
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. See the note at the end of this issue for new details concerning
the submission of new proposals and solutions. Solutions to previously stated problems
can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
July 15, 2021

• 5637: Proposed by Kenneth Korbin, New York, NY

In triangle ABC three circles are tangent to the incircle, and all of these circles are tangent
to two sides of the triangle.

The radii of these three circles are ra =
1

4
, rb =

4

9
, and rc =

16

49
. Find the sides of4ABC.

• 5638: Proposed by Daniel Sitaru, National Economic College,“Theodor Costescu” Drobeta
Turna-Severin, Romania

Let a, b, c be real numbers such that a, b, c ≥ −1, and a+ b+ c = 3. Then:(
a+ 1

a+ 3

)2

+

(
b+ 1

b+ 3

)2

+

(
c+ 1

c+ 3

)2

≤ 3

4
.

• 5639: Proposed by Dorin Mărghidanu, Corabia, Romania

If n ∈ N , calculate the limit of:

lim
n→∞

n∑
k=1

2k−1

(2k − 1) (2k+1 − 1) .

• 5640: Proposed by Titu Zvonaru, Comănesti, Romania

Let a, b, c be real numbers such that ab+ bc+ ca = 0. Prove that(
a2 + b2 + c2

) (
a2b2 + b2c2 + c2a2

)
≥ 54a2b2c2 − 162 max(a4bc, ab4c, abc4).

• 5641: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all integer numbers x1, x2, x3, . . . , xn such that

x41 + 6x22 < 4x32 + 5x2 − x1,
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x42 + 6x23 < 4x33 + 5x3 − x2,
· · ·

x4n−1 + 6x2n < 4x3n + 5xn − xn−1,
x4n + 6x21 < 4x31 + 5x1 − xn.

• 5642: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

∞∑
n=1

(−1)n−1Hn

(
1

n+ 1
+

1

n+ 2
− 1

n+ 3
− 1

n+ 4
+ · · ·

)
,

where Hn = 1 + 1
2 + · · ·+ 1

n
denotes the nth harmonic number.

Solutions

• 5619: Proposed by Kenneth Korbin, New York, NY

If x, y and z are positive integers such that

x2 + xy + y2 = z2

then there are two different Pythagorean triangles with area K = xyz(x+ y).

Find the sides of the triangles if z = 61.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We start with the following

Lemma:

Let x, y and z be integers such that

x2 + xy + y2 = z2.

Then there are integers a, b and c such that z = c(a2 + ab + b2) and one of the three
options applies:

(i) (x, y) = c(a2 − b2, 2ab+ b2)
(ii) (xy) = c(−a2 − 2ab, a2 − b2)

(iii) (x, y) = c(2ab+ b2,−a2 − 2ab).

For all options we have

xyz(x+ y) = ab(a− b)(a+ b)(b+ 2a)(a2 + ab+ b2)(a+ 2b)c4.

Proof:
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I provide a proof that is based on properties of the Eisenstein integers Z[ω] = {a+bω|a, b ∈
Z}, where ω = e

2πi
3 . Then (see for instance https://en.wikipedia.org/wiki/Eisenstein integer):

(i) Z[ω] forms a commutative ring of algebraic integers in the algebraic number field
Q(ω).

(ii) Z[ω] is an Euclidean domain whose norm N is given by N(a + bω) = a2 − ab + b2.
As a result of this Z[ω] is a factorial ring.

(iii) The group of units in Z[ω] is the cyclic group formed by the sixth roots of unity
in the complex plane. Specifically, they are {±1,±ω ± ω2} These are just the Eisenstein
integers of norm one.

(iv) An ordinary prime number (or rational prime) which is 3 or congruent to 1 (mod
3) is of the form (x2 − xy + y2) for some integers x, y and may therefore be factored into
(x+yω)(x+yω2) and because of that it is not prime in the Eisenstein integers. Ordinary
primes congruent to 2 (mod 3) cannot be factored in this way and they are primes in the
Eisenstein integers as well.

Let c = gcd(x, y). Then
(x
c

)2
+
(x
c

)(y
c

)
+
(y
c

)2
=
(z
c

)
and gcd

(x
c
,
y

c

)
= 1. Setting

x = cx′, y = cy′ and z = cz′ we may assume that gcd(x, y) = 1. Assume that

(x− ωy)(x− ω2t) = x2 + xy + y2 = z2. (1)

We factor z into Eisenstein primes:

z = p1p2 · · · prq1q1q2q2 · · · qsqs,

where p1, p2, .., pr are ordinary primes congruent to 2 (mod 3) and q1, q2, · · · , qs are Eisen-
stein primes of the form a − ωb. Here qj is the complex conjugate of qj . From (1) we
conclude that z has no primes factors that are congruent to 2 (mod 3), for if pj divides
(x−ωy)(x−ω2y) then it either divides x−ωy or it divides x−ω2y. In both cases pj divides
x and y which is not possible, since x and y are assumed to be relatively prime. For the
same reason, if qjqj 6= 3 and qj divides x−ωy then qj does not divide x−ωy, for otherwise
qjqj is an ordinary prime that divides x− ωy and thus divides x and y. So if qjqj 6= 3
then x−ωy is divisible by either (qj)

2 or by (qj)
2 . If qjqj = 3 then qj equals ω−1, and qj

equals ω2− 1 which is an associate of ω− 1, since ω2− 1 = (ω− 1)(ω+ 1) = −(ω− 1)ω2.
But then x and y are divisible by 3 contrary to our assumption.

To sum up: the representation

(x− ωy)(x− ω2y) = z2

implies that there are integers a and b, as well as a unit u such that

x− ωy = u(a− ωb)2.

Clearly, ω = ω4. So the units ω and ω2 can be incorporated into the square and we
conclude that there are numbers a and b such that either x−ωy = ±(a−ωb)2 or x−ωy =
±(aω − ω2b)2 = ±(b+ (a+ b)ω)2 or x− ωy = ±(aω2 − b)2 = ±(a+ b+ aω)2. Thus there
are numbers a and b such that

(x, y) = ±(a2 − b2, 2ab+ b2) or

(x, y) = ±(−a2 − 2ab, a2 + b2) or
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(x, y) = ±(2ab+ b2,−a2 − 2ab).

The first part of the lemma follows. Its easy to verify that for all of the three options we
have

xyz(x+ y) = ab(a− b)(a+ b)(b+ 2a)(a2 + ab+ b2)(a+ 2b)c4.

It is well known that if (u, v, w) is a Pythagorean triangle there are integers m and n such
that

u = m2 − n2, v = 2mn, w = m2 + n2.

The area of the triangle equals uv/2 = mn(m2 − n2). Hence we need to find all tuples
(a, b, c,m, n) such that

xyz(x+ y) = mn(m2 − n2) = ab(a− b)(a+ b)(b+ 2a)(a2 + ab+ b2)(a+ 2b)c4.

This Diophantine equation has at least the solutions

m = c(a2 + ab+ b2), n = c(a− b)(a+ b), (2)
m = c(b− a)(a+ b), n = c(a2 + ab+ b2), (3)
m = c(a2 + ab+ b2), n = bc(2a+ b), (4)
m = −bc(2a+ b), n = c(a2 + ab+ b2), (5)
m = c(a2 + ab+ b2), n = −ac(a+ 2b), (6)
m = ac(a+ 2b), n = c(a2 + ab+ b2). (7)

From (2) to (7) we derive the following Pythagorean triangles:

(c2(a2 + ab+ b2)2 − c2(a− b)2(a+ b)2)2 + (2c2(a2 + ab+ b2)(a− b)(a+ b))2

= (c2(a2 + ab+ b2)2 + c2(a− b)2(a+ b)2)2, (8)

(c2(a2 + ab+ b2)2 − b2c2(2a+ b)2 + (2c2(a2 + ab+ b2)b(2a+ b))2

= (c2(a2 + ab+ b2)2 + b2c2(2a+ b)2)2, (9)

(c2(a2 + ab+ b2)2 − a2c2(a+ 2b)2)2 + (2c2(a2 + ab+ b2)a(a+ 2b))2

= (c2(a2 + ab+ b2)2 + a2c2(a+ 2b)2)2. (10)

If z = 61 then (x, y) ∈ {(9, 56), (56, 9}, and xyz(x+ y) = 1998360. The equation

mn(m2 − n2) = mn(m+ n)(m− n) = 1998360 has the solutions

(m,n) ∈ {±(61, 9),±(−9, 61), (61, 56), (−56, 61),±(65, 61),±(−61, 65) with the associ-
ated Pythagorean triangles

(1098, 3640, 3802), (3640, 1098, 3802), (585, 6832, 6857), (6832, 585, 6857),

(504, 7930, 7946), (7930, 504, 7946). They are found by an exhaustive search taking into
account that 1998360 = 23 · 33 · 5 · 7 · 13 · 61 has only finitely many divisors.

This result can be obtained as well through the lemma and formulas (8), (9), (10). Indeed,
z = 61 = c(a2 + ab+ b2) has the solutions

(a, b, c) ∈ {(−9, 4, 1), (−9, 5, 1, (−5,−4, 1), (−5, 9, 1), (−4,−5, 1), (−4, 9, 1), (−1, 0, 61), (−1, 1, 61),

(0,−1, 61), (0, 1, 61), (1,−1, 61), (1, 0, 61), (4,−9, 1), (4, 5, 1), (5,−9, 1), (5, 4, 1), (9,−5, 1), (9,−4, 1)}.
Inserting these values into (8), (9), (10) gives exactly the Pythagorean triangles identified
above.

Remark The lemma is linked to integer triangles with an angle of 2π/3 . A reference is
the Wikipedia article
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(https://en.wikipedia.org/wiki/Integer triangle#Integer triangles with120.C2.B0 angle) which
cites the three papers:

• Burn, Bob, “Triangles with a 60◦ angle and sides of integer length”, Mathematical Gazette
87, March 2003, 148-153.

• Read, Emrys, “On integer-sided triangles containing angles of 120◦ or 60◦”, Mathematical
Gazette 90, July 2006, 299-305.

• Selkirk, K., “Integer-sided triangles with an angle of 120◦”, Mathematical Gazette 67,
December 1983, 251-255.

Solution 2 by Michel Bataille, Rouen, France

Since x(x+ y) = z2− y2 and y(x+ y) = z2− x2, we have K = yz(z2− y2) = xz(z2− x2).
Therefore K is the area of the Pythagorean triangles with sides

2yz, z2 − y2, z2 + y2, and 2xz, z2 − x2, z2 + x2. (1)

These triangles are distinct since their hypotenuses z2 + y2, z2 + x2 are. Indeed, we must
have x 6= y because of the impossible equality 3x2 = z2 in the standard decomposition of
z2 the exponent of the prime 3 is even while it is odd in the decomposition of 3x2.

Now, suppose that z = 61. We show that for positive integers x, y, the equality x2 +
xy + y2 = 612 holds if and only if {x, y} = {9, 56}. A short calculation shows that
x2 + xy + y2 = 612 if {x, y} = {9, 56}. Conversely, let x, y be positive integers such that
x2 + xy + y2 = 612

First, x, y are coprime: if p were a prime dividing x and y, say x = px1, y = py1, we would
have p2(x21 +x1y1 + y21) = 612, hence p = 61 and x21 +x1y1 + y21 = 1, a contradiction since
x1, y1 are positive integers.

Second, we have x
61−y = 61+y

x+y = m
n where m,n are coprime positive integers such that

m > n (since x < 61). We readily deduce that

(m2 −mn+ n2)x = 61m(2n−m) and (m2 −mn+ n2)y = 61(m2 − n2). (2)

Note that m < 2n (since m2 −mn+ n2 > 0) so that n < m < 2n.

Now, we prove that either m2 −mn + n2 = 61 or m2 −mn + n2 = 3 · 61, and that the
latter can occur only if 2n−m and 2m− n are multiple of 3.

If m(2n−m) and m2 − n2 are coprime, then from (2)

m2−mn+n2 = gcd((m2−mn+n2)x, (m2−mn+n2)y) = gcd(61m(2n−m), 61(m2−n2)) = 61.

Otherwise, let p be a prime divisor of both m(2n − m) and m2 − n2. Then, p cannot
divide m (p must divide m− n or m+ n and so it would also divide n), hence p divides
2n−m (and m− n or m+ n).
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But p cannot divide m − n since otherwise p would divide (2n − m) + (m − n) = n
and also m = (m − n) + n. Thus, p divides m + n and also (2n − m) + (m + n) =
3n, 2(m+ n)− (2n−m) = 3m and 2m− n = 3m− (m+ n). It follows that p = 3, with
2n−m and 2m−n multiple of 3. A consequence is that gcd(m(2n−m), (m2−n2)) = 3r for
some positive integer r and so m2−mn+n2 = 3r ·61. But 32 divides (2n−m)(2m−n) =
3mn − 2(m2 − mn + n2) = 3(mn − 2 · 3r−1 · 61) and so 3 divides mn − 2 · 3r−1 · 61.
Since 3 does not divide mn (otherwise it would divide m2 + n2 = (m2 −mn+ n2) +mn,
which is impossible since m,n are not both multiple of 3), we must have r = 1 and so
m2 −mn+ n2 = 3 · 61.

Let us examine the two possibilities.

• If m2 −mn + n2 = 61, then (2m − n)2 + 3n2 = 244, hence n2 ≤ 81 and (2m − n)2 =
244− 3n2. Successively trying the squares 1, 4, 9, 16, 25, 36, 49, 64, 81 for n2 and recalling
that n < m < 2n, we easily obtain that the only possibility is m = 9 and n = 5, which
leads to x = 9 and y = 56.
• If m2−mn+n2 = 3 ·61, then (2m−n)2 +3n2 = 3 ·4 ·61 and we know that 2m−n = 3w
for some positive integer w such that n

3 < w < n. We deduce that n2 + 3w2 = 244.
Proceding as in the previous case, we see that the only possibility is w = 5, n = 13
leading first to m = 14, n = 13 and then to x = 56, y = 9.
To conclude, we return to (1) and calculate the sides of the Pythagorean triangle when,
say, x = 9, y = 56, z = 61. We obtain the triples of sides

(6832, 585, 6857), (1098, 3640, 3802).

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. We show that there are three different Pythagorean triangles, given by:

a1 = xy, b1 = 2z(x+ y), c1 = 2x2 + 3xy + 2y2

a2 = x(x+ y), b2 = 2yz, c2 = x2 + xy + 2y2

a3 = y(x+ y), b3 = 2xz, c3 = 2x2 + xy + y2

It is straightforward to verify that a1b1 = a2b2 = a3b3 = 2K. Also, using z2 = x2+xy+y2,
we check that a2i + b2i = c2i for i ∈ {1, 2, 3}. When z = 61, we may take x = 9 and
y = 56, so that the sides of the three triangles are (504, 7930, 7946), (585, 6832, 6857), and
(3640, 1098, 3802).

In order to show in general that these are three different triangles, we first note that
ai 6= aj for i 6= j: We have a1 < a2 and a1 < a3, and if a2 = a3, then x = y, which would
imply 3x2 = z2 for positive integers x and z. Next, we note that a1 < b2 and a1 < b3,
since x < z and y < z. Finally, if a2 = b3, then x+ y = 2z, so x2 + 2xy+ y2 = 4z2, which
would contradict x2 + xy + y2 = z2.

Solution 4 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

6



We first find the solutions of x2 +xy+y2 = 612. Multiply the equation by 4 and complete
the square to find (2x + y)2 + 3y2 = 4 · 612. We must have 1 ≤ y ≤ 2 · 61/

√
3 ≈ 70.4.

Now a quick search shows the only positive integer solutions (x, y) are precisely (56, 9)
and (9, 56). Thus

K = xyz(x+ y) = 1998360 = 23 · 32 · 5 · 7 · 13 · 61.

Now suppose there exists a Pythagorean triangle with sides a, b and hypotenuse c. Then
the area of this triangle is 1

2ab. Thus ab = 2K. So we need ab = 2K with a2 +b2 a square.
Now 2K has only 240 divisors so a quick search yields (wlog a < b) only three possible
triangles with sides (a, b, c) given by

(504, 7930, 7946), (585, 6832, 6857), (1098, 3640, 3802).

Solution 5 by The Eagle Problem Solvers, Georgia Southern University, Sates-
boro, GA and Savannah, GA

We show that there are actually three different Pythagorean triangles with area K =
xyz(x+ y) for each triple (x, y, z) of positive integers satisfying x2 + xy + y2 = z2.

Pythagorean triples have the well-known parametrization (a, b, c) = (v2−u2, 2uv, u2+v2),
where u and v are positive integers with u < v. A Pythagorean triangle with lengths
(a, b, c) has area ab/2 = uv(v2−u2). For each triple (x, y, z) of positive integers satisfying
x2 + xy + y2 = z2, we show there are three different Pythagorean triangles with area
K = xyz(x + y) by choosing (u, v) to be one of (x, z), (y, z), or (z, x + y). Notice that
(x+ y)2 = z2 + xy > z2, so that x+ y > z > max{x, y}.
If (u, v) = (x, z), then z2 − x2 = y(x + y) and (a, b, c) = (y(x + y), 2xz, x2 + z2) is a
Pythagorean triple. If (u, v) = (y, z), then z2 − y2 = x(x + y) and (a, b, c) = (x(x +
y), 2yz, y2 + z2) is a Pythagorean triple. If (u, v) = (z, x + y), then (x + y)2 − z2 = xy
and (a, b, c) = (xy, 2z(x+ y), z2 + (x+ y)2) is a Pythagorean triple. In all three cases, the
area of the Pythagorean triangle is ab/2 = xyz(x+ y) = K.

The solutions to x2 + xy + y2 = z2 may be viewed as points on a curve in the projective
plane. Lines through the point (−1 : 0 : 1) on the curve are given by ty = s(x+ z), where
s and t are not both zero. This line intersects the curve in a second point (x : y : z) =
(t2−s2 : s2 +2st : s2 +st+ t2), which gives a parametrization of positive integer solutions
to x2 + xy + y2 = z2 for positive integers s and t with s < t:

(x, y, z) = (t2 − s2, s2 + 2st, s2 + st+ t2).

If z = 61, then the only pair of positive integers satisfying s2 + st+ t2 = 61 with s < t is
(s, t) = (4, 5), so x = t2 − s2 = 9 and y = s2 + 2st = 56. Thus, the Pythagorean triangles
with area K = xyz(x+ y) = 1, 998, 360 are

(y(x+ y), 2xz, x2 + z2) = (3640, 1098, 3802),

(x(x+ y), 2yz, y2 + z2) = (585, 6832, 6857),

and
(xy, 2z(x+ y), z2 + (x+ y)2) = (504, 7930, 7946).

Editor′s note: After this problem was posted its author Kenneth Korbin found a third
solution to it. This third solution is also displayed in the solutions featured above.
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Also solved by Dionne Bailey, Elsie Campbell,and Charles Diminnie, Angelo
State University, San Angelo, TX; Kee-Wai Lau, Hong Kong, China; David E.
Manes, Oneonta, NY; Trey Smith, Angelo State University, San Angelo, TX;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA; Hyun Bin Yoo, South Korea and the proposer.

• 5620: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu” Drobeta
Turnu-Severin, Mehedinti, Romania

Prove: If a, b,∈ [0, 1]; a ≤ b, then

4
√
ab ≤ a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≤ 2(a+ b).

Solution 1 by Moti Levy, Rehovot, Israel

Let

α :=
√
ab ≤ 1, β :=

a+ b

2
≤ 1, r :=

b

a
,

Then the original inequality can be reformulated as

√
r ≤ rα + rβ + r1−α + r1−β

4
≤ 1

2
+ r.

Since f (x) := rx is convex function, then

rα + rβ + r1−α + r1−β

4
≥ r

α+β+(1−α)+(1−β)
4 =

√
r.

The Bernoulli’s inequality is

(1 + x)α ≤ 1 + αx, 0 ≤ α ≤ 1, x ≥ −1.

Using the Bernoulli’s inequality we get

rα ≤ 1 + α (r − 1) ,

r1−α ≤ 1 + (1− α) (r − 1)

hence
rα + r1−α ≤ 1 + r.

It follows that (
rα + r1−α

)
+
(
rβ + r1−β

)
4

≤ 1

2
+ r.

Remark: The constraint a ≤ b is redundant.

Solution 2 by Michel Bataille, Rouen, France

We suppose a, b ∈ (0, 1] and do not use the hypothesis a ≤ b.

Let

M = a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
.
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Since
√
ab and a+b

2 are in (0, 1], the functions x 7→ x
√
ab and x 7→ x

a+b
2 are concave on

(0,∞). It follows that

a

(
b

a

)√ab
+ b

(a
b

)√ab
≤ (a+ b)

(
a

a+ b
· b
a

+
b

a+ b
· a
b

)√ab
= a+ b

and

a

(
b

a

)a+b
2

+ b
(a
b

)a+b
2 ≤ (a+ b)

(
a

a+ b
· b
a

+
b

a+ b
· a
b

)a+b
2

= a+ b.

By addition, M ≤ 2(a+ b).
If m is a positive real number, the function x 7→ mx is convex on R. Taking successively

m = b
a and m = a

b and setting k = 1
2

(√
ab+ a+b

2

)
, it follows that

(
b

a

)√ab
+

(
b

a

)a+b
2

≥ 2

(
b

a

)k
and (a

b

)√ab
+
(a
b

)a+b
2 ≥ 2

(a
b

)k
.

Using x+ y ≥ 2
√
xy for positive x, y, we deduce that

M ≥ 2

(
a

(
b

a

)k
+ b

(a
b

)k)
≥ 2 · 2

(
a

(
b

a

)k
· b
(a
b

)k)1/2

and M ≥ 4
√
ab follows.

Solution 3 by Arkady Alt, San Jose, California

Applying inequality x+ y ≥ 2
√
xy, x, y > 0 to (x, y) =

(
a

(
b

a

)√ab
, b
(a
b

)√ab)

and to (x, y) =

a( b
a

)a+b
2
, b
(a
b

)a+b
2

 we obtain

a

(
b

a

)√ab
+ b

(a
b

)√ab
≥ 2

√
a

(
b

a

)√ab
· b
(a
b

)√ab
= 2
√
ab and

a

(
b

a

)a+b
2

+ b
(a
b

)a+b
2 ≥ 2

√√√√
a

(
b

a

)a+b
2
· b
(a
b

)a+b
2

= 2
√
ab.

Thus, a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≥ 4
√
ab.

For function f (t) = tp , which for p ∈ [0, 1] is concave down on (0,∞),

holds inequality
axp + byp

a+ b
≤
(
ax+ by

a+ b

)p
for any x, y > 0.

Since
√
ab,

a+ b

2
∈ [0, 1] then applying this inequality to

(x, y, p) =

(
b

a
,
a

b
,
√
ab

)
and (x, y, p) =

(
b

a
,
a

b
,
a+ b

2

)

9



we obtain

a

(
b

a

)√ab
+ b

(a
b

)√ab
a+ b

≤

a · ba + b · a
b

a+ b


√
ab

= 1 ⇐⇒

a

(
b

a

)√ab
+ b

(a
b

)√ab
≤ a+ b and

a

(
b

a

)a+b
2

+ b
(a
b

)a+b
2

a+ b
≤

a · ba + b · a
b

a+ b


a+b
2

= 1 ⇐⇒

a

(
b

a

)a+b
2

+ b
(a
b

)a+b
2 ≤ a+ b.

Therefore, a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≤ 2 (a+ b) .

Solution 4 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY

In the following proof, we use Heinz’s inequality:

√
ab ≤ a1−αbα + aαb1−α

2
≤ a+ b

2
for a, b > 0, α ∈ [0, 1],

first with α =
√
ab and then with α = (a+ b)/2.

First we rearrange the central term in the proposed inequality:

a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)

= a

(
b

a

)√ab
+ a

(
b

a

)a+b
2

+ b
(a
b

)√ab
+ b

(a
b

)a+b
2

=

(
a · b

√
ab

a
√
ab

+ b · a
√
ab

b
√
ab

)
+

(
a · b

a+b
2

a
a+b
2

+ b · a
a+b
2

b
a+b
2

)

= 2

(
a1−
√
abb
√
ab + a

√
abb1−

√
ab

2

)
+ 2

(
a1−

a+b
2 b

a+b
2 + a

a+b
2 b1−

a+b
2

2

)
.

Now the Heinz inequality yields

4
√
ab ≤ 2

(
a1−
√
abb
√
ab + a

√
abb1−

√
ab

2

)
+ 2

(
a1−

a+b
2 b

a+b
2 + a

a+b
2 b1−

a+b
2

2

)

≤ 2

(
a+ b

2

)
+ 2

(
a+ b

2

)
= 2(a+ b).

Solution 5 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC
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First we prove that

a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≥ 4
√
ab. (1)

To prove this, we will use the well-known inequality that for all p > 0 and any real number r

pr +
1

pr
≥ 2. (2)

For all a > 0 and b > 0, using (2) in the above step, we can write

a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)

=
√
ab

√a

b

( b
a

)√ab
+

√(
b

a

)a+b+

√
b

a

((a
b

)√ab
+

√(a
b

)a+b)

=
√
ab

[((
b

a

)− 1
2
+
√
ab

+

(
b

a

)− 1
2
+a+b

2

)
+

((a
b

)− 1
2
+
√
ab

+
(a
b

)− 1
2
+a+b

2

)]

√
ab

[((
b

a

)− 1
2
+
√
ab

+
(a
b

)− 1
2
+a+b

2

)
+

((
b

a

)− 1
2
+
√
ab

+
(a
b

)− 1
2
+a+b

2

)]

≥
√
ab(2 + 2) = 4

√
ab.

This completes the proof of (1).

Now, we prove that

a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≤ 2(a+ b). (3)

To prove (3), we notice that, for a ∈ (0, 1] and b(0, 1].

With a ≤ b, we have


b
√
ab − a

√
ab ≥ 0

b1−
√
ab − a1−

√
ab ≥ 0,

and


b
a+b
2 − a

a+b
2 ≥ 0

b1−
a+b
2 − a1−

a+b
2 ≥ 0

. (4)

Also,

−2a− 2b = −a
√
aba1−

√
ab − a

a+b
2 a1−

a+b
2 − b

√
abb1−

√
ab − b

a+b
2 b1−

a+b
2 (5)

11



Now, using (4) and (5), we have

a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
− 2a− 2b

= a1−
√
abb
√
ab + a1−

a+b
2 b

a+b
2 + a

√
abb1−

√
ab + a

a+b
2 b1−

a+b
2

−a
√
aba1−

√
ab − a

a+b
2 a1−

a+b
2 − b

√
abb1−

√
ab − b

a+b
2 b1−

a+b
2

=
(
a1−
√
abb
√
ab − a

√
aba1−

√
ab
)

+
(
a1−

a+b
2 b

a+b
2 − a

a+b
2 a1−

a+b
2

)
+
(
a
√
abb1−

√
ab − b

√
abb1−

√
ab
)

+
(
a
a+b
2 b1−

a+b
2 − b

a+b
2 b1−

a+b
2

)

= a1−
√
ab
(
b
√
ab − a

√
ab
)

+ a1−
a+b
2

(
b
a+b
2 − a

a+b
2

)
−b1−

√
ab
(
b
√
ab − a

√
ab
)
− b1−

a+b
2

(
b
a+b
2 − a

a+b
2

)

= −
[(
b
√
ab − a

√
ab
)(

b1−
√
ab − a1−

√
ab
)

+
(
b
a+b
2 − a

a+b
2

)(
b1−

a+b
2 − a1−

a+b
2

)]
≤ 0.

This completes the proof of (3).

Now, combining the inequalities from (1) an (3), we conclude that

4
√
ab ≤ a

( b
a

)√ab
+

√(
b

a

)a+b+ b

((a
b

)√ab
+

√(a
b

)a+b)
≤ 2(a+ b)

Also solved by Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5621: Proposed by Stanley Rabinowitz, Brooklyn, NY

Given; non-negative integer n, real numbers a and c with ac 6= 0, and the expression a+cx2 ≥ 0.

Express:

∫ (
a+ bc2

) 2n+1
2 dx as the sum of elementary functions.

Solution 1 by Michel Bataille, Rouen, France

We will make use of the following lemma: if z is a nonzero complex number, then

12



(i) (z + z−1)2n+2 =

(
2n+ 2

n+ 1

)
+

n∑
j=0

(
2n+ 2

n− j

)
(z2j+2 + z−(2j+2))

(ii)(z − z−1)2n+2 = (−1)n+1

(
2n+ 2

n+ 1

)
+ (−1)n

n∑
j=0

(−1)j
(

2n+ 2

n− j

)
(z2j+2 + z−(2j+2))

Proof: (i) Applying the binomial theorem, we obtain

(z + z−1)2n+2 =

n∑
k=0

(
2n+ 2

k

)
z2n+2−2k +

(
2n+ 2

n+ 1

)
+

2n+2∑
k=n+2

(
2n+ 2

k

)
z2n+2−2k

=

(
2n+ 2

n+ 1

)
+

n∑
j=0

(
2n+ 2

n− j

)
z2j+2 +

n∑
j=0

(
2n+ 2

n+ 2 + j

)
z−(2j+2)

=

(
2n+ 2

n+ 1

)
+

n∑
j=0

(
2n+ 2

n− j

)
(z2j+2 + z−(2j+2))

(the latter because
(

2n+2
n+2+j

)
=
(

2n+2
2n+2−(n+2+j)

)
). The proof of (ii) is similar.

Turning to the problem, three cases are to be considered, depending on the signs of a and c.
Case 1: if a > 0, c > 0. The substitution x = u

√
a
c gives∫

(a+ cx2)
2n+1

2 dx =
an+1

√
c

∫ (√
1 + u2

)2n+1
du. (1)

To calculate
∫ (√

1 + u2
)2n+1

du, we use the substitution u = sinh t, du = cosh t and obtain∫ (√
1 + u2

)2n+1
du =

∫
(cosh t)2n+2 dt = 2−(2n+2)

∫
(et + e−t)2n+2 dt. (2)

From the part (i) of the lemma with z = et,∫
(et + e−t)2n+2 dt =

(
2n+ 2

n+ 1

)
· t+ 2

n∑
j=0

(
2n+ 2

n− j

)∫
(cosh[(2j + 2)t]) dt

=

(
2n+ 2

n+ 1

)
· t+ 2

n∑
j=0

(
2n+ 2

n− j

)
sinh[(2j + 2)t]

2j + 2
.

The answer follows from (1), (2) and t = sinh−1
(
x
√

c
a

)
: up to an additive constant∫

(a+ cx2)
2n+1

2 dx =

an+1

√
c

 1

22n+2

(
2n+ 2

n+ 1

)
sinh−1

(
x

√
c

a

)
+

1

22n+1

n∑
j=0

(
2n+ 2

n− j

)
sinh

[
(2j + 2) sinh−1

(
x
√

c
a

)]
2j + 2


Case 2: a > 0, c < 0. Similarly, the successive substitutions x = u

√
a
|c| (|u| ≤ 1 and u =

sin t, |t| ≤ π/2, leads to∫
(a+ cx2)

2n+1
2 dx =

an+1√
|c|

∫
(cos t)2n+2 dt =

1

22n+2

∫
(eit + e−it)2n+2 dt.

13



Then, the part (i) of the lemma with z = eit yields∫
(eit + e−it)2n+2 dt =

(
2n+ 2

n+ 1

)
· t+ 2

n∑
j=0

(
2n+ 2

n− j

)∫
(cos(2j + 2)t)2n+2 dt

=

(
2n+ 2

n+ 1

)
· t+ 2

n∑
j=0

(
2n+ 2

n− j

)
sin(2j + 2)t

2j + 2
.

The answer is deduced in the same way as above: up to an additive constant,
∫

(a+cx2)
2n+1

2 dx =

an+1√
|c|

 1

22n+2

(
2n+ 2

n+ 1

)
sin−1

(
x

√
|c|
a

)
+

1

22n+1

n∑
j=0

(
2n+ 2

n− j

)sin

[
(2j + 2) sin−1

(
x

√
|c|
a

)]
2j + 2



Case 3: a < 0, c > 0. In that case either x ≥
√
|a|
c or x ≤ −

√
|a|
c . We use the substitution

x = u

√
|a|
c and u = cosh t (if u ≥ 1) or u = − cosh t (if u ≤ −1) for t ≥ 0. Setting ε = u

cosh t we

obtain that
∫

(a+ cx2)
2n+1

2 dx =
∫
|a|

2n+1
2

(
cx2

|a| − 1
) 2n+1

2
dx =

|a|n+1

√
c

∫ (√
u2 − 1

)2n+1
du =

ε|a|n+1

√
c

∫
(sinh t)2n+2 dt =

ε|a|n+1

√
c
· 1

22n+2

∫
(et − e−t)2n+2 dt

Using the part (ii) of the lemma, we obtain (up to an additive constant)∫
(et − e−t)2n+2 dt = (−1)n+1

(
2n+ 2

n+ 1

)
t+ (−1)n

n∑
j=0

(
2n+ 2

n− j

)
sinh[(2j + 2)t]

2j + 2
.

We come back to the variable x as above.

Solution 2 by Moti Levy, Rehovot, Israel

Let

In (t) :=

∫ (
1 + t2

)n+ 1
2 dt. (1)

Observing the first three definite integrals,

I0 (t) = t
√
t2 + 1

(
1

2

)
+

1

2
ln
(
t+
√
t2 + 1

)
,

I1 (t) = t
√
t2 + 1

(
5

8
+

1

4
t2
)

+
3

8
ln
(
t+

√
t2 + 1

)
,

I2 (t) = t
√
t2 + 1

(
11

16
+

13

24
t2 +

1

6
t4
)

+
5

16
ln
(
t+
√
t2 + 1

)
,

we claim that

In (t) =
√

1 + t2
n∑
k=0

ak,nt
2k+1 + (1− a0,n) ln

(
t+
√

1 + t2
)
, (2)
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where the polynomial coefficients satisfies the recurrence

2kak−1,n + (2k + 1) ak,n =

(
n+ 1

k

)
(3)

with initial condition

an,n =
1

2 (n+ 1)
. (4)

Change of variable t =
√

c
ax gives the required indefinite integral:∫ (

a+ cx2
) 2n+1

2 dx =
an+1

√
c
In

(√
c

a
x

)
.

Proof of claim:
To show that In (t) is the antiderivative of

(
1 + t2

)n+ 1
2 , we differentiate In (t) defined in (Eq.

2) and use the recurrence defined by (Eq. 3) and initial condition (Eq 4).

dIn (t)

dt
=

t√
1 + t2

n∑
k=0

ak,nt
2k+1 +

√
1 + t2

n∑
k=0

ak,n (2k + 1) t2k + (1− a0,n)
1√

1 + t2

=
1√

1 + t2

(
n∑
k=0

ak,nt
2k+2 +

(
1 + t2

) n∑
k=0

ak,n (2k + 1) t2k + (1− a0,n)

)

=
1√

1 + t2

(
n∑
k=0

ak,nt
2k+2 +

n∑
k=0

ak,n (2k + 1) t2k +
n∑
k=0

ak,n (2k + 1) t2k+2 + (1− a0,n)

)

=
1√

1 + t2

(
n+1∑
k=1

ak−1,nt
2k +

n∑
k=0

ak,n (2k + 1) t2k +

n+1∑
k=1

ak−1,n (2k − 1) t2k + (1− a0,n)

)

=
1√

1 + t2

(
n∑
k=1

(2kak−1,n + ak,n (2k + 1)) t2k + an,nt
2n+2 + an,n (2n+ 1) t2n+2 + a0,n + (1− a0,n)

)

=
1√

1 + t2

(
n∑
k=1

(2kak−1,n + ak,n (2k + 1)) t2k + (2n+ 2) an,nt
2n+2 + a0,n + (1− a0,n)

)

=
1√

1 + t2

(
1 +

n∑
k=1

(2kak−1,n + (2k + 1) ak,n) t2k + t2n+2

)
=

1√
1 + t2

n+1∑
k=0

(
n+ 1

k

)
t2k

=
1√

1 + t2

(
1 + t2

)n+1
=
(
1 + t2

)n+ 1
2 .

To complete this solution, we find closed form expression for the coefficients (ak,n)nk=0 .

The recurrence relation defined in (Eq. 3) is a first order linear recurrence relation with variable
coefficients.
We reformulate (Eq. 3) by setting

yk,n := an−k,n.

The recurrence relation for yk,n is

2 (n− k) yk+1,n = − (2n− 2k + 1) yk,n +

(
n+ 1

n− k

)
, y0,n =

1

2 (n+ 1)
. (5)
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or

2 (n− k + 1) yk,n = − (2n− 2k + 3) yk−1,n +

(
n+ 1

k

)
, y0,n =

1

2 (n+ 1)
. (6)

One of the methods for solving recurrence relation of this type is to use summation factor
F (k, n) defined as follows:

F (k, n) :=

k−1∏
i=1

2 (n− i+ 1)

k∏
j=1

(− (2n− 2j + 3))

= (−1)k
n!

(n− k + 1)!

Γ
(
n− k + 3

2

)
2Γ
(
n+ 3

2

)

= (−1)k 4k
(
2n−2k+1
n−k

)(
2n
n

) . (7)

If we multiply both sides of (6) by F (k, n) then the recurrence becomes

dk,n = dn,k−1 + F (k)

(
n+ 1

k

)
, (8)

where
dk,n := − (2n− 2k + 1)F (k + 1) yk,n.

Recurrence (8) is linear recurrence with constant coefficients. Hence we can readily write the
solution of (6),

yk,n =
y0,n +

∑k
m=1 F (m)

(
n+1
m

)
− (2n− 2k + 1)F (k + 1)

.

After some simplification we get,

yk,n =
(−1)k

2 (2n− 2k + 1)
(
2n−2k
n−k

)
4k

k∑
m=0

(−1)m 4m
(

2n− 2m+ 1

n−m

)(
n+ 1

m

)
,

which implies that

ak,n = yn−k,n =
(−1)n−k

2 (k + 1)
(
2k
k

)
4n−k

n−k∑
m=0

(−1)m 4m
(

2n− 2m+ 1

n−m

)(
n+ 1

m

)
. (9)

Equivalent expression for the coefficients (ak,n)nk=0 (by reversing the summation direction in
(9)) is

ak,n =
1

2 (2k + 1)
(
2k
k

) n−k∑
m=0

(−1)m

4m

(
2k + 2m+ 1

k +m

)(
n+ 1

k +m+ 1

)
. (10)

Remark: Another equivalent closed form of the coefficients (ak,n)nk=0 is

ak,n =
1

2 (k + 1)

(
n+ 1

k + 1

)
3F2

(
1, k +

3

2
, k − n; k + 2, k + 2; 1

)
where 3F2 (a, b, c; d, e; z) is the generalized hypergeometric function.
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Solution 3 by Albert Stadler, Herrliberg, Switzerland

We refer to formulas 2.260.3 and 2.261 of [1] which state:

Let R(x) = a+ bx+ cx2,∆ = 4ac− b2. Then

(i)

∫ √
R2n+1(x)dx =

(2cx+ b)
√
R(x)

4(n+ 1)c

(
Rn(x)+

n−1∑
k=0

(2n+ 1)(2n− 1)c . . . (2n− 2k + 1)

8k+1n(n− 1) · · · (n− k)

(
∆

c

)k+1

Rn−k−1(x)

)
+

(2n+ 1)!!

8n+1(n+ 1)!

(
∆

c

)n+1 ∫ dx√
R(x)

.

(ii)

∫
dx√
R(x)

=
1√
c

ln
(

2
√
R(x) + 2cx+ b

)
, c > 0.

Reference

[1] I.S. Gradshteyn/ I.M. Ryzhik, Table of Integrals, Series, and Products, corrected and
enlarged edition, Academic Press, 1980.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Denote
∫

(a+ cx2)
2n+1

2 dx by I = I(a, c, n, x), and let K be a constant, not necessarily the same
in each occurrence. We show that

I=

(
2n+1
n

)
2

(
n∑
k=0

((n− k)!)2

22k(2n− 2k + 1)!
ak(a+ cx2)n−k+

1
2

)
x+

(
2n+1
n

)
an+1

22n+1
√
c

ln

(√
cx+

√
a+ cx2 −

√
a

√
cx−

√
a+ cx2 +

√
a

)
+K, (1)

I=
(a+ cx2)n+

3
2

2(n+ 1)!

(
n∑
k=0

(2k)!(n− k)!ak

(22k)(k!)ck+1x2k+1

)
+

(
2n+1
n

)
an+1

(22n+1)
√
c

ln

(√
a+ cx2 +

√
cx−

√
−a√

a+ cx2 −
√
cx+

√
−a

)
−
n+1∑
k=1

1

2k − 1

(√
a+ cx2√
cx

)2k−1
+K, (2)

and

I =

(
2n+ 1

n

)( n∑
k=0

ak(a+ cx2)n−k+
1
2

22k+1(n− k + 1)
(
2n−2k+1
n−k

))x+
sin−1

(√
−c
a x
)

22n+1
√
−c

an+1

+K (3)
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according as a > 0 and c > 0, a < 0 and c > 0, a > 0 and c < 0. We suppose that x > 0 in the
proofs. If x < 0, we put x = −y and work with y.

To prove (1) we substitute x =
√

a
c tan θ to get I =

an+1

√
c

∫
sec2n+3 θdθ.

According to entry, section 2.519 on p. 156 of [1], we have
∫

sec2n+3 θdθ =

sin θ

2(n!)((n+ 1)!)

(
n∑
k=0

(2n+ 1)!((n− k)!)2

22k(2n− 2k + 1)!
sec2(n−k+1) θ

)
+

(
2n+1
n

)
22n+1

ln tan

(
π

4
+
θ

2

)
+K.

Since sin θ =

√
θ

a+ cx2
x, sec2 θ =

a+ cx2

a
, and tan

θ

2
=

√
a+ cx2 −

√
a√

cx
, we obtain (1) readily.

To prove (2), we substitute x =

√
−a
c

sec θ, to get

I =
(−a)n+1

√
c

∫
tan2n+2 θ sec θdθ. According to entries 1 and 3 , section 2.516 on pp.155-156 of

[1], we have

∫
tan2n+2 θ sec θdθ =

sin2n+3 θ

2(n+ 1)!

(
n∑
k=0

(−1)k(2k)!(n− k)!

22k)(k!)
sec2(n−k+1) θ

)

+
(−1)n+1

(
2n+1
n

)
22n+ 1

(
ln tan

(
π

4
+
θ

2

)
−
n+1∑
k=1

sin2k−1 θ

2k − 1

)
+K.

Since sin θ =
a+ cx2√

cx
, sec2 θ =

cx2

−a
, and tan

θ

2
=

√
cx−

√
−a√

a+ cx2
, we obtain (2) readily.

To prove(3), we substitute x =

√
a

−c
sin θ to get I =

an+1

√
−c
∫

cos2n+2 θdθ.

According to entry 2, section 2.512 on p. 152 of [1], we have

∫
cos2n+2 θdθ =

(
2n+ 1

n

)(( n∑
k=0

cos2n−2k+1 θ

22k+1(n− k + 1)
(
2n−2k+1
n−k

)) sin θ +
θ

2n+ 1

)
+K.

Since sin θ =

√
−c
a
x and cos θ =

√
a+ cx2

a
, we obtain (3) readily.

Reference: 1. I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products,
Seventh Edition,Elsevier,Inc. 2007.

Solution 5 by David E. Manes, Oneonta, NY
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Note that ac 6= 0 implies a 6= 0 and c 6= 0. Then a+ cx2 ≥ 0 and x = 0 imply a+ cx2 = a ≥ 0;
hence, a > 0. We will use the following two results: (1) the reduction formula for integrating
powers of secants. If n > 1, then∫

secn x dx =
tanx · secn−2 x

n− 1
+
n− 2

n− 1

∫
secn−2 x dx.

(2) Using induction and the reduction formula, one obtains that if m ≥ 1, then∫
sec2m+1 x dx =

(
2m
m

)
4m

[
m∑
i=1

1

2i
· 4i(

2i
i

) · sec2i−1 x · tanx+ ln |secx+ tanx|

]
+ C.

If we rewrite the formula with m = n+ 1, then∫
sec2n+3 x dx =

(
2n+2
n+1

)
4n+1

[
n+1∑
i=1

1

2i
· 4i(

2i
i

) · sec2i−1 x · tanx+ ln |secx+ tanx|

]
+ C.

Observe that the second formula is defined for the value n = 0 and yields the correct answer
for this case.

Assume n ≥ 0. Then∫
(a+ cx2)

2n+1
2 dx = a

2n+1
2

∫ (
1 +

c

a
x2
)n√

1 +
c

a
x2 dx.

Let

√
c

a
x = tan θ. Then

√
c

a
dx = sec2 θ dθ so that dx =

√
a

c
sec2 θ dθ. Furthermore,

c

a
x2 = tan2 θ so that 1 +

c

a
x2 = 1 + tan2 θ = sec2 θ. Therefore,

(
1 +

c

a
x2
)n

=
(a+ cx2)n

an
= sec2n θ and

√
1 +

c

a
x2 =

√
a+ cx2√

a
= sec θ.

Let J =

∫
(a+ cx2)

2n+1
2 dx. Rewriting the integral in terms of θ, one obtains

J = a
2n+1

2

∫
sec2n θ · sec θ ·

√
a

c
· sec2 θ dθ

=
an+1

√
c

∫
(sec θ)2n+3 dθ

=
an+1

√
c
·
(
2n+2
n+1

)
4n+1

[
ln|sec θ + tan θ|+

n+1∑
i=1

1

2i
· 4i(

2i
i

) · sec2i−1 θ · tan θ

]
+ C

=
an+1

√
c
·
(
2n+2
n+1

)
4n+1

[
ln(
√
a+ cx2 +

√
cx) +

n+1∑
i=1

1

2i
· 4i(

2i
i

) · (a+ cx2)i

ai
·
√
a√

a+ cx2
·
√
c√
a
x

]
+ C

=
an+1

√
c
·
(
2n+2
n+1

)
4n+1

[
ln(
√
a+ cx2 +

√
cx) +

n+1∑
i=1

1

2i
· 4i(

2i
i

) · (a+ cx2)
2i−1

2

ai
·
√
cx

]
+ C.
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If n = 0, then

J =

∫ √
a+ cx2 dx =

1

2
· a√

c

[
ln(
√
a+ cx2 +

√
cx) +

1

a

√
cx ·

√
a+ cx2

]
+ C

=
1

2
· a√

c
· ln
(√

a+ cx2 +
√
cx
)

+
1

2
x
√
a+ cx2 + C.

If n = 1, then

J =

∫ (
a+ cx2

)3/2
dx =

1

4
x
(
a+ cx2

)3/2
+

3a

8
x
(
a+ cx2

)1/2
+

3a2

8
√
c

ln
(√

a+ cx2
)

+ C.

On the other hand, if n = 5, then∫ (
a+ cx2

)11/2
dx =

1

12
x
(
a+ cx2

)11/2
+

11a

120
x
(
a+ cx2

)9/2
+

33a2

320
x
(
a+ cx2

)7/2
+

77a3

640
x
(
a+ cx2

)5/2
+

77a4

572
x
(
a+ cx2

)3/2
+

231a5

1024
x
(
a+ cx2

)1/2
+

231

1024
· a

6

√
c

ln
(√

a+ cx2 +
√
cx
)
.

Also solved by the proposer.

5622: Albert Natian Los Angelos Valley College, Valley Glen, CA

Suppose f is a real-valued function such that for all real numbers x;

[f(x− 8/15)]2 + [f(x+ 47/30)]2 + [f(x+ 2/75)]2 =

= f(x− 8/15)f(x+ 47/30) + f(x+ 47/30)f(x+ 2/75) + f(x+ 2/75)f(x− 8/15).

If f

(
49

5

)
=

11

3
, then find f

(
1

2
f

(
28

50

)
− 2

25
f (−42)

)
.

Solution 1 by Michel Bataille, Rouen, France

Suppose f is a real-valued function such that for all real numbers x:

[f(x− 8/15)]2 + [f(x+ 47/30)]2 + [f(x+ 2/75)]2 =

f(x− 8/15)f(x+ 47/30) + f(x+ 47/30)f(x+ 2/75) + f(x+ 2/75)f(x− 8/15).

If f

(
49

5

)
=

11

3
, then find f

(
1

2
f

(
28

50

)
− 2

25
f(−42)

)
.

For real numbers a, b, c, we have 2(a2 + b2 + c2 − (ab+ bc+ ca)) = (a− b)2 + (b− c)2 + (c− a)2

so that the condition a2 + b2 + c2 = ab+ bc+ ca is equivalent to a = b = c. It follows that the
hypothesis means that for all real x

f(x− 8/15) = f(x+ 47/30) = f(x+ 2/75),
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and in consequence, f(x) = f((x + 8/15) − 8/15) = f(x + 8/15 + 47/30) = f(x + 21/10) and
f(x) = f(x+ 8/15 + 2/75) = f(x+ 14/25).

Thus, the numbers 14
25 and 21

10 (and m · 1425 + n · 2110 for m,n ∈ Z) are periods of f . We deduce
that

f(−42) = f

(
(−20) · 21

10

)
= f(0), f

(
28

50

)
= f

(
14

25

)
= f(0).

Also, we obtain
11

3
= f

(
49

5

)
= f

(
2 · 21

10
+ 10 · 14

25

)
= f(0).

Thus,

f

(
1

2
f

(
28

50

)
− 2

25
f(−42)

)
= f

(
21

50
f(0)

)
= f

(
21

50
· 11

3

)
= f

(
77

50

)
= f

(
21

10
− 14

25

)
= f(0) =

11

3
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

Suppose that a, b, c are real numbers satisfying a2 + b2 + c2 = ab+ bc+ ca. Then

0 = a2 + b2 + c2 − ab− bc− ca =
1

2
(a− b)2 +

1

2
(b− c)2 +

1

2
(c− a)2

implying that a = b = c. Therefore, for all real numbers x

f

(
x− 8

15

)
= f

(
x+

47

30

)
= f

(
x+

2

75

)
,

or equivalently replacing x by x+ 8
15

f(x) = f

(
x+

21

10

)
= f

(
x+

14

25

)
.

This means that

f(x) = f

(
x+

21

10
m+

14

25
n

)
= f

(
x+

7(15m+ 4n)

50

)
for all integers m and n. 15 and 4 are relatively prime. Thus the set {15m + 4n

∣∣m,n ∈ Z}
equals the set of all integers and therefore

f(x) = f

(
x+

7n

50

)

for all integers n which means that f is periodic with period
7

50
.

We reduce all arguments modulo
7

50
and get one by one

11

3
= f

(
49

5

)
= f

(
49

5
− 70 · 7

50

)
= f(0),
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f(−42) = f

(
−42 + 300 · 7

50

)
= f(0) =

11

3
,

f

(
28

50

)
= f

(
28

50
− 4 · 7

50

)
= f(0) =

11

3
,

and finally

f

(
1

2
f

(
28

50

)
− 2

25
f(−42)

)
= f

((
1

2
− 2

25

)
11

3

)
= f

(
21

50
· 11

3

)
=

= f

(
77

50

)
= f

(
77

50
− 11 · 7

50

)
= f(0) =

11

3
.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that f
(
1
2f
(
28
50

)
− 2

25f(−42)
)

= 11
3 .

From the given functional equation we deduce that

(
f

(
x− 8

15

)
− f

(
x+

47

30

))2

+

(
f

(
x+

47

30

)
− f

(
x+

2

75

))2

+

(
f

(
x+

2

75

)
− f

(
x− 8

15

))2

= 0

or

f

(
x− 8

15

)
= f

(
x+

47

30

)
= f

(
x+

2

75

)
.

Let x = y + 8
15 , so that f(y) = f

(
y + 21

10

)
= f

(
y + 14

25

)
. Hence by induction we have

f(y) = f
(
y + 21m

10

)
for any integer m, and

f(y) = f
(
y + 14n

25

)
for any integer n. Thus for any real number y and integers m and n, we

have

f(y) = f

(
y +

21m

10
+

14n

25

)
(1)

Putting y = 28
50 ,m = 2, n = 9, into (1), we obtain f

(
28
50

)
= f

(
49
5

)
.

Putting y = −42,m = 2, n = 85, into (1), we obtain f
(
−42) = f

(
49
5

)
, and

Putting y = 77
50 ,m = 1, n = 11, into (1), we obtain f

(
77
50

)
= f

(
49
5

)
. Hence,
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f

(
1

2
f

(
28

50

)
− 2

25
f (−42)

)
= f

((
1

2
− 2

25

)
f

(
49

5

))
= f

(
22

50

)(
11

3

)
= f

(
77

50

)
= f

(
49

5

)
=

11

3
.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that the desired value is 11/3.

If a, b, and c are real numbers with a2 + b2 + c2 = ab+ bc+ ca, then

(a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2)− 2(ab+ bc+ ca) = 0,

so a = b = c. Thus for all real numbers x, f(x − 8/15) = f(x + 47/30) = f(x + 2/75). By
applying horizontal translations, we obtain the following identities for all real numbers x:

f(x) = f(x+ 21/10) = f(x+ 14/25);

f(x− 21/10) = f(x) = f(x− 77/50);

f(x− 14/25) = f(x+ 77/50) = f(x).

Since 14/25 = 49/5 − (77/50)(6), applying the second identity repeatedly yields f(14/25) =
f(49/5) = 11/3. Then the first identity implies f(0) = f(14/25) = 11/3, so the third identity
produces f(77/50) = f(0) = 11/3. Finally, since −42 = 0 − (21/10)(20), applying the second
identity repeatedly yields f(−42) = f(0) = 11/3. Hence we conclude

f

(
1

2
f

(
14

25

)
− 2

25
f (−42)

)
= f

(
1

2

(
11

3

)
− 2

25

(
11

3

))
= f

(
77

50

)
=

11

3
.

Solution 5 by Hyun Bin Yoo, South Korea

Let X1 = x−
8

15
, X2 = x+

47

30
, X3 = x+

2

75
. Then

f(X1)
2 + f(X2)

2 + f(X3)
2 = f(X1)f(X2) + f(X2)f(X3) + f(X3)f(X1)

⇔ (f(X1)− f(X2))
2 + (f(X2)− f(X3))

2 + (f(X3)− f(X1))
2 = 0

⇔ f(X1) = f(X2) = f(X3)

⇔ f

(
x−

8

15

)
= f

(
x+

47

30

)
= f

(
x+

2

75

)

Now substitute x with x+
8

15
. That gives f(x) = f

(
x+

10

21

)
= f

(
x+

14

25

)
. In other words,

f(x) = f(x + 0.07 · 3) = f(x + 0.07 · 8). So f(x) = f(x + 0.07 · (3a + 8b)), where a and b are
integers. Since 3 · 3 + 8 · (−1) = 1, 3a+ 8b can represent any integer k. (a = 3k, b = −k) Then
the equation can be further reduced into f(x) = f(x+ 0.07 · k) where k is an integer.

Notice that
49

5
= 0.07 · 140,

28

50
= 0.07 · 8 and − 42 = 0.07 · 600. Since all three numbers are a
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multiple of 0.07, there differences are also a multiple of 0.07. So f

(
49

5

)
= f

(
28

50

)
= f(−42).

f

(
1

2
f

(
28

50

)
−

2

25
f(−42)

)
= f

((
1

2
−

2

25

)
11

3

)
= f(0.07 · 22) = f

(
49

5

)
=

3

11

Also solved by the proposer.

5623: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let P be an interior point to an equilateral triangle of altitude one. If x, y, z are the distances
from P to the sides of the triangle, then prove that

x2 + y2 + z2 ≥ x3 + y3 + z3 + 6xyz.

Solutions 1,2 and 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Solution 1:

Since
x2 + y2 + z2 = (x+ y + z)2 − 2(xy + yz + zx)

and
x3 + y3 + z3 = (x+ y + z)3 − 3(x+ y + z)(xy + yz + zx) + 3xyz,

the inequality to prove is equivalent to

(x+ y + z)2 − 2(xy + yz + zx)3 ≥ (x+ y + z)3 − 3(x+ y + z)(xy + yz + zx) + 9xyz.

From Viviani’s theorem, x+ y + z = 1, so this last inequality is the same as

xy + yz + zx ≥ 9xyz,

that is (since x, y, z are strictly positive because P is interior to the equilateral triangle)

1

x
+

1

y
+

1

z
≥ 9.

or, since x+ y + z = 1, to

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
≥ 9.

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
= 3 +

x

y
+
y

x
+
y

z
+
z

y
+
z

x
+
x

z
= 3 +

x

y
+

1
x

y

+
y

z
+

1
y

z

+
z

x
+

1
z

x

≥

≥ 3 + 2 + 2 + 2 = 9,

where we have used that t +
1

t
≥ 2 for any t > 0, with equality if and only if t = 1 (which is

equivalent to t2 − 2t+ 1 ≥ 0 , that is, to (t− 1)2 ≥ 0) with t =
x

y
, t =

y

z
and t =

z

x
.
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Thus, the inequality is proven and also that equality occurs if and only if,
x

y
=
y

z
=
z

x
= 1, that

is, x = y = z =
1

3
. In plane geometry the barycenter of a triangleis is also called the centroid of

the triangle. Is the point in the triangle where the three medians meet. In equilateral triangles,
the incenter, circumcenter and orthocenter also meet at the barycenter.

Solution 2:

From Viviani’s theorem, x+ y+ z = 1, so the equality in the problem is successively equivalent
to

x2 − x3 + y2 − y3 + z2 − z3 ≥ 6xyz,

x(1− x) + y2(1− y) + z2(1− z) ≥ 6xyz,

x2(y + z) + y2(z + x) + z2(x+ y) ≥ 6xyz,

xy(x+ y) + yz(y + z) + zx(z + x) ≥ 6xyz.

Since P is interior to the triangle, x > 0, y > 0 and z > 0, so this last inequality (and, hence,
the inequality in the problem) is equivalent to

z

y
+
y

x
+
y

z
+
z

y
+
z

x
+
x

z
≥ 6,

which is true because, for any t > 0 , we have t+
1

t
≥ 2 with equality if and only if t = 1, so

taking t = x/y, t = y/z, and t = z/x and adding the obtained inequalities we obtain the
required result, and note that equality occurs on it if, and only if, x/y = y/z = z/x = 1; that
is, if and only if x = y = z = 1/3. This means that P is the barycenter of the equilateral
triangle (see definition above).

Solution 3:

From Viviani’s theorem x + y + z = 1, and we can think of this as a constraint and ap-
ply the Lagrange multiplers method to the funion L(x, y, z;λ) = f(x, y, z) − λg(x, y, z) where
f(x, y, z) = x2 + y2 + z2− x3− y3− z3− 6xyz is the objective function that is subjected to the
constraint constraint g(x, y, z) = x+ y+ z− 1. The critical points in this expression are points
(x, y, z) ∈ (0,+∞) for which

∂L

∂x
(x, y, z) =

∂L

∂y
(x, y, z) =

∂L

∂z
(x, y, z) =

∂L

∂λ
(x, y, z) = 0.

Thus, 2x− 3x2 − 6yz = 2y − 3y2 − 6zx = 2z − 3z2 − 6xy = λ and x+ y + z = 1, That is

0 = 2(x− y)− 3(x2 − y2)− 6z(x− y) = (2− 3x = 3y = 6z)(x− y) and

0 = 2(u− z)− 3(y2 − z2)− 6x(y− z) = (2− 3y− 3z − 6x)(y− z) and x+ y+ z = 1. From this
it follows that:
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(x, y, z) ∈
{(

1

3
,
1

3
,
1

3

)
,

(
1

9
,
1

9
,
7

9

)}
,

(
1

9
,
7

9
,
1

9

)
,

(
7

9
,
1

9
,
1

9

)}
with

(
1

3
,
1

3
,
1

3

)
being the point

where f attains its minimum value.

In summary,:

f(x, y, z) ≥ (1/3, 1/3, 1/3) = 0 for any (x, y, z) ∈ (0,+∞); equality is obtained if, and only if,
(x, y, z) = (1/3, 1/3, 1/3).

Solution 4 by Michael Brozinsky, Central Islip,NY

We first note that if A + B = C + D then A ≥ C is equivalent to B ≤ D. Without loss of

generality let x ≤ y ≤ z and let k = x+ y so that k ≤ 2

3
since x+ y + z = 1 as the sum of the

distances from an interior of point of an equilateral triangle is easily shown (by dissection) to
be equal to the altitude. Now since

x2 + y2 + z2 + 2xy + 2xz + 2yz = (x+ y + z)2 = 1 = (x+ y + z)3 =

= x3 + y3 + z3 + 6xyz + 3x2y + 3xy2 + 3xz2 + 3y2z + 3yz2

it suffices to show (by our first note above) that

2xy + 2xz+2yz ≤ 3x2y + 3xy2 + 3x2 + 3x2z + 3xz2 + 3y2z + 3yz2

or replacing z by1− k and y by k − x

2x(k − x) + 2x(1− k) + 2(k − x)(1− k)− (3x2(k − x) + 3x(k − x)2+

+ 3x2(1− k) + 3x(1− k)2 + 3(k − x)2(1− k) + 3(k − x)(1− k)2 ≤ 0

which simplifies to

(9k − 8)x2 + (−3k2 + 6k(1− k) + 2k)x− 3k2(1− k)− 3k(1− k)2 + 2k(1− k) ≤ 0. (*)

Now the left hand side of (∗) viewed as a quadratic in x has a negative leading coefficient since

k ≤ 2

3
<

8

9
, and by completing the square becomes

(9k − 8)

(
x− 1

2
k

)2

− 1

4
(−2 + 3k) k

which is thus less than or equal to 0 with equality only if

k − 2

3
and x =

1

2
k =

1

3
and thus y =

1

3
and z =

1

3
.

Solution 5 by Titu Zvonaru, Comănesti, Romania
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Let a be the side of the equilateral triangle and h = 1 its altitude. It is easy to see that
ax+ ay + az = ah, hence x+ y + z = 1. The desired inequality is equivalent to

(x+ y + z)(x2 + y2 + z2) ≥ x3 + y3 + z3 + 6xyz

x2y + xy2 + y2z + yz2 + x2z + xz2 ≥ 6xyz,

which is true by the AM-GM inequality for positive numbers x2y, xy2, y2z, yz2, x2z, xz2.

Solution 6 by (Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

By Viviani’s theorem, x + y + z = 1. By multiplying the left-hand side by x + y + z, the
inequality becomes homogeneous. Then, after clarifying the inequality becomes

x2y + x2z + xy2 + yz2 + y2z + xz2 ≥ 6xyz

which follows by the AM-GM inequality.

Solution 7 by Arkady Alt, San Jose, California

Let F and a be, respectively, the area and sidelength of the triangle.

Then F =
x · a

2
+
y · a

2
+
z · a

2
=
a · 1

2
.Hence, x+ y+ z = 1 and by AM-GM Inequality we have

x2 + y2 + z2 =
(
x2 + y2 + z2

)
(x+ y + z) =

x3 + y3 + z3 +
∑
cyc
x2 (y + z) ≥ x3 + y3 + z3 +

∑
cyc
x2 · 2√yz ≥

x3 + y3 + z3 + 6 3
√
x2y3z3 = x3 + y3 + z3 + 6xyz.

Solution 8 by Albert Natian, Los Angeles Valley College, Valley Glen, California/

Lemma. Suppose x, y, z ∈ [0, 1] and define

s := x+ y + z, σ := x2 + y2 + z2, w := x3 + y3 + z3, p := xyz.

If s = 1, then σ ≥ w + 6p.

Proof. Suppose s = 1. We will show via the method of Lagrange Multipliers that

Q := σ − w − 6p ≥ 0.

But first we make the observation that

1 = s3 = (x+ y + z)3 = −2w + 3σ + 6p,

6p = 1 + 2w − 3σ.

So
Q = σ − w − 6p = σ − w − (1 + 2w − 3σ) ,
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Q = 4σ − 3w − 1.

The Lagrangian L, with multiplier λ, is given by

L = 4σ − 3w − 1− λs

which yields

∂L
∂x

= 8x− 9x2 − λ, ∂L
∂y

= 8y − 9y2 − λ, ∂L
∂z

= 8z − 9z2 − λ.

Setting the latter three partials equal to zero, followed by re-arrangement, we get

9x2 − 8x+ λ = 0, 9y2 − 8y + λ = 0, 9z2 − 8z + λ = 0,

each of which has solution
1

9

(
4±
√

16− 9λ
)

resulting in either λ = 5/3 or λ = 7/9. Only for λ = 5/3 is Q minimized with minimum value
0 at x = y = z = 1/3. Thus σ ≥ w + 6p.

If P were an interior point to any triangle of side lengths a, b and c, with x, y, z being,
respectively, the distances from P to the sides with lengths a, b and c, then the area A of the
triangle can be expressed as

A =
1

2
(ax+ by + cz) .

For an equilateral triangle with side length a,

A =
1

2
a (x+ y + z) .

The side a and area A of an equilateral triangle whose altitude is one are given by a = 2/
√

3
and A = 1/

√
3. Thus

1√
3

=
1

2
· 2√

3
(x+ y + z) ,

x+ y + z = 1

which allows us to conclude, by the above Lemma, that

σ ≥ w + 6p,

x2 + y2 + z2 ≥ x3 + y3 + z3 + 6xyz.

Solution 9 by Samuel Aguilar (student) and the Eagle Problem Solvers, Georgia
Southern University, Statesboro, GA and Savannah, GA

By Viviani’s Theorem, x+y+z = 1. (See, e.g., Ken-Ichiroh Kawasaki, “Proof Without Words:
Viviani’s Theorem,” Math. Mag. 78(3), 2005, p. 213.)

By the AM-HM Inequality,
3

1
x + 1

y + 1
z

≤ x+ y + z

3
=

1

3
,
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and
1

x
+

1

y
+

1

z
≥ 9.

Thus, multiplying both sides by xyz and subtracting 3xyz, we get

yz + zx+ xy − 3xyz ≥ 6xyz

yz(1− x) + zx(1− y) + xy(1− z) ≥ 6xyz

x3 + y3 + z3 + yz(y + z) + zx(z + x) + xy(x+ y) ≥ x3 + y3 + z3 + 6xyz

(x+ y + z)(x2 + y2 + z2) ≥ x3 + y3 + z3 + 6xyz,

which gives the desired inequality, since x+ y + z = 1.

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Michel Bataille, Rouen, France; Kee-Wai Lau, Hong Kong, China; Moti Levy,
Rehovot, Israel; Henry Ricardo, Westchester Area Math Circle Purchase, NY;
Albert Stadler, Herrliberg, Switzerland, and the proposer.

5624: Proposed by Seán M. Stewart, Bomaderry, NSW, Australia

Evaluate:

∫ 1

0

(
tan−1 x− x

x2

)2

dx

Solution 1 by Moti Levy, Rehovot, Israel

I :=

∫ 1

0

(
arctan (x)− x

x2

)2

dx =

∫ 1

0

1

x4
(arctan (x)− x)2 dx.

By integration by parts,

I = −1

3

(π
4
− 1
)2

+
2

3

∫ 1

0

1

x (x2 + 1)
(x− arctan (x)) dx

= −1

3

(π
4
− 1
)2

+
2

3

∫ 1

0

1

(x2 + 1)
dx− 2

3

∫ 1

0

arctan (x)

x (x2 + 1)
dx

= −1

3

(π
4
− 1
)2

+
π

6
− 2

3

∫ 1

0

arctan (x)

x (x2 + 1)
dx.

Using the partial fractions of 1
x(x2+1)

= 1
2x + 1−x2

2x(1+x2)
, we get∫ 1

0

arctanx

x (x2 + 1)
dx =

1

2

∫ 1

0

arctanx

x
dx+

∫ 1

0
arctan (x)

1− x2

2x (1 + x2)
dx.

The first integral is related to Catalan constant G

G =

∫ 1

0

arctanx

x
dx
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The second integral is simplified by the change of variable x = tan
(
v
2

)
,∫ 1

0
arctan (x)

1− x2

2x (1 + x2)
dx =

1

4

∫ π
2

0

v

tan (v)
dv,

and by integration by parts ∫ π
2

0

v

tan (v)
dv = −

∫ π
2

0
ln (sin (x)) dx.

It is well known that ∫ π
2

0
ln (sin (x)) dx = −π

2
ln (2) ,

hence

∫ 1

0
arctan (x)

1− x2

2x (1 + x2)
dx =

π

8
ln (2) .

We conclude that

I =
1

3
π − 1

12
π ln 2− 1

48
π2 − 1

3
− 1

3
G.

Solution 2 by Brian Bradie, Christopher Newport University, Newport News, VA

With

tan−1 x =
∞∑
k=0

(−1)k
x2k+1

2k + 1
,

it follows that ∫ 1

0

tan−1 x

x
dx =

∞∑
k=0

(−1)k

(2k + 1)2
= K,

where K is Catalan’s constant. Next, let

I1 =

∫ π/4

0
ln(cos θ) dθ and I2 =

∫ π/4

0
ln(sin θ) dθ.

Then,

I2 − I1 =

∫ π/4

0
ln(tan θ) dθ =

∫ 1

0

lnx

1 + x2
dx = −

∫ 1

0

tan−1 x

x
dx = −K,

and

I1 + I2 =

∫ π/4

0
ln

(
1

2
sin 2θ

)
dθ = −π

4
ln 2 +

1

2

∫ π/2

0
ln(sin θ) dθ = −π

2
ln 2.

Consequently,∫ π/4

0
ln(cos θ) dθ =

1

2
K − π

4
ln 2 and

∫ π/4

0
ln(sin θ) dθ = −1

2
K − π

4
ln 2.
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Now, by integration by parts and then partial fractions,∫ 1

0

(
tan−1 x− x

x2

)2

dx = −(tan−1 x− x)2

3x3

∣∣∣∣∣
1

0

− 2

3

∫ 1

0

tan−1−x
x(1 + x2)

dx

= −1

3

(π
4
− 1
)2
− 2

3

∫ 1

0

tan−1 x

x
dx+

2

3

∫ 1

0

x tan−1 x

1 + x2
dx+

2

3

∫ 1

0

1

1 + x2
dx

= −π
2

48
+
π

3
− 1

3
− 2

3
K +

2

3

∫ 1

0

x tan−1 x

1 + x2
dx.

With the substitution x = tan θ and then integration by parts,∫ 1

0

x tan−1 x

1 + x2
dx =

∫ π/4

0
θ tan θ dθ

= −θ ln(cos θ)

∣∣∣∣∣
π/4

0

+

∫ π/4

0
ln(cos θ) dθ

=
π

8
ln 2 +

1

2
K − π

4
ln 2 =

1

2
K − π

8
ln 2.

Finally, ∫ 1

0

(
tan−1 x− x

x2

)2

dx = −π
2

48
+
π

3
− 1

3
− 1

3
K − π

12
ln 2.

Solution 3 Michel Bataille, Rounen, France

Let I be the integral to be evaluated. We show that I = π
3 −

π ln 2
12 −

π2

48 −
G+1
3 where G denotes

the Catalan number defined by

G =

∞∑
n=0

(−1)n

2n+ 1
=

∫ 1

0

tan−1 x

x
.

For later use here is a result linked to G and whose proof is postponed to the end:∫ 1

0

x tan−1 x

1 + x2
dx =

G

2
− π ln 2

8
. (1)

Now, let a be such that 0 < a < 1. Then, expanding the integrand and because
∫ 1
a
dx
x2

= 1
a − 1,

we see that

I = lim
a→0+

∫ 1

a

(
tan−1 x− x

x2

)2

dx = lim
a→0+

(
J(a)− 2K(a) +

1

a
− 1

)
(2)

where

J(a) =

∫ 1

a

(tan−1 x)2

x4
dx and K(a) =

∫ 1

a

tan−1 x

x3
dx.

In the following calculations, since we are interested in the limit as a → 0+, we gather in o(1)
the terms that tend to 0 as a→ 0+.
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First, integrating by parts, we obtain

K(a) =

∫ 1

a
(tan−1 x) d

(
−1

2x2

)
=

[
− tan−1 x

2x2

]1
a

+
1

2

∫ 1

a

dx

x2(1 + x2)

= −π
8

+
tan−1 a

2a2
+

1

2

(∫ 1

a

dx

x2
−
∫ 1

a

dx

1 + x2

)
= −π

8
+

tan−1 a

2a2
+

1

2a
− 1

2
− π

8
+ o(1) = −π

4
− 1

2
+

1

2a
+

tan−1 a

2a2
+ o(1).

Similarly J(a) =
∫ 1
a (tan−1 x)2 d

( −1
3x3

)
yields:

J(a) = −π
2

48
+

(tan−1 a)2

3a3
+

2

3

∫ 1

a

tan−1 x

x3(1 + x2)
dx

= −π
2

48
+

(tan−1 a)2

3a3
+

2

3

(∫ 1

a

tan−1 x

x3
dx−

∫ 1

a

tan−1 x

x
dx+

∫ 1

a

x tan−1 x

1 + x2
dx

)
= −π

2

48
+

(tan−1 a)2

3a3
+

2

3

(
K(a)−G+ o(1) +

G

2
− π ln 2

8
+ o(1)

)
.

Finally,

J(a) = −π
2

48
+

(tan−1 a)2

3a3
− π

6
− G+ 1

3
+

1

3a
+

tan−1 a

3a2
− π ln 2

12
+ o(1)

and returning to (2), we obtain

J(a)− 2K(a) +
1

a
− 1 =

π

3
− π2

48
− π ln 2

12
− G+ 1

3
+

(a− tan−1 a)2

3a3
+ o(1).

Since a− tan−1 a ∼ a3

3 as a→ 0, we have (a−tan−1 a)2

3a3
= o(1) and the announced result follows.

Proof of (1) The substitution x = tan t and an integration by parts in succession give∫ 1

0

x tan−1 x

1 + x2
dx =

∫ π/4

0
t · tan t dt =

∫ π/4

0
td(− ln(cos t)) dt =

π ln 2

8
+

∫ π/4

0
ln(cos t) dt

and (1) follows since ∫ π
4

0
ln(cosx) dx =

G

2
− π ln(2)

4
,

a result that I have proved in Math. Gazette, Vol. 86, March 2004, p. 156. [for convenience,
the proof is repeated below].
Let

U =

∫ π
4

0
ln(cos t) dt and V =

∫ π
4

0
ln(sin t) dt.

Then

V + U =

∫ π/4

0
ln

(
1

2
sin(2t)

)
dt =

π

4
ln(1/2) +

∫ π/4

0
ln(sin(2t))dt

= −π
4

ln(2) +
1

2

∫ π/2

0
ln(sinu)du = −π

2
ln(2)
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and

V − U =

∫ π/4

0
ln(tan t)dt = [t ln(tan t)]

π/4
0 −

∫ π/4

0
t

1 + tan2 t

tan t
dt

= −2

∫ π/4

0

t

sin(2t)
dt = −1

2

∫ π/2

0

u

sin(u)
du = −G

where the last equality follows from∫ π/2

0

u

sin(u)
du = 2

∫ 1

0

tan−1(x)

x
dx

[substitution u = 2 tan−1(x)].
Thus, 2U = −π

2 ln(2) +G and, as a bonus, 2V = −π
2 ln(2)−G.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that the given integral, denote by I equals

(16− 4 ln 2− π)π − 16− 16G

48
= 0.0214 · · · ,

where G is Catalan’s constant

∞∑
n=0

(−1)n

(2n+ 1)2
. Integrating by parts, we have

I =
1

3

∫ 1

0

(
tan−1 x− x

)2
d

(
1

x3

)
= −1

3

(π
4
− 1
)2
− 2

3
J,

where J =

∫ 1

0

tan−1 x− x
x(1 + x2)

dx. By the substitution x = tan θ, we obtain J = K − π

4
where

K =

∫ π/4

0
θ cot θdθ. It is known ([1], p.434, section 3.747 entry 8) that K =

π

8
ln 2 +

1

2
G.

Hence our claim for I.

Reference:

1. I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals,Series and Products,Seventh Edition,
Elsevier, Inc. 2007.

Solution 5 by Albert Stadler, Herrliberg, Switzerland

Let G =

∞∑
n=0

(−1)n

(2n+ 1)2
be Catalan’s constant. It is known (see for instance

https://en.wikipedia.org/wiki/Catalan%27s constant) that G can be represented by integrals,
specifically,

G =

∫ 1

0

arctanx

x
dx =

∫ π
4

0
ln cotxdx.
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We note that∫ 1

0

x arctanx

1 + x2
dx

x = tan y︸ ︷︷ ︸
=

∫ π
4

0
y tan ydy = −y ln cos y

∣∣∣∣π4
0

+

∫ π
4

0
ln cos ydy =

= −π
4

ln

(
1√
2

)
+

1

2

∫ π
4

0
ln cotxdx+

1

2

∫ π
4

0
ln sin ydy +

1

2

∫ π
4

0
ln cos ydy =

=
π

8
ln 2 +

1

2
G+

1

2

∫ π
2

0
ln cos ydy =

1

2
G− π

8
ln 2,

because

I =

∫ π
2

0
ln cos ydy =

∫ π
2

0
ln sin ydy =

and thus

2I =

∫ π
2

0
(ln cos y + ln sin y)dy =

∫ π
2

0
ln(sin y cos y)dy =

∫ π
2

0
ln

(
1

2
sin(2y)

)
dy =

= −π
2

ln 2 +

∫ π
2

0
ln(sin(2y))dy = −π

2
ln 2 +

∫ π

0
ln(sin(y))dy = −π

2
ln 2 + I.

So I =

∫ π
2

0
ln cos ydy = −π

2
ln 2.

After these preliminary remarks let’s turn to the integral of the problem statement. We integrate
by parts and get

∫ 1

0

(
arctanx− x

x2

)2

dx = −1

3
x−3(arctanx− x)2

∣∣∣∣1
0

+

∫ 1

0

2

3
x−3(arctanx− x)

(
−x2

1 + x2

)
dx =

=
−1

3

(π
4
− 1
)2
− 2

3

∫ 1

0
(arctanx− x)

1

x(1 + x2)
dx =

=
−1

3

(π
4
− 1
)2
− 2

3

∫ 1

0
(arctanx− x)

(
1

x
− x

1 + x2

)
dx =

=
−1

3

(π
4
− 1
)2
− 2

3

∫ 1

0

arctanx

x
dx+

2

3

∫ 1

0
dx+

2

3

∫ 1

0

x arctanx

1 + x2
dx− 2

3

∫ 1

0
2

(
1− 1

1 + x2

)
dx =

−1

3

(π
4
− 1
)2
− 2

3
G+

2

3
+

1

3
G− π

12
ln 2− 2

3

(
1− π

4

)
=

= −1

3
− 1

3
G+

π

3
− π2

48
− π

12
ln 2
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Also solved by Albert Natian, Los Angeles Valley College, Valley Glen, CA, and
by the proposer.

Editor′s Note

Time passes quickly, and this is especially true when one is having fun doing what they do. I
took over the editorship of this column in 2001 and now 20 years have flown by, and hard as it
is for me to admit, it is time for me to step down.

My association with this Column goes back much further than 20 years and I can recall at-
tempting some of the problems in the Column when I was a student in high school, where our
librarian had the good sense to have a school subscription to the SSMJ. Over the years I have
developed wonderful relationships with so many of you, and I deeply appreciate your collegiality
and the help and support you have given to me. Normally I would list the names of those of
you who went above and beyond in helping our column become as popular as it is within the
SSMA community and also among other problem solvers of columns in other journals. But
there are so many of you that have helped me over the years that I would for sure inadvertently
omit some of your names, and then feel terribly, terribly embarrassed by the omissions. So let
me just say to you one and all, “thank you.”

Albert Natian of Los Angeles Valley College in Valley Glen, California will be the next editor.
Starting with this issue, please send him your solutions and proposals. His details are listed
bellow.

————–

To propose problems, email them to:

problems4ssma@gmail.com

To propose solutions, email them to:

solutions4ssma@gmail.com

+++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++

To propose problems and solutions via regular mail, send them to:

Prof. Albert Natian

Department of Mathematics

Los Angeles Valley College

5800 Fulton Avenue

Valley Glen, CA 91401

USA

+++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++
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