania
We have z +y 4 z = 19. Since 16[ABC] = 2a%b + 2b*c* + 2¢%a® — a* — b* — ¢*, we obtain
16-36-26 = 2(x2+4°) (2 +22)+2(y°+22) (2 +22) +2(22 422 (22 492) — (22 +y2) 2 — (2 +2°) 2 — (2% 4-2?)
4(zy? + 2% + 2%2%) =16 - 36 - 26
x2y2 + y222 + 2222 = 144 - 26
(zy + yz + 22)? — 2zyz(z +y + 2) = 144 - 26
(zy +yz + zx)? =2-144 - 19 + 144 - 26,
hence xy 4+ yz + zx = 96 and the total surface area of the box is 2 - 96 = 192.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let, as it appears in the figure, x = VA,y = VB and z = VC. Since the box is rectangular,
triangles AVAB, AV BC, and AV AC are situated in such a way that forces V' a right angle.
So the Pythagorean theorem, applied to the triangles mentioned above, implies that 2+ y2 =
A y? + 22 = a® and 2% + 22 = b2

From the hypothesis in the problem, the area of the AABC' is, (from Herons formula),

b —a+b —b b—
arbtc —ardbtce a +c.a+2 c:6\/26,thevolumeoftheboxis:nyz:144,

2 2 2
and the sum of the edges of the box is 4z + 4y + 4z = 76.
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Since
(a+b+c)(—a+b+c)a—b+c)a+b—rc)=((b+c)—a®) (a* = (b—c)?)
= (2bc+b* +* —a®) (2bc — b* — & + a®) = (2bc)® — (B> + ¢* — @?)

_ 4(1,2 —|—z2) (932 +y2) ot = 22 4 y22? 4 a2

the givens in the statement of the problem are equivalent to:
r+y+z2=26
a2y? %2+ 2?2? = 3744
ryz = 144.
This implies that (z,y,z) = (3,4,12) and hence the total surface area of the box is 2(zy +
yz + zx) = 192.

Solution 3 by Pratik Donga, Junagadh, India.
The volume of the box is xyz = 144 and the area of AABC = 6v/26. The sum of the edges
isdlz+y+2)=T6=zc+y+2z=19.

Total surface area S.A. = 2(xy + yz + 2x).
Volume of the cuboid 144

Volume of the tetrahedron VABC = 5 5 = 24. Volume of the
tetrahedron
1
VABC = 3 X height x area of the base
1
= gxhxareaofAABC:M
Lo 3x20 12
©6V26 /26
144
= h2=_—.
26
For the tetrahedron
1 1 1 1 229222 (144)% x 26
- 44 p2= = 2 2 2o T 3744,
h?  z? + y? + 22 22y? + Y222 + 2222 (y)"+(y2)"+ (22) 144

Now, (S.A4.)% = 4(zy + yz + 22)* = 4 ((2y)* + (y2)? + (22)? + 2(zy2)(z +y + 2))
50, (S.A.)%2 = 4(3744 4 2(144) x 19)) = 4(3744+5472) = 4 x 9216, and hence the total surface
area of the box is v/4 x 9216 = 192.

Solution 4 Brian D. Beasley, Presbyterian College, Clinton, SC
We have zyz = 144 and z + y + z = 19. Then zy(19 — x — y) = 144, or
;U2y — 19zxy + xy2 + 144 = 0.

Next, using Heron’s formula, we obtain



(a+b+c)la+b—c)(a—b+c)(—a+ b+ c) = 14976.

Since a® = y? + 22, b2 = 22 + 22, and ¢ = 22 + v, this yields d;dadsdy = 14976, where
di=a+b+e=v12+19—2—y)2+ 22+ 19—z —y)2 + V22 + %
dy=a+b—c=12+(19—2—9)2+ 22+ (19— 2z —y)2 — V22 + %
d3=a—-bt+e=12+(19—2—9)2— 22+ (19— 2z —y)2 + V22 + %

dy=—a+bte=—12+ (19— —y)2+ 22+ (19 —z — )2 + Va2 + y%
The intersection of these graphs in the first quadrant (see below) consists of six points, corre-

sponding to {z,y, 2z} = {3,4,12}. Hence the total surface area of the box is 2(xy +yz + zz) =
192.

Addenda. (1) The diagram below shows the graphs in the first quadrant of the equations
22y — 19zy + zy? + 144 = 0 (in red) and dydydsdy = 14976 (in blue).

\
s
B

(2) We note that {a,b,c} = {5,3v/17,4V10}.

Editor's comment: Shortly after receiving the above solution Brian sent a note expanding on
the above question. His note;

Motivated by how the graphs of the two equations barely intersect in the first quadrant (in
our solution for the original problem), we pose the following questions:

1. Given a triangle area of 6v/26 and a box edge sum of 76, what is the maximum possible



box volume?

2. Given a box volume of 144 and a box edge sum of 76, what is the minimum possible triangle
area?

3. Given a box volume of 144 and a triangle area of 6v/26, what is the maximum possible box
edge sum?

Solution. In each case, due to symmetry, we assume x = y in order to produce three points
(instead of six) where the two graphs intersect.

1. Givenz+y+z=19and (a+b+c)(a+b—c)(a—b+c)(—a+b+c) = 14976 with z = y,
we have a = b = V22 + 22 and ¢ = v/2z. Then using z = 19 — 2z yields
222(182% — 304z + 1444) = 14976,

or 9z — 15223 4 72222 — 3744 = 0. Thus = ~ 3.56611, so the maximum volume is zyz ~
150.92443 (not too much larger than the originally given 144).

2. Given £ +y+ 2z = 19 and zyz = 144 with = y, we have 2?(19 — 22) = 144, or
22% — 1922 + 144 = 0. Then = ~ 3.44966, so the minimum triangle area is approximately
30.11067 (not too much smaller than the originally given 6v/26 ~ 30.59412).

3. Given zyz =144 and (a+b+c)(a+b—c)(a—b+ c)(—a+ b+ c) = 14976 with = = y, we
let S=x+y+2 Then2z+2=25,50a=b=+/22+ (S —2x)? and ¢ = V2z. Thus

36z — 3252 + 85%2” = 14976.
Using z = S — 2z = 144/2%, we have S = (2% + 144) /2% and hence

8(2x3 + 144)?
2

36z — 32x(223 + 144) + = 14976.

Then z ~ 3.38838, so the maximum box edge sum is 45 ~ 77.27628 (not too much larger
than the originally given 76).

In summary, we salute the proposer of the original problem for finding constraints that not
only produce integer solutions for the box dimensions but also cannot be tweaked too much
more without losing any chance of a solution.

Also solved by Michel Bataille, Rouen, France; Kee-Wai Lau, Hong Kong, China;
Annabel Ma, (student), New Trier High School, Winnetka, Il; Ioannis D. Sfikas
National Technical University of Athens, Greece; Daniel Vacaru, Pitesti Romania;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA,
and the proposer.

5597: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehedinti,
Romania

If z,y,2 > 0;xyz = 1 then:

<x+y—\}2>2+(y+z—\%)2+(z+x—\}g>223



Solutions 1, 2, and 3 by Henry Ricardo, Westchester Area Math Circle, NY

Solution 1: First we note that Maclaurin’s inequality gives us \/(:/cy +yz+zx)/3 > Yryz =
1, or zy + yz + zx > 3. Then the AGM inequality yields

3 (wy—j; = S @ty— i)’

cyclic cyclic

> Z(\/:Ty)2 = zy+yz+zx > 3.

cyclic
Equality holds if and only if x =y = 2z = 1.

Solution 2: First we note that the AGM inequality gives us (z + vy + 2)/3 > Jxyz = 1, or
z+y+ z > 3. Then the AGM inequality and Radon’s inequality yield

3 <x+y—\j;>2 = Yty v

cyclic cyclic

= <x+y>2 N Rty 6 _

2 12 - 12

cyclic
Equality holds if and only if x =y =2 = 1.

Solution 3: Using the AGM inequality twice, we see that

> (x+y—\}g)2 = > (ty— )

cyclic cyclic
> Y (Vay)?
cyclic

> 3y/(zyz)? = 3.

Solution 4 by Kee-Wai Lau, Hong Kong, China

By the AM-GM inequality, we have

2z +y+2) - (VIY + Yz + \/21)

V=9 + (VI — V2 + (Vz = Va)?

= (z+y+2)+ 5

> x+ytz

> 3yayz

= 3



Hence by the Cauchy-Schwarz inequality, we have
(sr0-32) + (e 5) + (e 5)
T+y— — y+z—— z4+r——
vz Vo VY
> 1<(m+y—1)+<y+z—1)+(z+x—1>)2
= 3 NE Vi Vi

= é((m+y—\/@)+(y+z—\/ﬁ)+(z+:p—\/ﬂ))2

%(2(m+y+z)—(\/:7y+\/gﬁ+\/£))2
37

v

as required.

Comments from the solution of David Stone and John Hawkins of Georgia South-
ern University, Statesboro, GA: Like others they commented that A(z) is the Lagrange
Interpolating Polynomial passing through n + 1 given points (i, Si) ,¢ = 0....n. They then
went on to say that “the value 3 in the problem is not necessary. That is if a > 1 is any real
number a we require that A(z) be a polynomial of degree n such that A(i) = a' for 0 < i < n,
the exact same proof shows that A(n + 1) = "™ — (a — 1)1

They continued: “This example demonstrates the problem with using the polynomial A(x)
to approximate the exponential function 3”. Even when A(z) passes through the n + 1 ‘nice’
points, (i, 3i) ,i=0,1,...n, it misses the ‘next’ value, 3", by a long way. Of course, it is
beautiful that the amount of the miss is known to be 2771

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State Univer-
sity, San Angelo, TX; Michel Bataille, Rouen, France; Brian Bradie, Christo-
pher Newport University, Newport News, VA; Marin Chirciu, National Col-
lege “Zinca Golescu,” Pitesti, Romania; Bruno Salgueiro Fanego, Viveiro, Spain;
Pratik Donga, India; Oleh Faynshteyn, Leipzig, Germany; Igbal Z. Hasanli (stu-
dent, mentored by Yagub Aliyev), ADA University, Baku, Azerbaijan; Moti
Levy, Rehovot, Israel; Angel Plaza, Universidad de Las Palmas de Gran Ca-
naria, Spain; Ioannis D. Sfikas National Technical University of Athens, Greece;
Albert Stadler, Herrliberg, Switzerland; Daniel Vacaru, Pitesti, Romania; Titu
Zvonaru, Comanesti, Romania, and the proposer.

5598: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Let A(z) be a polynomial of degree n such that A(i) = 3 for 0 < i < n. Find the value of
An+1).

Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We consider the following generalization: Let a € R and suppose that A (z) is a polynomial
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of degree (at most) n such that A (i) = a’, for 0 < i < n. Then
An+1)=> d"'Lyp(n+1)

with the Lagrange polynomials

" n+1—j n+ 1)/ (n+1—-k ek (M+1
Lop(or 1) =3 L QO] gy (D),
=0 J E!'(—1) (n—k)!
J#k
Hence,
= 1
A(n—i—l)z— (_1)n+1*k (n_l: >ak:an+1_(a_1)n+1.

k=0

Solution 2 by Albert Stadler, Herrliberg, Switzerland By Lagrange’s interpolation
formula (see for instance
https://en.wikipedia.org. /wiki/Langrangepolynomial),

J?ﬁt

— (_1)n zn:(_l)igi <n + 1) — (_1)n(1 _ 3)n+1 + 3n+1 — 3n+1 _ 2n+1'

N 1
=0

" (=D (4 1)
- 3 -

- illn+1—1)!

Solution 3 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

It may be shown by induction that

9 3 n " X
A(z) = 1_{_214_25;3(;1;—1) %a:(x 1)(3:—2)+...—|-%$(33—1)...(:n—n+1) = <k>2’f’

. 1
and therefore A(n+ 1) = Z (n_]: >2k = gntl ot
k=0

Solution 4 by Brian Bradie, Christopher Newport University, Newport News, VA
Using divided differences, the Newton form for the polynomial A(z) is

n kkl

—1+Zk‘H$—j

10



Thus,

ok
An+1) = —'

f[n+1—j)
(')
()

_ 3n+1 _ 2n+1

o

Solution 5 by Michel Bataille, Rouen, France

A(z) is the Lagrange polynomial associated to the values 3¢ taken for 2 = i (0 < i < n). This
polynomial is

Z?“ 2@ 1) @—i+t1)(z-De—i-1) (z—n) Z":3 1 P()

il(=1)"(n —q)! par P'(i) x—1
n
where the hat indicates the omitted factor and P(x) = H(ZL‘ —1).
=0
P 1 Dl(n —1)!
Since (n+ ) = (n+ Din - ) , we obtain
n+1—1i (n+1—1)!
1 (n+ 1)!(n —1)!

and finally A(n 4 1) = 371 — 2n+L,

Solution 6 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Our solution makes use of the Binomial Theorem: For m > 1 and a,b > 0,

m o __ m m m m—1 m m—1 m m
(a+ D) —<O>a +<1>a b+...+<m_1>ab —|—(m>b,

11



m m!
where (k) mfork—o

We begin by introducing the new function
—1+Z—x (x—1)(z—k+1)

for n > 1. Note first of all that f (z) is a polynomial of degree n and f (0) = 1 = 3°. Next,
when 0 < 7 < n, we have
i(i—1)(i—k+1)=0

for K > i+ 1. Hence,

n2k’
f(z)zl—kzaz(z—l) (i—k+1)
k=1
=1+ =1 (i—k+1)
k=1 "
2 2% 20
—1+Fz+§z(z—1)+. -I—ﬁz(z—l) (1)
i

1
= 1 112 197292 . 2!

=(1+2)
=3’
Finally,
2 22 on
f()—l—l—ﬁn—i-gn(n—l) +Hn(n—1)'~(1)
- 17 1lo g ("MVn202 4 () on
(o) (D)2 ()2
=(1+2)"
= 3"

Since f (z) and A (x) are both polynomials of degree n and
fi) =3 = A(i) for 0 < i < n, it follows that f(z) = A(x) for all real x. As a result, for

12



n>1,

An+1)=f(n+1)

To complete our claim, we note that when n = 0, A (x) is a polynomial of degree 0 (i.e., A (x)
is a constant polynomial) with A (0) = 3° = 1. Tt follows that A (z) = 1 for all real = and we

have

+

n ok
:1+Z%(n+l)(n)---(n+2—k)
k=1

1 2 on

S ) S ) )t D D () (2)

1 1 1
=1+ n ol + nt 22 4+ .+ nt on
1 2 n

1 1 1 1
14 n+ ol 4 n+ 92 4 4 n+ on 4 n+
1 2 n n+1

o n+1 2n+1
n-+1

_ ("31>1"+1+ (”Y1>1”21+ (”;1>1"122+...+<

n+1
— (1 + 2)7’L+1 _ 2n+1
— 3n+1 _ 2n+1.

<n + 1) on+1 _ gn+1

AO0+1)=A(1)=1=3-2=30F1 _20+1

This also demonstrates that (1) is true when n = 0.

Solution 7 by Ioannis D. Sfikas, National Technical University of Athens, Greece

Using [1] we have : a; = 3', so:

Since:

An+1) =Y (-1)"!

i=1

7

S (e

=0

13

>3n+1i — 3n+1 _ 27’L+1

>2n+1

n+1
n

)112"



[1] Alt, Arkady M. (2019). Numerical sequences and polynomials. Arhimede Mathematical
Journal, 6(2) : 114—120. http : //amj—math.com/wp—content/uploads/2020/02/AM J2019—
vol6iss2.pdf

[2] http://math.stackexchnge.com/questions/2161052/showing—3n— sum—k—0n—1k—binomnk4n-
k

Solution 9 by Albert Natian, Los Angeles Valley College, Valley Glen, California

Answer. A(n+ 1) = 3"t — 2+l

Justification. We begin with the following lemma whose proof is provided toward the end of
this solution.

Lemma.
n

7

; 1
()" <n+ )Z’f =(n+1DF for £k=0,1,2,---,n
i=0
Now let’s suppose ‘
A()=b" for 0<i<n

where b is a fixed number (e.g., b = 3) and A (x Z apa®.

14



We have

— (_1)n [(_1)71 b + (1 . b)nJrl]
=p"t — (b— 1)

Generalization. Suppose A(x) is a polynomial of degree n such that
A (1) :Z@bi for 0<i<n
t=1

where ; and b; are indexed fixed numbers. Then
m m
An+1) =Y B =Y "B (b — )"
t=1 t=1
Corollary. Suppose A(x) is a polynomial of degree n such that

A(i):Zti for 0<i<n.
t=1

Then
A(n + 1) = mntl,
Lemma.
Z(_l)nﬂ <n—|— )zk =(n+ 1)k for k=0,1,2,---,n.

i
i=0

Proof. Clearly the above result holds for & = 0 and all n. The remainder of the proof is by

induction on n with & > 1. For n = 0,1,2, the above statement (clearly) holds. Suppose the

15



statement of the lemma above holds for n. Then

n+1 n+1
(n+1+1 (n+1+1
-1 ntl4i (T ko -1 n+1+4 -k
> C)E =Y )

=0 =1
_ ni:l(—l)"“” Knj 1) + <7Zf11>] i+

i=1
n+1 n+1
; +1 i (n+1
_ _qynt (T 'k _ )l ik
[}j( ) )t e ()

i=1

(n+1)"— zn: (—1)"t (" j 1>¢’f

=1

_l’_

Also solved by Bruno Salgueiro Fanego (two solutions), Viveiro, Spain; Kee-Wai Lau,
Hong Kong, China; Moti Levy, Rehovot, Israel, and the proposer.

® 5599: Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Let n > 2 be an integer. Calculate

jus .
2 SInx + cosx
—5—1 ST dx.
0 Ssin T+ cos“" i

Solution 1 by Sean M. Stewart, Bomaderry, NSW, Australia

Denote the integral to be found by I,, where n is a positive integer such that n > 2. Splitting the
integral as follows

7 /2 sin x dr + /2 cosx d
n — N — T N — X
o sin?" 1z 4 cos?2n1z o sin?" x4 cos2n-lg

16



7r
if in the first of these integrals we enforce a substitution of x +— 5~ x one finds

2 COS T
In:2/ —5 T 5T dx.
o0 Sin T + cos“" Tty

Rearranging the integrand we have

™

5 /2 cosx d
x
o cos?—1lx(1 4 tan?—1x)
z 2n—2
2 sec T
2 / Thtan? 15
o l+tan" 'z

us
2 sec? 4 rsec? x
o Ll4tan*" "z

I,

Letting u = tanz, as sec®” %z = (1 4+ u%)"~2 one has

oo (1+U2)n_2
I, = Cruw) g
n /0 14 g2n-1 4

From the binomial theorem, since

2\n—2 = n—2\ o
(14+u”) = < P )u ,

the integral for I,, can be rewritten as

Identification of the integral that remains as a beta function is now made. Setting ¢ = u*"~! in the

integral we find

n—9 2k+2—2n
I - 2 n—2 /Oot S
"_2n—1k:0 k o 1+t
2n -1\ k 0o (14 t)(%)*‘(%)
n—2
2 n—2 2k+1 2n -2k -2
= B
2n_1kzo< k> <2n—17 2n —1 >
n—2
2 n—2 2k+1 2n — 2k -2
= r r
2n—1z< k> <2n—1> < 2n —1 >

r 2k +1 r 1_2k+1
2n —1 2n —1

B 2T —~ /n—2 2k +1

=971 1 cosec S— .

Explanation for the changes made are as follows:
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txfl

oo
(1) Identification of the integral as a beta function, namely B(z,y) = / a dt, for
0

+t)oty
z,y > 0.

(2) Relationship between the beta function and gamma function of B(x,y) = I'(x)I'(y) /T’ (z+
y) has been used.

(3) Euler’s reflexion formula for the gamma function I'(x)['(1 — z) = n/sin(wz) has been
used.

So in conclusion the value for the integral is given by
o0 X (n—2 2% + 1
In_Qn—lkZ_O< I )cosec(zn_1>7r, n=23,4,....

Solution 2 by Albert Stadler, Herrliberg, Switzerland

dzx

5 dy = —5— = (1 + y?)dz that results
cos? x cos? x

We perform a change of variables: y = tanz, 1 +y? =

in

s us
2 sinx + cosx 1 sinz + cosx
/ dng/ do =
0 0

sin?" !y sin?" 1z + cos2n 1y
i 1+ tanz LA+ 42" 2(1 +y)
= 2/ In—2 o1y 0T = 2/ In—1 dy.
o cos?"=2z(1+ tan x) 0 1+ y?n
A partial fraction decomposition applied to the integrand yields
) ami(2k41) \ VT2 ) mi(2k41)
_ + e 2n-1 + e 2n—1
(I+yH)"2(1+y) 1 2nz:2 1 ‘ B
1+ y2n71 n—1 g emg(ikjln em’(Zk;r;)_(l?nfm
_ mi(2k+1) 2k +1 2k +1
n—1: 2n—2 e 2n—1 COSn72 M CcOS w
2" k 2n —1 2(2n —1)
=51 2 (D e -
k=0 1—ye 2n-1

Furthermore,

_ wi(2k+1) 1

1 o721 —ri(2k+1) _ wi(2k+1)
/ Wdy = — 10g 1-— ye 2n—1 = — log 1—e¢ 2n—1 =
0 1— ye 2n—1 0

. (m(2k+1) mi(2k+1) i
S nerro) AT T
Og(QS’m( in—2 )>+ -2 2

We conclude

s .

2 SInx + cosx

- on—1 1 AT =
0 Ssin T+ cos“" Tl

18



. 2n—2 . .
2" k o (T(2k+1) m(2k + 1) . (m(2k+1 mi(2k+1) i
-1 n L — —_ 7 —1 2 B S R S
2n—1kz_0( )" cos ( m—1 )\ Tan—1 M\ T2 ) T T 2

2" 25(_1)%03“ (w(2k+ 1)) o <7r(2k:+1)> (Tr w2k + 1)) _

T -1 on — 1 22n—-1))\2  4r—2
ontly 2 m(2k + 1) T2k +1)\ [n—1—k
— -1 n—2 ( t\av T ) '
o — 1 kz_o( )" cos ( o — 1 )COS<2(2n—1)>< o — 1 >
Solution 3 by Moti Levy, Rehovot, Israel
3 sinx + cosx 3 sin o
I, = dr =2 dx. 1
" /0 sin2”_1 T+ cos2n—1 o /0 SinZn—l x -+ cos2n—1 4 ( )

After changing the variable w = tan® x, we get

I, :/ %dw. (2)
0o 1+w"2

The following definite integral from Gradshteyn I, Ryzhik I Table Of Integrals, Series And Products
(TEd , Elsevier, 2007), entry 3.241 is used:

e’} tu—l 1 L L
dw=-B(51-EF
/0 1+t~ v v (1/7 V)’ (3)

1
where B (z,y) := / 71 (1 — )1 dt is the Beta function.
0

Proof of (3):
By definition of the Beta function
1p (ﬁ,l—ﬁ> = 1/1u5_1(1—u)_5du
v \v v v Jo
tY du vtv—1
L+t dt (r+1)°

1 1 1 oo tl/ %*1 1 tV_l
/ uﬁl(l—u)ﬁdu:/ — R 5dt
v Jo v Jo 1+t 1+t v(tr+1)

After changing the variable u =

Expanding (1 +w)" 2 gives,

m=0
2 i — 2> /°° w™
= —dw
m=0 m 0 1 ern*?
n2 (n—Z) m+1 m+1
= "B 1 1
n— = n— s —
m=0 2 2 2



Applying the reflection rule

B(z,1-2)=——0

sin (rx)’
we conclude that

or 2 (n_z)

I, = m .
"o —1 2m+2>

m—0 Sin ( ST

Solution 4 by Ioannis D. Sfikas, National Technical University of Athens, Greece
We have

™
2 sinz + cosx
0 Sin T+ cos“" Tty

5 /’2' cos T d 9 /g dz
T = .
o sin®"lx 4 cos?n—ly o (1+tan?"~1x)(cos?2z)

We may assume: t = tanz. So,

+oo 1 t2 n—2
L - 2/ (Sl
0

1+ 2t
o -2 -2\ [T ik
= 2 —_— 2t = 2 / ———dt
/0 1+tt2"‘1§< k ) ;( k ) o 1+t
Since: N
o tCL
J(a,b) = / ot = ZH)W ,with
0 bsm[T}
1
a,b € ¥ and b > a+ 1> 0. With the substitution1+tb:z, we have:
1 ! oan atl 1 a+1 a+1 1 a+1 a+1
b) = - 1l—2)%v "dz==-B 1-— = T r{1-
J(“’)b/ozb(z) Zb(b’ b) b(b)( b)
B s
B . a+D)w ]’
bsin [( b) }
So,we have
n—2 n—2
A 3 (") '
2n—1& <in [(2]{: + ].)7[‘:|
2n—1

Also solved by Michel Bataille, Ruen, France; Kee-Wai Lau, Hong Kong, China; and
the proposer.

5600: Proposed by Sedn M. Stewart, Bomaderry, NSW, Australia
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Evaluate: -
/ log (1 + 2a cosx + aQ) log (1 + 2bcosz + 62) dz,
0

if a,b € R are such that the product ab with |al|, |b| < 1 satisfies the equation a?b* 4+ ab = 1.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We claim that

/ log (14 2acosz + a2) log (1 + 2bcosz + b2) dx = 2w Lis(a,b), (*)
0

where Lig(x) is the dilogarithm (see for instance
https://en.wikipedia.og/wiki/Spence%27s function).

1 1
a?b® + ab = 1 implies that ab = 3 (—1+\/5> or ab = 3 (—1 — \/5) However |a|,|b] < 1, so

1
ab = 3 (—1 + +\/5) It is known (see above reference) that

L12<2( 1+f)) ﬁ—l 2(;(1+\/5)).

Therefore

w 3 1
/ log (1 + 2acosx + a2) log (1 + 2bcosz + b2) dr = % — 27 In? <2(1 + \/5)> .
0
Proof of (x) :

s
/ log(1 + 2a cos z + a?) log(1 + 2bcos = + b?)dx =
0

1 2
=3 / log(1 + 2a cos z + a?) log(1 + 2bcos z + b?)dx =
0

27
_ % / log (1 + 2a(e™ + ¢7) + a?) log (1 + b(e™ + ™) + ) dz =
0

— % /27r log ((1+ ae™)(1 4+ ae™™)) log ((1 + be™)(1 + be™ ™)) dx =
0

1 2m . X 1 27 . .
+2/ log(1 + ae'™)log(1 + be"*)dx + 5 / log(1 + ae')log(1 + be™**)dx+
0 0

27 27
. . 1 . .
+ / log(1 4+ ae™ ") log(1 + be**)dx + 5 log(1 4 ae™**)log(1 + be™**)dz+
0

0

m [ k+1 0 k+1 )
/ <Z zk:v) <Z bkzezkw> da—+

1 k=1

A G ) E )

k=1 k=1

N
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+% /027r (i( 1lzk:+1 ‘, lkx) (i bkeik:p) dat

=1 =1
e N e N ok e—ikz — (=DM e
+2/0 (Z A Z — b dx =
=1 =1
oo kpk ak bk

_O+7rz 12 +7TZ 12 + 0 = 27w Liz(ab).

interchange of summation and integration is permltted, since all series converge absolutely and
uniformity for 0 < z < 2.

Solution 2 by Michel Bataille, Rouen, France

2 -1
Let I be the required integral. We show that I = 27 (71TO — log? <\/5 .

We observe that
T a 2t b 2 a rb
[:/ / (tcosz) Y. / (utcose) o, da::4// F(t,u)dt du
0 o 1+ 2tcosx + 2 o 1+ 2ucosz + u? 0Jo

where
Fltu) = /7r (t 4 cosz)(u + cos z) .
o (1+2tcosz+t2)(1+ 2ucosz + u?)

To calculate F'(t,u), we make use of the change of variables defined by y = tan(x/2), that is,
2

2 _
xr = arctan(2y), dz = Hiizz/ﬂ’ cosT = ﬁ; We obtain:
* PA-t) - A+ —u) — (1+u) dy 2
F(t,u) =2 : = J(r,
t0=2 | T AW (e # 41~ Tna )
1 1
Whererzl——{—i>0, s—li>0 (since |t| < a| <1, |u| < |b] < 1) and

[ (y? =)y —s)
s = | P+ DD Y

Since J(r, s) = 2(7“7:— ) (see a quick proof at the end), we have
2 7'(' s
F(t,u) =
(1—=1)(1—u) 2<%+%> 2(1 — tu)

Noticing that from the hypotheses on ab, we must have ab = , we obtain

b ab
| 1-— log [1 —
I_Qﬂ/du/ /_Ogﬂaul):_%/ log|l —w] ,
1—tu 0 U 0 w
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hence

ab

log(1 —

I= 277/ fde = 27Liy(ab)
0 w

n

“In(1— -
where Lis(z) = — / u dw = Z x—Q denotes the dilogarithm function. The claimed result
0 n

w
n=1

(7)o (57)
2 10 2

(see for example: D. Zagier, The Remarkable Dilogarithm, J. Math. and Phys. Sciences, 22(1988),
131-145).

now follows from

Proof of J(r,s) =

2(r+s)’
If r # s, we have
(y? —r)(y* — s) - 1 1 N r(rt+s) 1 N s(r+ s%) 1
W+ + )y +1)  (r=D-1) y2+1 (=102 —s2) y2+r2 (s = 1)(s? = 12) y? + s
) ©dy 1 o T .
and the result readily follows from ———5 = |—arctan(y/m)| = s— for positive m.
0o Y- +m m 0 2m

If r = s,7 # 1, the result similarly follows from the decomposition

(y2 - 7“)2 B 1 1 r2(r2 -1) n r2 —2r
(e L e Ve R e

4 /OO dy 1 /°° dz 1 /W 20 d ™
an o5 — & T 5 — 5 cos uau = —;.
o (WP+r®)?2 )y (2412 1), 493

If r = s =1, the decomposition

_.I_
W +1)°  +1)° (P+1)? y+1
() d w/2 3
and / 27y3 = / costudu =22 readily show that the result is still valid.
o (¥*+1) 0 16

Solution 3 by Kee-Wai Lau, Hong Kong, China

. . w2 9 V5 —1
We show that the given integral, denoted by I, equals 2w 0~ log 5 .

It is known ([2], p.237) that for |k| < 1, we have

o0 _1 m—lkm .
log(1 + 2k cosz + k%) =2 Z (-1) cos(ma)

m
m=1

Since

i i (—1)™*"a™p™ cos(ma) cos(nx)

mn

m=1n=1
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= log(1 — a[) log(1 — [b]) < oo

so interchanging the order of integration and summation, we have

m+n mbn

7 - / <ZZ a Wc:;s(m:x)cos(nm)>d$

m=1n=1
m-‘rn mbn

= gy Y e

m=1n=1

/07r cos(max) cos(nz)dz.

It is well known that for positive integers m and n, we have

™ O, m 7é n
/ cos(mzx) cos(nz)dr = ¢ T _
0 5 m=n.

o m
Hence I =27 E (ab)2 ;
m

m=1

la|, b] <1 satisfy the equation

V5 —

1
. According to entry (2.6.12) in theorem 2.63 on p. 105 of [1], we

0o (x/5—1)m ) Vo1
2 J—
have E 1 R T log? <2> . Hence our claim for 1.
m=

a’b? +ab=1, so ab =

10
References:
1. G.E. Andrews, R. Askey, R. Roy: Special Functions, Cambridge University Press, 1999
2. Paul J. Nahin: Inside Interesting Integrals, Springer-Verlag, New York, 2015.

Solution 4 by Moti Levy, Rehovot, Israel
Let

J (a,b) == / log (1 + 2acosz + a?) log (1 + 2bcos z + b?) d,
0

1

F = .
(2, a) 1+ 2acosz + a?

Then by differentiation under the integral sign,

0%J

0adb

:4/” (a+ cosx) (b+ cosx) A
o (1+2acosz+ a?)(1+2bcosz + b?)

™1 a?—1 [T b2—1 [T (a>=1)b?—1 [~
= —d F d F d -~ < F F b)d
/Oab“ o [ Faads /O (v, ) do+ ) /0 (x,a) F (2,b) da
(1)
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The following definite integrals can be evaluated by substitution ¢ = tan z,

2
™ o0 2
0 0o (a—1)"t?+(a+1)

2 l1—a o 1
= arctan t = . (2)
1—a2 1+a /], 1— a2

& > 1 1 2
/ F (z,a) F(x,b)dx :/ 5 — 5 T Sdt
t?+1

2/0 ((a 1?2+ (a+ 1)2) <(b — 122+ (b+ 1)2>

dt

—2a (1 - b2) arctan (ﬁt) +2b (1 — a2) arctan (%t) >
- (1—a2)(1—b2)(b—a+ a?b— ab?)
0
(1+ab)
= . 3
1-a)(1-02)(1—ab)" )
Substitution of (2) and (3) into (1) gives
9*J  om
dadb 1 —ab’

Since

oJ

90 = for b=0,

J=0 for a=0,

then

b ra o7

J (a,b) = / / dudv = 27Liy (ab) ,

0 0 1—uv

where Liy () is the Dilogarithm function defined by
: — z*
Lis (z) := Z oL |z| < 1.
k=1
1 1

The condition a?b? v+

+ ab = 1 implies that ab = g, where ¢ is the golden ratio ¢ = 7
1
The value of the Dilogarithm at — has been calculated using the properties of the Dilogarithm (see

the entry Spence’s function in Wikipedia),

2
Liy <q15> - gg@) %= 71L0 — 2.

We conclude that the integral is equal to

71.3
5 2m In? ¢ = 4.74629
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Solution 5 by Ioannis D. Sfikas, National Technical University of Athens, Greece

The definite integral is the limit of the Riemann sum: The definite integral of a continuos function
b

f over the interval [a,b], denote by f(z)dz is the limit of a Riemann sum as the number of

subdivisions approaches infinity. That %s:
b n
/a flodde = lim 35 0 f(z:)

b_aandxi:a+Aa:-i. Let:

where Az =
n

F(a):/ log(1+2acosaz+a2)d1:, F(b):/ log(1+2bcosx+b2)dl‘,
0 0

F(a,b) = / log(1 4 2a cos z + a?) log(1 + 2bcos = + b?)dz.
0

First, we have
2

1+2acosz +a® = (a+ cosz)® +sin’z = |a + €],

1 +2bCOS£L’—{—b2 = (b+COSIE)2 +sin2:x — |b_|_€z;r|2

Hence:
n

T i Z'EZ
F(a) —Jgn;onkzllog‘a%—e

1
=7 lim —logla™ + 1) =0.
n—+oo n

n
T ﬁ Z‘EQ_ . l n 2
F(b) = lim kZlog’He = lim —log|b" + 17 =0

n—oo n

for a,b € R are such that the product ab with |a|, |b| < 1, satisfies the equation a?b* + ab = 1.
Using the identities:

cos(nzx)
log(1 — 2 =2y g
og( acosz + a) 2, a”,

K
with z, a € R, |a| < 1, and / cos mx cos(nx)dr = gdm,n where § is the Kroneocker delta, we have:

2 e |2
log‘b%—ezﬁ

n
— lim X ik
Fud = i 7 S el

B n cos(nx) ) cos(mz) .\, .
i [ 3 a3 R

n>1 m>1

= 4 Z (_a)n(_b)m/oﬂ cos(nz) cos(mx)dx

= 2y (‘jlb)n = 21 Liy(ab).
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where Liox is the dilogarithm. Also, we have:

V5 —1

b=
“ 2

= ¢ ~ 0.61803,

where ¢ is the conjugate of the golden ratio. So, we have:
2

1 2
Lig(ab) = Liy(¢) = % - [sinh_l <2>} ~ 0.75539561953

where sinh ™! 2 the inverse hyperbolic sine. So, we have:
2 1\1?
F(a,b) = 2w Liy($) = 21 o [sinhl <2>] ~ 4.746291.

Also solved by the proposer.

Mea Culpa

The name of Ioannis D. Sfikas of the National Technical University of Athens, Greece
was inadvertently not listed as having solved problems 5589, 5590, and 5591.

The name of Albert Stadler of Herrliberg, Switzerland was also inadvertently omitted from
the list of those who solved 5590.
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