
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2021

• 5619: Proposed by Kenneth Korbin, New York, NY

If x, y and z are positive integers such that

x2 + xy + y2 = z2

then there are two different Pythagorean triangles with area K = xyz(x+ y).

Find the sides of the triangles if z = 61.

• 5620: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu” Drobeta
Turnu-Severin, Mehedinti, Romania

Prove: If a, b,∈ [0, 1]; a ≤ b, then

4
√
ab ≤ a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≤ 2(a+ b).

• 5621: Proposed by Stanley Rabinowitz, Brooklyn, NY

Given non-negative integer n, real numbers a and c with ac 6= 0, and the expression
a+ cx2 ≥ 0.

Express:

∫ (
a+ cx2

) 2n+1
2 dx as the sum of elementary functions.

• 5622: Proposed by Albert Natian Los Angeles Valley College, Valley Glen, CA

Suppose f is a real-valued function such that for all real numbers x;

[f(x− 8/15)]2 + [f(x+ 47/30)]2 + [f(x+ 2/75)]2 =

= f(x− 8/15)f(x+ 47/30) + f(x+ 47/30)f(x+ 2/75) + f(x+ 2/75)f(x− 8/15).

If f

(
49

5

)
=

11

3
, then find f

(
1

2
f

(
28

50

)
− 2

25
f (−42)

)
.
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• 5623: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let P be an interior point to an equilateral triangle of altitude one. If x, y, z are the
distances from P to the sides of the triangle, then prove that

x2 + y2 + z2 ≥ x3 + y3 + z3 + 6xyz.

• 5624: Proposed by Seán M. Stewart, Bomaderry, NSW, Australia

Evaluate:

∫ 1

0

(
tan−1 x− x

x2

)2

dx.

Solutions

• 5601: Proposed by Kenneth Korbin, New York, NY

Solve: √
x(x− 1)2

(x+ 1)2
=

√
77

36
.

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

Squaring both sides of the equation and cross-multiplying yields 362x(x−1)2 = 77(x+1)4.
Expanding gives the quartic equation 77x4 − 988x3 + 3054x2 − 988x+ 77 = 0.

Note that the coefficients of the quartic polynomial p on the left side of the equation have

a palindrome pattern. So if r 6= 0 is a root of p, then
1

r
is also a root of p. Indeed, for

x 6= 0 we have x4p

(
1

x

)
= p(x). So if r 6= 0 is a root of p, then r4p

(
1

r

)
= p(r) = 0, so

that p

(
1

r

)
= 0. (Note that all roots of p are nonzero, since p(0) = 77.)

Let q(x) =
1

77
p(x) = x4 − 988

77
x3 +

3054

77
x2 − 988

77
x+ 1, and let r1 and r2 be two roots of

p and hence also of q. Then

q(x) = (x− r1)(x− r2)
(
x− 1

r1

)(
x− 1

r2

)
= (x− r1)

(
x− 1

r1

)
(x− r2)

(
x− 1

r2

)
= (x2 −

(
r1 +

1

r1

)
x+ 1)(x2 −

(
r2 +

1

r2

)
x+ 1)

= x4 −
(
r1 +

1

r1
+ r2 +

1

r2

)
x3 +

[(
r1 +

1

r1

)(
r2 +

1

r2

)
+ 2

]
x2

−
(
r1 +

1

r1
+ r2 +

1

r2

)
x+ 1
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Equating the x3 (equivalently, the x) coefficients and the x2 coefficients, we obtain the
following system of two equations:

r1 +
1

r1
+ r2 +

1

r2
=

988

77(
r1 +

1

r1

)(
r2 +

1

r2

)
+ 2 =

3054

77

Solving for r2 +
1

r2
in the first equation and substituting into the second yields the

quadratic equation

(
r1 +

1

r1

)2

− 988

77

(
r1 +

1

r1

)
+

3054

77
− 2 = 0. Since the system

is symmetric in r1 +
1

r1
and r2 +

1

r2
, the quadratic equation is also true with r1 +

1

r1

replaced by r2 +
1

r2
. The two solutions of this quadratic equation are

58

7
and

50

11
, so that

r1 +
1

r1
=

58

7
, say, and then r2 +

1

r2
=

50

11
.

So q(x) = (x2 − 58

7
x + 1)(x2 − 50

11
x + 1). The solutions to the quadratic equation x2 −

58

7
x+1 = 0 are r1 =

29 + 6
√

22

7
and

1

r1
=

29− 6
√

22

7
, and the solutions to the quadratic

equation x2− 50

11
x+ 1 = 0 are r2 =

25 + 6
√

14

11
and

1

r2
=

25− 6
√

14

11
. None of the four is

an extraneous solution to the original equation, so these are its four solutions.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

√
x(x− 1)2

(x+ 1)2
=

√
77

36
⇒

(√
x(x− 1)2

(x+ 1)2

)2

=

(√
77

36

)2

⇒ x(x− 1)2

(x+ 1)4
=

77

1296

⇒ 1296x(x2−2+1) = 77(x4+4x3+6x2+4+1)⇒ 0 = 77x4−988x3+3054x23−988x+77⇒

⇒ (7x2 − 58x+ 7)(11x2 − 50x+ 11) = 0⇒ 7x2 − 58x+ 7 = 0 or 11x2 − 50x+ 11 = 0⇒

⇒ x =
58±

√
(−58)2 − 4 · 7 · 7

2 · 7
or x =

50±
√

502 − 4 · 11 · 11

2 · 11
⇒

⇒ x =
29

7
± 6
√

27

7
or x =

25

11
± 6
√

14

11
.

These four numbers are the roots to the given equation.

Solution 3 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

We have
36
√
x(x− 1)2 =

√
77(x+ 1)2

and so squaring gives
1296x(x− 1)2 = 77(x+ 1)4
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which yields
1296(x3 − 2x2 + x) = 77(x4 + 4x3 + 6x2 + 4x+ 1)

and so finally
77x4 − 988x3 + 3054x2 − 988x+ 77 = 0.

Now divide this equation by x2 to find

77x2 − 988x+ 3054− 988
1

x
+ 77

1

x2
= 0

and so

77

(
x2 +

1

x2

)
− 988

(
x+

1

x

)
+ 3054 = 0.

Since x2 + 1
x2

=
(
x+ 1

x

)2 − 2 we have

77

(
x+

1

x

)2

− 988

(
x+

1

x

)
+ 2900 = 0.

Now, by the quadratic formula, we have

x+
1

x
=

58

7
or

50

11

which gives

x2 − 58

7
x+ 1 = 0 with roots x =

29± 6
√

22

7
≈ 8.16, 0.12

or

x2 − 50

11
x+ 1 = 0 with roots x =

25± 6
√

14

11
≈ 4.31, 0.23

Since each of these roots are positive, our original equation has the four solutions

29± 6
√

22

7
,

25± 6
√

14

11

Solution 4 by Peter Fulop, Gyomro, Hungary

√
x(x− 1)2

(x+ 1)2
=

√
77

36
(1)

Starting with realign (1) in the following way:

18
√

4x(x2 − 2x+ 1) =
√

77((x2 − 2x+ 1) + 4x) (2)

Let a = 4x and b = x2 − 2x+ 1

So we can write that

18
√
ab =

√
77(a+ b) (3)
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Divided (3) by
√
ab, we get a quadratic equation in

√
a

b

√
77
a

b
− 18

√
a

b
+
√

77 = 0 (4)

a

b
=


7

11

11

7

(5)

On the other hand

a

b
=

4x

x2 − 2x+ 1
(6)

Finally from (5) and (6) we have the four roots:

x1,2 = 1 +
22± 6

√
22

7

x3,4 = 1 +
14± 6

√
14

11

Solution 5 by Albert Natian, Los Angeles Valley College, Valley Glen, Cali-
fornia.

Answer. The solution set is
{

6+
√
14

6−
√
14

, 6−
√
14

6+
√
14

, 6+
√
22

6−
√
22

, 6−
√
22

6+
√
22

}
.

We will first find real solutions and then argue that there can be no other solutions,
not even non-real solutions.

The above equation can be written as∣∣x− 1
∣∣√x

(x+ 1)2
=

√
77

36
.

Case One. x > 1.

We have
(x− 1)

√
x

(x+ 1)2
=

√
77

36
,

[ √
x

x+ 1

]
/

[
x+ 1

x− 1

]
=
[√

77
]
/ [36]

which suggests there exists a positive real number m such that
√
x

x+ 1
= m
√

77 and
x+ 1

x− 1
= 36m,
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x/ (x+ 1)2 = 77m2 and x =
36m+ 1

36m− 1
and x+ 1 =

72m

36m− 1
,(

36m+ 1

36m− 1

)
/

(
72m

36m− 1

)2

= 77m2,

(36m− 1) (36m+ 1)

(72m)2
= 77m2,

362m2 − 1 = 77 · 722m4,

36
(
36m2

)
− 1 = 77 · 4

(
36m2

)2
which, upon the substitution u = 36m2, becomes

36u− 1 = 308u2 or 308u2 − 36u+ 1 = 0 or (14u− 1) (22u− 1) = 0

whose solutions are

36m2 = u =
1

14
or 36m2 = u =

1

22
,

m =
1

6
√

14
or m =

1

6
√

22

which, upon insertion into x = 36m+1
36m−1 , gives

x =
6 +
√

14

6−
√

14
or x =

6 +
√

22

6−
√

22

Case Two. 0 < x ≤ 1.

We have
(1− x)

√
x

(x+ 1)2
=

√
77

36
,

which, in a manner as in the above,[ √
x

x+ 1

]
/

[
x+ 1

1− x

]
=
[√

77
]
/ [36]

which suggests there exists a positive real number m such that

√
x

x+ 1
= m
√

77 and
x+ 1

1− x
= 36m,

x/ (x+ 1)2 = 77m2 and x =
36m− 1

36m+ 1
and x+ 1 =

72m

36m+ 1
,(

36m− 1

36m+ 1

)
/

(
72m

36m+ 1

)2

= 77m2,

(36m− 1) (36m+ 1)

(72m)2
= 77m2,

362m2 − 1 = 77 · 722m4,
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36
(
36m2

)
− 1 = 77 · 4

(
36m2

)2
and so, as before, we get

m =
1

6
√

14
or m =

1

6
√

22

which, upon insertion into x = 36m−1
36m+1 , gives

x =
6−
√

14

6 +
√

14
or x =

6−
√

22

6 +
√

22
.

The solution set of the given radical equation contains at least four different numbers and
is a subset of the solution set of a 4-th degree polynomial equation that can be derived
from the given equation (by squaring both sides of the equation). Since a 4-th degree
polynomial equation has at most 4 (different) solutions, then we can be certain that there
are no other solutions of the given equation and that the solution set of the given equation
is {

6 +
√

14

6−
√

14
,

6−
√

14

6 +
√

14
,

6 +
√

22

6−
√

22
,

6−
√

22

6 +
√

22

}
.

Comments by other solvers :

David Stone and John Hawkins of Georgia Southern University stated that this problem
is a classic “where does a line intersect a hyperbola?” They went on to say that on their

graphing calculator, the graphs of Y1 =

√
x(x− 1)2

(x+ 1)2
and Y2 =

√
77

36
do not even appear

to intersect four times until some significant zooming is done. The curve Y1 starts at the
origin and rises quickly to a maximum of 0.25, which is barely above the horizontal line Y2,
then drops quickly to its x-intercept at x = 1. Then it rises again to the same maximum
height of 0.25, barely creeping above Y2 once again, before descending asymptotically
toward the x-axis. (The maximum points of Y1 occur at x = 3± 2.)

It is amazing to find such nice solutions. The use of the quadratic formula to find (y, z)
produced rational solutions only because of the numbers chosen in the problem as posed.
How did the poser see all of this?

Comment by Ken Korbin, the proposer:

In problem 5583, the four radii have lengths 16, 49, 9, and 121. And sinA =
3696

4225.

In problem 5601, if the fraction to the right of the equal sign is replaced by
sinA

4
, then,

the four roots of the equation will be
16

49
,
49

16
,

19

21
, and

121

9
. Note :

sinA

4
=

924

4225
.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Brian
Bradie, Christopher Newport University, Newport News, VA; Pat Costello,
Eastern Kentucky University, Richmond, KY; Pratik Donga, Junagadh, India;
Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and Sa-
vannah, GA; Farid Huseynov (student; communicated by his instructor Yagub
Aliyev), ADA University, Baku, Azerbaijan; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Ronald Martins, Brazil; Albert Stadler, Her-
rliberg, Switzerland; Seán M. Stewart, Bomaderry, NSW, Australia; David
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Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer.

• 5602: Proposed by Pedro Henrique Oliveira Pantoja. University of Campina Grande,
Brazil

Prove that:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 cos
π

7
sin

3π

7

sin
3π

7
sin

2π

7
sin2 π

7

0 tan
π

7
2 sin2 π

7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

√
7

8
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let x = sin
π

7
, y = cos

π

7
=
√

1− x2. Then sin
2π

7
= 2xy, sin

3π

7
= 3x − 4x3, tan

π

7
=
x

y
.

Let d be the value of the determinate. We expand the determinant along the first column
and get

d = det

∣∣∣∣∣∣∣∣
sin

2π

7
sin2 π

7

tan
π

7
2 sin2 π

7

∣∣∣∣∣∣∣∣− sin
3π

7
det

∣∣∣∣∣∣∣∣
cos

π

7
sin

3π

7

tan
π

7
2 sin2 π

7

∣∣∣∣∣∣∣∣ =

= 2 sin2 π

7
sin

2π

7
− tan

π

7
sin2 2π

7
− sin

3π

7

(
2 sin2 π

7
cos

π

7
− tan

π

7
sin

3π

7

)
=

= 4x3y − x3

y
− (3x− 4x3)

(
2x2y − 3x2 − 4x4

y

)
=

2x3(4− 12x2 + 8x4 − y2 + 4x2y2)

y
=

=
2x3(4− 12x2 + 8x4 − (1− x2) + 4x2(1− x2))

y
=

2(x− 1)x3(x+ 1)(4x2 − 3)

y
=

=
2y2x2(3x− 4x3)

y
= sin

π

7
sin

2π

7
sin

3π

7
=

√
sin

π

7
sin

2π

7
sin

3π

7
sin

4π

7
sin

5π

7
sin

6π

7
=

√
7

64

since for all integers n ≥ 2

n−1∏
k=1

2 sin

(
kπ

n

)
=

n−1∏
k=1

(−i)
(
e
πik
n − e

−πik
n

)
= (−i)n−1e

∑n−1
k=1

πik
n

n−1∏
k=1

(
1− e−

2πik
n

)
=

= (−i)n−1e
πi(n−1)

2

n−1∏
k=1

(
1− e

2πik
n

)
= lim

x→1

xn − 1

x− 1
= n, (see problem 5497, April 2018).
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Solution 2 by Brian Bradie, Christopher Newport University, Newport News,VA

Subtracting sin 3π
7 times the first row from the second row yields

det

∣∣∣∣∣∣
1 cos π7 sin 3π

7
sin 3π

7 sin 2π
7 sin2 π

7
0 tan π

7 2 sin2 π
7

∣∣∣∣∣∣ = det

∣∣∣∣∣∣
1 cos π7 sin 3π

7
0 sin 2π

7 − cos π7 sin 3π
7 sin2 π

7 − sin2 3π
7

0 tan π
7 2 sin2 π

7

∣∣∣∣∣∣ .
Now,

sin
2π

7
− cos

π

7
sin

3π

7
= sin

(
3π

7
− π

7

)
− cos

π

7
sin

3π

7

= sin
3π

7
cos

π

7
− cos

3π

7
sin

π

7
− cos

π

7
sin

3π

7
= − cos

3π

7
sin

π

7

and

sin2 π

7
− sin2 3π

7
=

(
sin

π

7
− sin

3π

7

)(
sin

π

7
+ sin

3π

7

)
=

(
−2 sin

π

7
cos

2π

7

)(
2 sin

2π

7
cos

π

7

)
= − sin

2π

7
sin

4π

7
,

so

det

∣∣∣∣∣∣
1 cos π7 sin 3π

7
sin 3π

7 sin 2π
7 sin2 π

7
0 tan π

7 2 sin2 π
7

∣∣∣∣∣∣ = −2 sin3 π

7
cos

3π

7
+ tan

π

7
sin

2π

7
sin

4π

7

=
sin π

7

cos π7

(
−2 sin2 π

7
cos

π

7
cos

3π

7
+ sin

2π

7
sin

4π

7

)
=

sin π
7 sin 2π

7

cos π7

(
− sin

π

7
cos

3π

7
+ sin

4π

7

)
=

sin π
7 sin 2π

7

cos π7

(
− sin

π

7
cos

3π

7
+ sin

3π

7
cos

π

7
+ cos

3π

7
sin

π

7

)
= sin

π

7
sin

2π

7
sin

3π

7
.

To show

sin
π

7
sin

2π

7
sin

3π

7
=

√
7

8
,

let n ≥ 2 be an integer. The roots of zn − 1 are ωk = e2ikπ/n, for k = 0, 1, 2, . . . , n − 1.
Then

zn − 1 = (z − 1)
n−1∑
k=0

zk = (z − 1)
n−1∏
k=1

(z − ωk),

or
n−1∑
k=0

zk =

n−1∏
k=1

(z − ωk).

Substituting z = 1 yields

n =

n−1∏
k=1

(1− ωk).
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Next,

|1− ωk| =
∣∣∣∣1− cos

2kπ

n
− i sin

2kπ

n

∣∣∣∣ =

√
2− 2 cos

2kπ

n
= 2 sin

kπ

n
,

so

n = |n| =
n−1∏
k=1

|1− ωk| = 2n−1
n−1∏
k=1

sin
kπ

n
.

Take n = 7 and note

sin
4π

7
= sin

3π

7
, sin

5π

7
= sin

2π

7
, and sin

6π

7
= sin

π

7
.

It follows that

7 = 26 sin2 π

7
sin2 2π

7
sin2 3π

7
or sin

π

7
sin

2π

7
sin

3π

7
=

√
7

8
.

Editor′s comment : The solution submitted by Seán M. Stewart of Bomaderry,
Australia started off by proving three identities:

1. C = cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2

2. S = − sin
π

7
+ sin

2π

7
+ sin

3π

7
=

√
7

2

3. T =
sin π

7 + 2 sin 3π
7

cos π7
=
√

7.

The proof of C was straight forward, in proving S he first showed that the square of the
LHS equals the square of the RHS, and he then chose the positive square roots; in proving

T he showed that T =
S

1− C
=

√
7
2

1− 1
2

=
√

7.

He then expanded the Determinate D down the third column and showed that D =
T

8
=

√
78. Lots of algebra, but it worked.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Let α =
π

7
. The given determinate, denoted by D equals

2 sin 2α sin2 α+ sin2 3αα− tanα sin2 α− 2 sin2 α cosα sin 3α

=
4 sin3 α cos2 α+ sin2 3α sinα− sin3 α− 2 sin2 α cos2 α sin 3α

cosα
.

Let k = sinα. By using the relations cos2 α = 1− k2 and sin 3α = 3k − 4k2,

we see that the numerator of D equals

8k7 − 14k5 + 6k3 = 2k3(1 + k)(1− k)(3− 4k2).

Since 0 < k < sin
π

6
=

1

2
, so D > 0. Hence to prove that D =

√
7

8
, it suffices to show that

D2 =
7

64
or 64(8k7 − 14k5 + 6k3)2 − 7(1− k2) = 0, or
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(k + 1)(k − 1)(64k5 − 48k4 − 8k2 − 1)(64k6 − 112k6 + 56k2 − 7) = 0. (1)

It is well known that sin 7θ = − sin θ(64 sin6 θ − 112 sin4 θ + 56 sin2 θ − 7)

for any real number θ. Hence, 64k6 − 112k4 + 56k2 − 7 =
− sin 7α

k
= 0.

Thus (1) holds and this completes the solution.

Editor′s comment : David Stone and John Hawkins of Georgia Southern Uni-
versity used a statement in their solution that was proved by P dilip k Stefan V.,

that sin
(π

7

)
sin
(
2π
7

)
sin

(
3π

7

)
=

√
7

8
(see: (https://socratic.org/questions/how-do-you-

evaluate sin
π

7
sin

(
2π

7

)
sin

(
3π

7

)
). They concluded their solution by stating “in this

problem, the surprise is that the given determinate equals sinπ7 sin

(
2π

7

)
sin

(
3π

7

)
).”

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego, Viveiro, Spain; Peter Fulop, Gyomro, Hungary; Seán M.
Stewart, Bomaderry, NSW, Australia; David Stone and John Hawkins, Geor-
gia Southern University, Statesboro, GA, and the proposer.

• 5603: Proposed by Michael Brozinsky, Central Islip, NY

In an election 50 votes were cast for candidate A and 50 for candidate B. The candidates
decide to end the tie as follows; by tallying the votes at random and if A is ever in the
lead by 3 votes, then Candidate A will be declared the winner. Otherwise Candidate B
wins. What is the probability that A wins?

Solution 1 by Albert Stadler, Herriliberg, Switzerland

Consider the 2-dimensional integer lattice Z2 in the Euclidean space R2 whose lattice
points are 2-tuples of integers. Every random tallying of votes can be mapped bijectively
to a path from (0, 0) to (50, 50) under the rule that if starting at (0, 0) and if a vote for
A is picked a step from (x, y) to (x + 1, y) is done and if a vote for B is picked a step

from (x, y) to (x, y + 1) is done. In total there are

(
100

50

)
paths from (0, 0) to (50, 50).

By the reflection principle, the number of paths from (0, 0) to (50, 50) where A will be in
the lead by 3 votes at some point is equal to the number of paths from (0, 0) to (47, 53)

which equals

(
100

47

)
. Therefore the probability that A wins equals

(
100

47

)
(

100

50

) =
100!50!50!

47!53!100!
=

48 · 49 · 50

51 · 52 · 53
=

9800

11713
≈ 83.7%.

Solution 2 by Albert Natian, Los Angeles College, Valley Glen, CA

Answer: 48·49·50
51·52·53 ≈ 0.836677.
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First we generalize the problem as follows:

In an election m votes are cast for candidate A and n for candidate B. The candidates
agree to break the tie as follows: the votes will be tallied uniformly at random and if A
is ever in the lead (for the first time) by L votes, then A is declared the winner; oth-
erwise B wins. In this generalization, unlike the original statement of the problem, an
additional advantage/disadvantage of i votes is initially accorded candidate A. That is,
if, say, i = 1 and L = 3, and the first two tallies are for A, then A wins. But if the first
tally is for B, then A’s 1-point advantage is lost (and so i becomes 0) and now A needs
to lead B by 3 in order to win, and if the following tally is again for B, then now A’s
advantage/disadvantage i becomes −1. So i measures A’s lead over B by the latest tally.
It’s clear that i can be negative, zero or positive. So when (if ever) i becomes L, then A
wins. What is the probability that A wins?

We let P (m,n, i, L) denote the probability that A wins. It’s immediate that P satis-
fies the following conditions

P (m,n, i, L) = 1 if L = i or i = n+ L−m

P (m,n, i, L) = 0 if m < L− i

P (L− i, n, i, L) =

(
L− i+ n

n

)−1
.

The first tally is a vote for A with probability m/ (m+ n) and a vote for B with probability
n/ (m+ n). If the first tally is a vote for A, then there will now be (m− 1) votes remaining
for A and n votes for B. Also if the first tally is a vote for A, then i is incremented by 1.
However, if the first tally is a vote for B, then there will now be (n− 1) votes remaining
for B and m votes for A. Also if the first tally is a vote for B, then i is decremented by 1.
Se we assert

P (m,n, i, L) =
m

m+ n
· P (m− 1, n, i+ 1, L) +

n

m+ n
· P (m,n− 1, i− 1, L) .

In order to solve the above recursion with the given conditions, we define f as

f (m,n, i, L) =

(
m+ n

m

)
P (m,n, i, L) .

So

P (m,n, i, L) =

(
m+ n

m

)−1
f (m,n, i, L) .

12



Now

f (m,n, i, L) =

(
m+ n

m

)
P (m,n, i, L) =

(
m+ n

n

)
P (m,n, i, L)

=

(
m+ n

m

)(
m

m+ n
· P (m− 1, n, i+ 1, L) +

n

m+ n
· P (m,n− 1, i− 1, L)

)

=

(
m+ n

m

)
m

m+ n
· P (m− 1, n, i+ 1, L) +

(
m+ n

n

)
n

m+ n
· P (m,n− 1, i− 1, L)

=

(
m− 1 + n

m− 1

)
· P (m− 1, n, i+ 1, L) +

(
m+ n− 1

n− 1

)
· P (m,n− 1, i− 1, L)

= f (m− 1, n, i+ 1, L) + f (m,n− 1, i− 1, L) .

The conditions for f are

f (m,n, i, L) =

(
m+ n

m

)
if L = i or i = n+ L−m

f (m,n, i, L) = 0 if m < L− i

P (L− i, n, i, L) = 1.

The Solution for the recursion

f (m,n, i, L) = f (m− 1, n, i+ 1, L) + f (m,n− 1, i− 1, L)

satisfying the aforementioned conditions is

f (m,n, i, L) =

(
m+ n

n+ L− i

)
=

(
m+ n

m− L+ i

)
.

Thus

P (m,n, i, L) =

(
m+ n

m

)−1( m+ n

m− L+ i

)
=

m! n!

(m− L+ i)! (n+ L− i)!
.

To answer the original question, we let m = 50, n = 50, i = 0, L = 3. Then

P (50, 50, 0, 3) =
50! 50!

47! 53!
=

48 · 49 · 50

51 · 52 · 53
≈ 0.836677.

Solution 3 by Moti Levy, Rehovot, Israel

The process of counting 2N votes can be modeled as a random walk from (0, 0) to (2N, 0)
with up-steps and down-steps of one unit each. The paths are called grand-Dyck path
(or free-Dyck path).

The number of all grand-Dyck paths from (0, 0) to (2N, 0) is equal to
(
2N
N

)
. Clearly all

paths have equal probability.
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Let us denote by Nn the number of “losing paths”, i.e., grand-Dyck paths from (0, 0) to
(n, 0) that never exceed the height 2.

Then the probability that candidate A will be declared the winner is

P (A wins) = 1− N2N(
2N
N

) .
Let Ψ (z) be the generating function of the sequence of numbers of grand-Dyck paths from
(0, 0) to (n, 0) that never exceed the height 2.

Ψ (z) =
∞∑
n=0

Nnzn

The article by Panny and Prodinger [1] , states that (see theorem 4.1, page 130) the
generating function is

Ψ (z) =
1 + v2

1− v2
(
1− v6

)
, z =

v

1 + v2
,

or

Ψ (z) = 1 + 2v2 + 2v4 + v6, v =
1

2z

(
1−

√
1− 4z2

)
.

Now we find several generating functions on our way to evaluate Ψ (z) .

By definition of the binomial coefficient
( 1

2
n

)
=

1
2(− 1

2)(− 3
2)···(− 2n−3

2 )
n! , hence

(1
2

n

)
=


1 n = 0,
1
2 n = 1,

(−1)n−1 1
n−1

(2n−2
n )

22n−1 n > 1.

(1)

By the binomial theorem and (1),

(
1− 4z2

) 1
2 = 1 +

∞∑
m=1

(−1)m 22m
( 1

2

m

)
z2m, (2)

(
1− 4z2

) 3
2 = 1 +

∞∑
m=1

(−1)m 22m
( 3

2

m

)
z2m

= 1− 4z2 +
∞∑
m=1

(−1)m 22m
( 1

2

m

)
z2m − 4z2

∞∑
m=1

(−1)m 22m
( 1

2

m

)
z2m (3)

1+2v2+2v4+v6 = − 1

16z6

(
8z2

(
1− 4z2

) 3
2 +

(
40z4 − 4z2 + 3

)√
1− 4z2 + 32z2 − 24z4 − 8

)
(4)

Substituting (2) and (3) in (4) and after tedious simplifications we get,

Ψ (z) = 1 +
∞∑
m=1

(−1)m 22m+1

(( 1
2

m+ 1

)
+ 8

( 1
2

m+ 2

)
+ 16

( 1
2

m+ 3

))
z2m

=

∞∑
m=0

(
2m

m

)
9m2 + 9m+ 6

m3 + 6m2 + 11m+ 6
z2m.

14



It follows that

N2N =

(
2N

N

)
9N2 + 9N + 6

N3 + 6N2 + 11N + 6
, (5)

and that

P (A wins) = 1− 9N2 + 9N + 6

N3 + 6N2 + 11N + 6
.

For the case N = 50, we have P(A wins) = 1− 9∗502+9∗50+6
503+6∗502+11∗50+6

∼= 0.836 68.

Remarks:
1) Equation (5) can be verified for small values of N by manual counting of the paths:

N N2N

(
2N
N

)
P (A wins)

1 2 2 0
2 6 6 0
3 19 20 1

20 = 0.05
4 62 70 8

70
∼= 0.114 29

2) For large N

P (A wins) = 1− 9

N

(
1 +O

(
1

N

))
3) We give here the essential steps in Panny and Prodinger derivation (see [2]).
We consider grand-Dyck paths form (0, 0) to (n, 0). We allow the path to touch −h and
k but not −h− 1 and k+ 1. Let Nn,h be the number of paths which do not touch −h− 1
and k+1 and lead to level i. Let Ψi be the generating function of the sequence (Nn,h)∞n=0 ,

Ψi =

∞∑
n=0

Nn,hzn.

Looking at the last step of the paths we write the following recurrences:

Nn,−h = Nn−1,−h
Nn,−h+1 = Nn−1,−h +Nn−1,−h+2

...

Nn,−1 = Nn−1,−2 +Nn−1,0

Nn,0 =

{
Nn−1,−1 +Nn−1,1 if n > 0

1 if n = 0

Nn,1 = Nn−1,0 +Nn−1,2
...

Nn,k−1 = Nn−1,k−2 +Nn−1,k
Nn,k = Nn−1,k

15



which implies (in terms of the generating functions)



1 −z 0 · · · · · · 0
−z 1 −z 0 · · · 0
0 −z 1 −z · · · 0
· · · · · ·

0 · · · 0 −z 1 −z
0 · · · · · · 0 −z 1





Ψ−h
...
...

Ψ0
...

Ψk


=



0
...
...
1
...
0


(6)

Of course, we are interested in Ψ0.
The matrix is tridiagonal, hence its determinant fn of n × n matrix can be found by
solving the recurrence relation (see [3])

fn = fn−1 − z2fn−2.

Setting z = v
(1+v)2

, for convenience, the solution is fn = a
(

1
v2+1

)2
+ b
(

v2

v2+1

)2
. Applying

the initial conditions f1 = 1 and f2 = 1− z2, we find that

fn =
1

1− v2
1− v2n+2

(v2 + 1)n
.

Applying Cramer’s rule, to solve (6), we get

Ψ0 =
fhfk
fh+k+1

=
1 + v2

1− v2
(

1− v2k+2
) v2h+2 − 1

v2h+2k+4 − 1

Now we send h to -∞, to get

Ψ0 (z) =
1 + v2

1− v2
(

1− v2k+2
)
.

References:
[1] Wolfgang Panny, Helmut Prodinger, “The expected height of paths for several notions
of height”, Studia Scientiarum Mathematicarum Hungarica 20 (1985), 119-132.
[2] Helmut Prodinger, “The number of restricted lattice paths revisited”, Filomat 26:6,
1133-1134, published by Faculty of Sciences and Mathematics, University of Nîs, Serbia.
[3] Wikipedia, ”Tridiagonal Matrix” entry.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that A wins with probability
9800

11713
.

Suppose, in general, that A obtained a votes and B obtained b votes with a ≥ b.
Denote by P0(a, b) = the probability that there will ever be a tie in a full tallying. For

k = 1, 2, 3, let Pk(a, b) be the probability that B will ever lead by k votes in a full

tallying. It is known (1), pp. 6, 37, 38, Problem 22: The ballot box that P0(a, b) =
2b

a+ b
.

We use this result to find P1(a, b), P2(a, b), and P3(a, b)

successively. The probability that A gets the first vote equals
a

a+ b
and the

probability that B gets the first vote equals
b

a+ b
. Hence by conditioning on the first
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vote, we obtain
2b

a+ b
= P0(a, b) =

a

a+ b
P1(a− 1, b) +

b

a+ b
/ . Thus P1(a− 1, b) =

b

a

and P1(a, b) =
b

a+ 1
. By conditioning again, we have

b

a+ 1
= P1(a, b)P2(a− 1, b) +

b

a+ b
, giving P2(a− 1, b) =

b(b− 1)

a(a+ 1)
and

P2(a, b) =
b(b− 1)

(a+ 1)(a+ 2)
. Finally, we have

b(b− 1)

(a+ 1)(a+ 2)
= P2(a, b) =

a

a+ b
P3(a− 1, b) +

This gives P3(a− 1, b) =
b(b− 1)(b− 2)

a(a+ 1)(a2)
and P3(a, b)

b(b− 1)(b− 2)

(a+ 1)(a+ 2)(a+ 3)
,

If a = b, then P (A is ever in the lead by 3 votes)= P (B is ever in the lead by 3 votes)

= P3(a, a),

=
a(a− 1)(a− 2)

(a+ 1)(a+ 2)(a+ 3)
.

By putting a = 50, we obtain the result stated at the beginning.

Reference: 1. F. Mosteller: Fifty Challenging Problems in Probability with Solutions,
Dover Publications, Inc., 1987.

Solution 5 by the Eagle Problem Solvers, Georgia Southern University, States-
boro, GA and Savannah, GA

Let S be the set of all sequences of 50A′s and 50B′s, and let A be the subset of S
consisting of the sequences in which there is an initial subsequence with three more A′s
than B′s. We claim that there is a one-to-one correspondence between A and the set B
of all sequences of 47A′s and 53 B′s.

Let (x1, x2, · · · , x100) be a sequence in A, and let k be the smallest integer for which the
initial sequence (x1, x2 · · · , xk) has exactly three more A′s than B′s. Then the initial
sequence (x1, x2, · · · , xk) has b B′s and b + 3 A′s for some integer b, where 0 ≤ b ≤ 47,
and the remaining sequence (xk+1, xk+2, · · ·x100) will have 50− bB′s and 47− bA′s. Now
transform the sequence (x1, x2, · · · , x100) by changing the A′s to B′s and the B′s to A′s
in the initial k terms, and leaving the remaining 100 − k terms unchanged. This new
sequence will have b+ (47− b) = 47A′s and (b+ 3) + (50− b) = 53B′s, and thus will be
a sequence in B.

In the other direction, if we begin with a sequence (y1, y2, · · · , y100) of 47A′s and 53B′s,
then let k be the smallest integer for which the initial sequence (y1, y2, · · · yk) has exactly
three more B′s than A′s. Change the A′s to B′s and B′s to A′s in this initial sequence
and leave the tail end of the sequence unchanged. The resulting sequence will have 50A′s
and 50B′s, and the initial sequence of k terms will have exactly three more A′s than B′s.

Thus, the sets A and B have the same cardinality, |A| = |B| =
(

100

47

)
and the probability
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that Candidate A will win is

|A|
|B|

=

(
100

47

)
(

100

50

)

=
100!

47!53!
· 50!50!

100!

=
50 · 49 · 48

51 · 52 · 53

=
9800

11, 713

≈ 0.836677.

More generally, suppose A is declared the winner if A is ever in the lead by k votes,
where k is a positive integer less than or equal to 50. Let A be the subset of S containing
sequences in which there is an initial subsequence containing exactly k more A′s than B′.
As before, there is a one−to−one correspondence between A and the set B of sequences

with 50−kA′s and 50+kB′s. Thus, the cardinality of A is

(
100

50− k

)
and the probability

that A is declared the winner is(
100

50− k

)
(

100

50

) =
(50!)2

(50− k)!(50 + k)!
=

50 · 49 · · · (51− k)

51 · 52 · · · (50 + k)
.

The value of k for which this probability comes closest to
1

2
is k = 6, for which the

probability is

189, 175

386, 529
≈ 0.48942.

Also solved by the proposer.

• 5604: Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA

Prove: (
N

r

)
= lim

n→∞

1

n

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
where N, r ∈ N and i2 = −1.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

The sum on the right hand side is a Riemann sum that converges to∫ 1

0
e−2πirx(1 + e2πix)Ndx =

N∑
n=0

(
N

n

)∫ 1

0
e−2πirx+2πirnxdx =

(
N

r

)
,
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as claimed. We have used the binomial theorem and the fact that for an integer k∫ 1

0
e2πikxdx =

{
1, k = 0
0, k 6= 0.

Solution 2 by Brian Bradie, Christopher Newport University, Newport News,VA

Let θ = 2π
n . By the binomial theorem,

(
1 + eiµθ

)N
=

N∑
k=0

(
N

k

)
eiµkθ,

so
n−1∑
µ=0

e−irµθ
(

1 + eiµθ
)N

=

n−1∑
µ=0

N∑
k=0

(
N

k

)
eiµθ(k−r) =

N∑
k=0

(
N

k

) n−1∑
µ=0

eiµθ(k−r).

Now, for r > N , (
N

r

)
= 0,

and, for each n > r,

n−1∑
µ=0

eiµθ(k−r) =
1− einθ(k−r)

1− eiθ(k−r)
=

1− e2πi(k−r)

1− eiθ(k−r)
= 0,

so

lim
n→∞

1

n

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
= 0 =

(
N

r

)
.

Finally, for r ≤ N and for each n > N

N∑
k=0

(
N

k

) n−1∑
µ=0

eiµθ(k−r) =

(
N

r

) n−1∑
µ=0

1 +

N∑
k=0,k 6=r

(
N

k

) n−1∑
µ=0

eiµθ(k−r)

= n

(
N

r

)
+

N∑
k=0,k 6=r

(
N

k

)
1− einθ(k−r)

1− eiθ(k−r)

= n

(
N

r

)
,

so

lim
n→∞

1

n

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
=

(
N

r

)
.

Solution 3 by Seán M. Stewart, Bomaderry, NSW, Australia

Let

S(r,N) =

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
,
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where r,N ∈ N . To prove the result given we also need to make the additional assumption
that r ≤ N . From the binomial theorem we can write the term appearing in the brackets
inside the sum as (

1 + eiµ
2π
n

)N
=

N∑
k=0

(
N

k

)
e

2πiµk
n .

Thus

S(r,N) =

N∑
k=0

(
N

k

) n−1∑
µ=0

eµθk ,

after the order of the summations have been interchanged. Here θk = 2πi
n (k − r). As

n−1∑
µ=0

eµθk =
enθk − 1

eθk − 1
,

we see that

fk =

n−1∑
µ=0

eµθk =
e2πi(k−r) − 1

e
2πi
n

(k−r) − 1
= 0,

provided k 6= r since e2πi(k−r) = 1 as k is a non-negative integer and r a positive integer.
When k = rN we have

fk =

n−1∑
µ=0

eµθk =

n−1∑
µ=0

1 = n.

So for r ≤ N where r,N ∈ N we have

fk =

{
0, k 6= r,

n, k = r.

Thus

S(r,N) =
N∑
k=0

(
N

k

)
fk = n

(
N

r

)
.

So for the desired limit we have

lim
n→∞

1

n

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
= lim

n→∞

1

n
· n
(
N

r

)
=

(
N

r

)
,

as required to prove.

Solution 4 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Let N, r ∈ N . Applying the binomial formula we obtain

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
=

N∑
k=0

(
N

k

) n−1∑
µ=0

eiµ
2π
n
(k−r).

If k = r, the inner sum has value equal to 1. Otherwise, the formula for the geometric
sum tells us that its value is equal to

1− e2πi(k−r)

1− e2πi(k−r)/n
= 0,
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provided that n > |k − r|. Hence,

lim
n→∞

1

n

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
=

(
N

r

)
.

Solution 5 by Moti Levy, Rehovot, Israel

lim
n→∞

1

n

n−1∑
µ=0

e
−irµ 2π

n

(
1+eiµ

2π
n

)
=

∫ 1

0
e−ir2πx

(
1 + ei2πx

)N
dx

=

∫ 1

0
e−ir2πx

N∑
k=0

(
N

k

)
ei2πkxdx

=

N∑
k=0

(
N

k

)∫ 1

0
e−i2πrxei2πkxdx

∫ 1

0
e−i2πrxei2πkxdx =

{
1 if k = r
0 if k 6= r

and the result follows.

Solution 6 by Peter Fulop, Gyomro, Hungary

Prove S = lim
n→∞

1
n

n−1∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
=
(
N
r

)
where N, r ∈ N
Riemann sum

We know that Riemann sum gives us the following formula for a function f ∈ C1:

lim
n→∞

1

n

n∑
µ=0

f(
µ

n
) =

1∫
0

f(x)dx (8)

In our case:

lim
n→∞

1

n

n∑
µ=0

e−irµ
2π
n

(
1 + eiµ

2π
n

)N
− lim
n→∞

2N

n︸ ︷︷ ︸
→0

=

1∫
0

e−2πixr
(

1 + e2πix
)N

dx (9)

Contour integral

Applying the z = e2πix substitution in the integral of (2) we get the following contour
integral:

S =
1

2πi

∮
|z|=1

(1 + z)N

zr+1
dx (10)
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Using the Cauchy’s differentiation formula and realized that g(z) = (1+z)N

zr+1 function has
r + 1 poles at z = 0 which are inside the unit circle |z| = 1, so we get:

S =
1

2πi

∮
|z|=1

(1 + z)N

zr+1
dx =

1

r!

dr

dzr
(1 + z)N ∣∣∣

z=0

(11)

Performing the derivates ((1 + z)N can be differentiated r times):

S =
1

r!

dr

dzr
(1 + z)N ∣∣∣

z=0

=
1

r!

(
N(N − 1)(N − 2)....(N − r + 1)

)
(1 + z)N−r ∣∣∣

z=0

(12)

Easy to realize that N(N − 1)(N − 2)....(N − r + 1) = N !
(N−r)!

Finally substitute back to (5) we give the result:

S =
1

2πi

∮
|z|=1

(1 + z)N

zr+1
dx =

(
N

r

)
(13)

So the statement is proved.

Also solved by Pratik Donga, Junagadh, India; Kee-Wai Lau, Hong Kong,
China, and the proposer.

• 5605: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let b and c be distinct coprime numbers. Find the smallest positive integer a for which

gcd(ab − 1, ac − 1) = 100.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let n, t, s be natural numbers. We claim that

gcd(nr − 1, ns − 1) = ngcd(r,s) − 1. (*)

For the proof we proceed by induction on max(r, s). The statement is trivial for max(r, s) =
1 and r = s. Suppose the statement holds true for all r, s with max(r, s) ≤ m. Suppose
that r = m+ 1 > s. Then

gcd(nr − 1, ns − 1) = gcd(nr − 1− (ns − 1), ns − 1) = gcd(ns(nr−s − 1), ns − 1) =

= gcd(nr−s − 1, ns − 1) = ngcd(r−s,s) − 1 = ngcd(r,s) − 1,

which concludes the proof (∗).
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Clearly, b ≥ 0, c ≥ 0. By (∗) 100=gcd(ab − 1, ac − 1) = agcd (b,c) − 1 = a − 1. Hence
a = 101.

Solution 2 by Pratik Donga, Junagadh, India

We can use the following formula to find a: gcd
(
nb − 1, nc − 1

)
= ngcd(b,c) − 1. Here we

let n = a and so we obtain gcd
(
ab − 1, ac − 1

)
= agcd (b,c)−1=100. But gcd (b, c) = 1 since

b and c are coprime we have a− 1 = 100→ a = 101.

Editor′s Comment : Kee-Wai Lau of Hong Kong, China noted that the proof of this
formula can be found in T. Andreescu, D. Andrica, and Feng, Z. 104 Number Theory
Problems, From the Training of the USA IMO Team, Birkhauser, 2007, on page 112 as
part of the solution to problem 38 on page 79.

Solution 3 by David E. Manes, Oneonta, NY

More generally, if a, b and c are positive integers,then

gcd(ab − 1, ac − 1) = agcd(b,c) − 1 (1)

Therefore, if gcd(b, c) = 1, (b 6= c), then

gcd(ab − 1, ac − 1) = agcd(b,c) − 1 = a− 1 = 100

so that the only positive integer satisfying the given equation is a = 101.

To prove equation (1), we will us the following result: Let m be a positive integer and a
and b are integers relatively prime to m. If x and y are integers such that ax ≡ bx (mod
m) and ay ≡ by (mod m), then agcd(x,y) ≡ bgcd(x,y) (mod m)

Since gcd(b, c) divides both b and c, the polynomial xgcd(b,c) − 1 divides both xb − 1
and xc − 1. Hence, agcd(b,c)−1 divides both ab − 1 and ac − 1 so that agcd(b,c) − 1 is a
divisor of gcd(ab − 1, ac − 1). On the other hand, if m divides both ab − 1 and ac − 1,
then gcd(a,m) = 1 and ab ≡ 1 ≡ 1b (mod m). By the above stated result, it follows
that agcd(b,c) ≡ 1 (mod m); that is to say, m is a divisor of agcd(b,c) − 1. Therefore,
gcd(ab − 1, ac − 1) is a divisor of agcd(b,c) − 1. Hence, agcd(b,c) − 1 = gcd(ab − 1, ac − 1).

Solution 4 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We shall show that a = 101.

Note that an − 1 = (a− 1)
(
an−1 + an−2 + . . .+ a+ 1

)
.

For convenience, let Pn =
am+1 − 1

a− 1
= am + am−1 + . . .+ a+ 1. Note that Pn has m+ 1

terms.

Thus gcd
(
ab − 1, ac − 1

)
= gcd ((a− 1)Pb−1) , (a− 1)Pc−1 = (a− 1) gcd(Pb−1, Pc−1).

In Comment 1 below, we will use the Euclidean Algorithm to show that, for coprime b
and c, we have gcd(Pb−1, Pc−1) = 1. Hence we have gcd

(
ab − 1, ac − 1

)
= a− 1.

That is, 100 = gcd
(
ab, ac

)
= (a− 1) · 1 = a− 1, so a = 101.

Comment 1: The Euclidean Algorithm process which is used to determine that gcd (b, c) =
1 can be used as a guide to show that gcd (Pb−1, Pc−1) = 1.
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We demonstrate with an illustrative example.
Let b = 25 and c = 9.
Apply the Euclidean Algorithm:

(1)


25 = 2 · 9 + 7
9 = 1 · 7 + 2
7 = 3 · 2 + 1

The final remainder is 1, verifying that gcd(25, 9) = 1.

Now we want to demonstrate that gcd(P24, P8) = 1 by applying the Euclidean Algorithm.
The first step in (1) above tells us exactly what to do as a first step here. Divide P24 by
P8: P8 goes 2 times with a remainder of 7. That is, the 25 terms of P24a are grouped into
2 blocks of (9 terms each ) and there are 7 terms left over.

P24 = a24 + a23 + a22 + . . .+ a+ 1 =

=
(
a24 + a23 + a22 + a21 + a20 + a19 + a18 + a17 + a16

)
+

+
(
a15 + a14 + a13 + a12 + a11 + a10 + a9 + a8 + a7

)
+

+ a6 + a5 + a4 + a3 + a2 + a1 + 1 =

= a16
(
a8 + a7 + a6 + a5 + a4 + a3 + a2 + a+ 1

)
+

+ a7
(
a8 + a7 + a6 + a5 + a4 + a3 + a2 + a+ 1

)
+

+ a6 + a5 + a4 + a3 + a2 + a+ 1 =

=
(
a16 + a7

)
P8 + P6.

For the next step, we divide P8 by P6. The second step of (1) above tells us exactly what
happens: P6 goes 1 times with a remainder 2. That is the 9 terms of P8 are grouped into
1 block (of 7 terms) and there are 2 terms left over.

P8 = a8 + a7 + a6 + a5 + a4 + a3 + a2 + a+ 1 =

=
(
a8 + a7 + a6 + a5 + a4 + a3 + a2

)
+ (a+ 1) =

= a2
(
+a6 + a5 + a4 + a3 + a2 + a+ 1

)
+ (a+ 1) =

= a2P6 + P1.

For the third step, we divide P6 by P1. The third step of (1) above tells exactly what happens:
P1 goes 3 times with a remainder 1. That is, the 7 terms of P6 are grouped into 3 blocks of 2
terms, and there is 1 term remaining (with must be a 1):

P6 = a6 + a5 + a4 + a3 + a2 + a+ 1
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=
(
a6 + a5

)
+
(
a4 + a3

)
+
(
a2 + a) + 1

= a5 (a+ 1) + a3 (a+ 1) + a (a+ 1) + 1

=
(
a5 + a3 + a

)
(a+ 1) + 1

=
(
a5 + a3 + a

)
P1 + 1.

Summarizing this Euclidean Algorithm:

P24 =
(
a15 + a7

)
P8 + P6

P8 = a2P6 + P1

P6 =
(
a5 + a3 + a)P1 + 1. Therefore,

gcd (P24, P8 ) = 1.

This process can be formalized. For any coprime b and c, the Euclidean Algorithm can be
employed to show that gcd (Pb−1, Pc−1) = 1; the process demonstrated above will work and
terminate with 1, by repeatedly applying the following Lemma.

Lemma: For 1 ≤ n < m, when Pm is divided by Pn, the remainder is a Pk, with 0 ≤ k < n.

Proof: Use the Division Algorithm to divide m+ 1 by n+ 1:
m+ 1 = q(n+ 1) + r where 0 ≤ r ≤ n+ 1. Then it is straight forward to see that

Pm = Q · Pn + Pr−1,where Q =
∑q

j=1 x
m+1)−j(n+1).

Note that the operations with the Pn can be considered as with integers or as with polynomials
with integer coefficients.

Comment 2: It seems surprising that the answer is independent of the values of b and c. What
if b and c are not relatively prime? Suppose that gcd(b, c) = d with b = dB and c = dC for B
and C coprime.

Then

gcd
(
ab − 1, ac − 1

)
= gcd

(
adB − 1, adC − 1

)
= gcd

((
ad
)B
− 1,

(
ad
)C
− 1

)
= ad − 1,

by applying the above result.

So if d = 1, the effect of b and c disappears.

But d > 1, asking that gcd
(
ab − 1, bc − 1

)
= 100 would be impossible because 101 is not a

power.

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Kee-Wai Lau, Hong Kong, China, and the proposer.
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• 5606: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Let a, b > 0, c ≥ 0 and 4ab− c2 > 0. Calculate∫ ∞
−∞

x

aex + be−x + c
dx.

Solution 1 by Seán M. Stewart, Bomaderry, NSW, Australia

Denote the integral to be evaluated by I(a, b, c) where a, b > 0 and c ≥ 0 such that 4ab−c2 > 0.
We shall show that

I(a, b, c) =
log(b/a)√
4ab− c2

arctan

(√
4ab− c2
c

)
.

Writing the integral as

I(a, b, c) =

∫ ∞
−∞

xex

ae2x + cex + b
dx,

enforcing a substitution of x 7→ log(x) produces

I(a, b, c) =

∫ ∞
0

log(x)

ax2 + cx+ b
dx.

Since a, b > 0, letting x = t
√

b
a yields

I(a, b, c) =

√
b

a

∫ ∞
0

log

(
t
√

b
a

)
bt2 + ct

√
b
a + b

dt

=
1

2

√
b

a
log

(
b

a

)∫ ∞
0

dt

bt2 + ct
√

b
a + b

+

√
b

a

∫ ∞
0

log(t)

bt2 + ct
√

b
a + b

dt. (1)

Enforcing a substitution of t 7→ 1
t in the second of the integrals after the equality in (1)

immediately shows it has a value equal to zero. Thus

I(a, b, c) =
1

2

√
b

a
log

(
b

a

)∫ ∞
0

dt

bt2 + ct
√

b
a + b

. (2)

Completing the square in the denominator of the integrand given in (2) one has

I(a, b, c) =
1

2
√
ab

log

(
b

a

)∫ ∞
0

dt(
t+ c

2
√
ab

)2
+
(
4ab−c2
4ab

) . (3)

The constant term 4ab−c2
4ab appearing in the denominator of the integrand of (3) is positive since
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4ab− c2 > 0 and a, b > 0. Performing the integration, which is elementary, we have

I(a, b, c) =
log(b/a)√
4ab− c2

[
arctan

(
2t
√
ab+ c√

4ab− c2

)]∞
0

=
log(b/a)√
4ab− c2

[
π

2
− arctan

(
c√

4ab− c2

)]
=

log(b/a)√
4ab− c2

arctan

(√
4ab− c2
c

)
,

as announced. Note in the last line we have made use of the following well-known identity for
the arctangent function of

arctan(x) + arctan

(
1

x

)
=
π

2
, x > 0,

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We show that for a, b > 0 and c ≥ 0

I :=

∫ ∞
−∞

x

aex + be−x + c
dx =

2 log
(
b
a

)
arctan

(√√
4ab−c√
4ab+c

)
√

4ab− c2
.

The change of variable x = t+ 1
2 log b

a leads to

I =

∫ ∞
−∞

t+ 1
2 log b

a√
ab (et + e−t) + c

dt.

Since t√
ab(et+e−t)+c

is an odd integrable function, we obtain

I =
1

2
log

(
b

a

)∫ ∞
−∞

1√
ab (et + e−t) + c

dt

=
1

4
√
ab

log

(
b

a

)∫ ∞
−∞

1

cosh t+ g
dt,

where g =
√
c2/ (4ab) < 1 by assumption. Since

√
1− g2

∫
1

cosh t+ g
dt = 2 arctan

(√
1− g
1 + g

tanh
t

2

)
we have √

1− g2
∫ ∞
−∞

1

cosh t+ g
dt = 4 arctan

(√
1− g
1 + g

)
,

which implies the desired formula.
Remark: In the particular case c = 0, we obtain g = 0 and∫ ∞

−∞

x

aex + be−x
dx =

π

4
√
ab

log

(
b

a

)
.

Solution 3 by Kee-Wai Lau, Hong Kong, China
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Denote the given Integral by I. We show that

I =

(ln b− ln a) cos−1
(

c

2
√
ab

)
√

4ab− c2
(1)

By the substitution x = ln y, we obtain I =
1

a

∫ ∞
0

ln y

y2 + cy
a + b

a

dy. It is known

([1], p.537, entry 4.233(5)) that for k > 0 and 0 < t < π, we have∫ ∞
0

lnx

x2 + 2xk cos t+ k2
dx =

t ln k

k sin t
.

By putting k =

√
b

a
and t = cos−1

(
c

2
√
ab

)
, we obtain (1) readily.

1. I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products,
Seventh Edition, Elsevier, Inc. 2007.

Solution 4 by Peter Fulop, Gyomro, Hungary

Let a, b > 0 and 4ab− c2 ≥ 0.

Calculate I =
∞∫
−∞

x

aex + be−x + c
dx

Partial fraction decomposition

Let’s transform the integral into two parts:

I =

∞∫
0

x

aex + b/ex + c
dx−

0∫
−∞

x

aex + b/ex + c
dx (15)

At first appling the x→ −x substitution for the second integral of the (1) and then the
substitution of t = 1

ex for both integrals of (1):

I =
1

a

1∫
0

ln(t)

t2 + c
a t+ b

a

dt− 1

b

1∫
0

ln(t)

t2 + c
b t+ a

b

dt (16)

Find the roots of the quadratic expressions of the (2):

t1,2 =
−c± i

√
4ab− c2

2a
=

√
b

a
e∓iϕ (17)

t3,4 =
−c± i

√
4ab− c2

2b
=

√
a

b
e∓iϕ (18)

where ϕ = arctan(dc ), d =
√

4ab− c2 and i2 = −1 the (2) is becoming the following:
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I =
1

a

( 1∫
0

ln(t)

(t− t1)(t− t2)
dt
)
− 1

b

( 1∫
0

ln(t)

(t− t3)(t− t4)
dt
)

(19)

Taking into account that:
1

(t−t1)(t−t2) = a
id

[
− 1

(t−t1) + 1
(t−t2)

]
and

1
(t−t3)(t−t4) = b

id

[
− 1

(t−t3) + 1
(t−t4)

]
the (5) will be the following:

I =
i

d

(
−

1∫
0

ln(t)

(t− t1)
dt+

1∫
0

ln(t)

(t− t2)
dt+

1∫
0

ln(t)

(t− t3)
dt−

1∫
0

ln(t)

(t− t4)
dt
)

(20)

Spence function and its properties

Based on (6) let Id
i = −I1 +−I2 + I3 − I4 respect to tk roots (k=1,2,3,4). Let’s pull out −tk

from all denominators and performing the substitutions x = t
tk

.

Ik =

1
tk∫
0

ln(x) + ln(tk)

(1− x)
dx =

1
tk∫
0

ln(x)

1− x
+

ln(tk)

(1− x)
dx (21)

Ik =

1
tk∫
0

ln(x)

1− x
dx+ ln(

1

tk
) ln(1− 1

tk
) (22)

Introducing further substitution (r = 1− x) regarding the integral of (8) we get:

Ik =

1∫
0

ln(1− r)
r

dr −

1− 1
tk∫

0

ln(1− r)
r

dx+ ln(
1

tk
) ln(1− 1

tk
) (23)

Using the definition of the Spence function (Dilogaritm function) we have:

Ik = −Li2(1) + Li2(1−
1

tk
) + ln(

1

tk
) ln(1− 1

tk
) (24)

Applying the following identity of the Spence function:

Li2(z) + Li2(1− z) = Li2(1)− ln(z) ln(1− z), (10) will be the following:

Ik = −Li2(
1

tk
) (25)

Based on (3),(4) can be seen that t4 = 1
t1

and t3 = 1
t2

, go back to (6) we get value of the
integral (I):
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I = Li2(
1

t1
)− Li2(

1

t2
)− Li2(t2) + Li2(t1) (26)

Using the following identity Li2(z) + Li2(
1
z ) = −Li2(1)− 1

2 ln2(−z) twice we get:

I =
i

2d
ln(

t2
t1

) ln(t1t2) (27)

Finally substitute back t1 and t2 from (3) we get the result:

I =
ln(a

b
)√

4ab−c2 arctan(
√

4ab
c − 1) (28)

Also solved by Albert Stadler, Herrliberg, Switzerland, and the proposers.
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