
School	Science	and	Mathematics	Problem	5613	
	
Problem	Given	the	equations:	

3x2 + 6x +1 = y+ 3y2 −3
and

ax2 + by2 + cxy+ dx + ey+ f = 0.
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Find	integers	{a,	b,	c,	d,	e,	f}	so	that	infinitely	many	pairs	of	positive	integers	(x,	y)	
satisfy	both	equations.	
(Proposed	by	Kenneth	Korbin,	New	York,	NY;	December	2020)	
	
Solution	(David	Stone	and	John	Hawkins,	Georgia	Southern	University	(retired)	
Statesboro,	Georgia)	
We	shall	show	that	the	hyperbola	3x2 + 2y2 − 6xy+ 6x − 6y+ 4 = 0 satisfies	the	given	
conditions.	In	fact,	all	of	the	first	quadrant	points	(x,	y)	satisfying	the	first	equation	
also	satisfy	this	generalized	quadratic	equation.	
For	convenience,	we	assign	a	label,	EQ,	to	the	equation	 3x2 + 6x +1 = y+ 3y2 −3. 	
From	Desmos.com,	we	have	the	graph	of	EQ:	
	
EQ	 3x2 + 6x +1 = y+ 3y2 −3. 	

	
	
The	excluded	region	in	the	middle	is	the	rectangle		

(x, y) |−1− 2
3
< x < −1+ 2

3
,−1< y <1
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The	graph	of	EQ	consists	of	four	separate	pieces,	which	look	straight	but	cannot	be	
line	segments	because	EQ	is	not	linear.	We	label	them	S1,	S2,	S3,	S4,	where	Si	lies	in	
Quadrant	i.	(Actually,	S4	creeps	into	the	third	quadrant.)	
The	problem	as	posed	asks	us	to	find	a	conic	which	contains	infinitely	many	points	
(x,	y)	of	S1	for	which	x	and	y	are	both	positive	integers.	



In	fact,	the	conic	given	above	has	all	points	of	S1	and	S3	lying	on	it.	
	
In	order	that	(x,	y)	have	both	coordinates	positive	integers,	it	must	be	the	case	that	
each	quantity	under	a	radical	in	EQ	is	a	perfect	square.	Imposing	that	condition	
leads	us	to	two	Pell’s	Equation	problems,	which	we	solve	using	standard	techniques	
in	Appendix	1.	This	produces	infinitely	many	such	points	on	S1.	Here	are	the	first	
five	of	them:	(0,	1),	(2,	2),	(10,	7),	(40,	26)	(152,	97).	
(All	other	points	can	be	obtained	recursively	or	via	Binet-like	formulas.)	
	
These	five	points	determine	a	unique	conic;	we	derive	its	equation	(given	above)	in	
Appendix	2.	Here	is	its	graph	–	thanks	to	Desmos.com	--	which	we	label	as	CONIC.	
	
CONIC	3x2 + 2y2 − 6xy+ 6x − 6y+ 4 = 0 	

	
	
If	we	were	to	overlay	the	pictures,	it	certainly	appears	that	S1	and	S3	form	the	lower	
halves	of	the	two	branches	of	the	hyperbola.	
To	verify	this,	we	solve	each	equation	for	x,	focusing	on	quadrant	1.	

From	EQ:	 x = −1± 4y2 −1+ 2y 3y2 −3
3

. 	

Using	the	+	sign	with	a	positive	y	produces	the	points	on	S1.	

From	our	conic	equation:	 x = −1+ y± 3y2 −3
9

. 	

Using	the	+	sign	with	a	positive	y	produces	the	lower	half	of	the	branch	of	the	
hyperbola	in	the	first	quadrant.	



To	verify	our	claim,	we	need	to	show	that,	for	x,	y	positive,	

4y2 −1+ 2y 3y2 −3
3

= y+ 3y2 −3
9

. 	

	
Simple	algebra	shows	this	to	be	true.	
	
Therefore,	S1	equals	the	lower	half	of	the	first	quadrant	branch	of	the	hyperbola,	so	
the	hyperbola	satisfies	the	required	conditions.	
	
Similarly,	it	can	be	shown	that	S3	equals	the	lower	half	of	the	third	quadrant	branch	
of	the	hyperbola.	So	the	lower	branch	of	our	hyperbola	exactly	covers	S1	and	S3.	
	
Comment		By	the	exact	same	procedure,	we	find	that	the	lower	halves	of	the	
branches	of	the	hyperbola	3x2 + 2y2 + 6xy+ 6x + 6y+ 4 = 0, 	a	rotation	of	CONIC,	
exactly	cover	S2	and	S4.	
	
Appendix	1	In	order	that	x	and	y	be	positive	integers,	the	quadratics	under	the	
radicals	must	each	be	a	perfect	square.	
First	we	consider	 3x2 + 6x +1 = 3 x +1( )2 − 2 	

We	need	3 x +1( )2 − 2 = s2 ⇔ s2 −3m2 = −2, 	where	m	=	x	+	1.	
We	have	a	Pell-like	equation	with	initial	solution	 s1 =1,m1 =1. 	
All	other	solutions	are	given	by	the	recurrence	relations	
sk+1 = 2sk +3mk

mk+1 = sk + 2mk
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For	each	pair	 sk,mk( ) ,	we	have	 xk =mk −1 and 3xk
2 + 6xk +1 = sk. 	

	
Next	we	consider	 3y2 −3 = 3 y2 −1( ). 	
We	need	 y2 −1= 3t2 ⇔ y2 −3t2 =1. 	
We	have	a	Pell	equation	with	initial	solution	 y1 =1, t1 = 0. 	
All	other	solutions	are	given	by	the	recurrence	relations	
yk+1 = 2yk +3tk
tk+1 = yk + 2tk
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For	each	pair	 yk, tk( ) ,	we	have	 3yk2 −3 = 3tk. 	
	
Having	found	the	integer	values	which	make	each	radical	expression	an	integer,	we	
see		that	they	do	align	to	make	 3x2 + 6x +1 = y+ 3y2 −3. 	
	



The	first	few	steps	of	our	process:	

k	 s	 m	 x	=	m-1	 3x2 + 6x +1 =	s	 y	 t	
y+ 3y2 −3 	

						=	y	+	3t	
1	 1	 1	 0	 1	 1	 0	 1	
2	 5	 3	 2	 5	 2	 1	 5	
3	 19	 11	 10	 19	 7	 4	 19	
4	 71	 41	 40	 71	 26	 15	 71	
5	 265	 153	 152	 265	 97	 56	 265	
6	 989	 571	 570	 989	 362	 209	 989	
7	 3691	 2131	 2130	 3691	 1351	 780	 3691	

	
The	first	few	lattice	points	on	S1:	(0,	1),	(2,	2),	(10,	7),	(40,	26),	(152,	97),	(570,	362).	
Similarly,	we	could	find	all	lattice	points	on	S2,	S3	and	S4.	
	
Appendix	2	To	compute	the	equation	of	the	conic	determined	by	the	five	points	
P(0,	1),	Q(2,	2),	R(10,	7),	S(40,	26),	T(152,	97),	
we	avoid	solving	a	system	of	equations	by	using	a	technique	given	at	an	anonymous	
website:	
https://www.qc.edu.hk/math/Advanced%20Level/conic%20through%205%20poi
nts.htm	
(1)	The	line	through	P	and	Q:		x	–	2y	+2	=	0		
The	line	through	R	and	S:	19	x	–	30y	+20	=	0		
The	line	through	P	and	S:		5x	–	8y	+8	=	0		
The	line	through	Q	and	R:		5x	–	8y	+6	=	0		
	
(2)	PQ’RS:	(x	–	2y	+2)(19	x	–	30y	+20)	=	0	
PS’QR:	(5x	–	8y	+8)	(5x	–	8y	+6)	=	0	
	
(3)	A	linear	combination	of	these	two	equations:	
(x	–	2y	+2)(19	x	–	30y	+20)	+	k(5x	–	8y	+8)(	5x	–	8y	+6)	=	0	
	
(4)	Choose	k	to	make	T(152,	97)		satisfy	the	equation:	
(152	–	2*97	+2)(	19*152	–	30*97		+20)		
																								+	k(5*152		–	8*97		+8)(	5*152		–	8*97		+6)	=	0.	
This	forces	k	=	-1.	
(5)	Final	simplification	produces	the	equation	3x2 + 2y2 − 6xy+ 6x − 6y+ 4 = 0 	
It	is	straightforward	to	verify	that	our	five	points	satisfy	this	equation.	
	
FINAL	COMMENT	–	unraveling	the	mystery.	
Where	did	the	original	equation	EQ	come	from?	How	did	the	problem	poser	know	it	
would	intercept	an	unknown	hyperbola	infinitely	many	times?	
If	we	eliminate	the	radicals	in	EQ	by	squaring	(twice),	we	eventually	come	to	a	
fourth-degree	equation	in	x	and	y.		



If	we	compute	the	product	of	the	two	equations	representing	our	two	hyperbolas,	
we	obtain	the	identical	fourth-degree	equation!	The	graph	of	this	equation	is	the	
union	of	the	two	hyperbolas,	shown	below.	Thus,	the	graph	of	EQ	must	be	a	subset	
of	this	union.		
We	assume	that	the	Ken	Korbin	started	with	the	two	hyperbolas,	formed	the	fourth-
degree	equation,	then	strategically	manipulated	it	(e.g.	applying	quadratic	formula)	
to	obtain	EQ,	then	presented	it	for	us	to	enjoy.	
	
The	dual	hyperbolas	3x2 + 2y2 − 6xy+ 6x − 6y+ 4 = 0and	
3x2 + 2y2 + 6xy+ 6x + 6y+ 4 = 0 	
	

	 	
	
	
	
	
	
	
	
	
	


