
Problems and Solutions Albert Natian, Section Editor

***************************************************************

This section of the SSMA Journal offers readers an opportunity to exchange interesting mathemat-
ical problems and solutions. Please send them to Prof. Albert Natian, Department of Mathematics,
Los Angeles Valley College, 5800 Fulton Avenue, Valley Glen, CA, 91401, USA. It’s highly prefer-
able that you send your contributions via email.

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before April 15, 2022.

‚ 5667 Proposed by Albert Stadler, Herrilberg, Switzerland.

Prove with at most 10 function evaluations that

4 ¨ 10´89
ă

89
ź

k“1

tan2

ˆ

kπ
360

˙

ă 5 ¨ 10´89.

Editor’s note: This problem is engendered by and is a follow-up to Problem #5632.

‚ 5668 Proposed by Ovidiu-Gabriel Dinu, Technological High School, Petrache Poenaru, Bǎlceşti,
Vâlcea , România.

Prove that for x and t in r0, 1s and for any integer k ě 2:∣∣∣∣∣∣∣e´x2k
´

ż 1

0
e´t2k

dt

∣∣∣∣∣∣∣ ď 2k

˜

2k

c

2k ´ 1
2k

¸2k´1

e´
2k´1

2k .

‚ 5669 Proposed by Raluca Maria Caraion, Călăraşi, Romania and Florică Anastase, Lehliu-
Gară, Romania.

Suppose a is a real number. Find:

Ω “ lim
pÑ8

1
pa ¨

p
ÿ

m“1

m
ÿ

n“1

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 .
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‚ 5670 Proposed by Kenneth Korbin, New York, NY.

Find a positive real number x such that

4
?
π` x “ 1` 4

?
π´ x .

‚ 5671 Proposed by Michael Brozinsky, Central Islip, New York.

Isosceles triangle 4RS T with RS “ S T has the following property:

There are only three points such that the distances from each of these points to the lines ÐÑRT ,
ÐÑRS andÐÑS T have, respectively, the same ratios as 1 : 2 : 3.

Determine the angles of triangle 4RS T .

‚ 5672 Proposed by Nikos Ntorvas, Athens, Greece.

Given
F px, yq “ py´ xq

“

y
´

3y2
´ 28y` 3xy´ 14x` 84

¯

`x
´

3x2
´ 28x` 3xy´ 14y` 84

¯

´ 96
‰

,

where x, y P R, with 0 ď x ă y, find A “ min F px, yq and the corresponding minimizing values
for x and y.

Solutions

‚ 5649 Proposed by Kenneth Korbin, New York, NY.

A trapezoid with perimeter 18 ` 14
?

2 is inscribed in a circle with diameter 7 ` 5
?

2. Each
of the sides of the trapezoid are of the form a` b

?
2, where a and b are positive integers. Find the

dimensions of the trapezoid.

Solution 1 by Michael Brozinsky, Central Islip, New York.

Let the bases of the necessarily isosceles trapezoid (being inscribed in a circle) have lengths a`b
?

2
and c`d

?
2 and the length of either leg be e` f

?
2 where a, b, c, d, e, and f are positive integers.

We have thus

a` b
?

2 “
18` 14

?
2´ pc` d

?
2` 2e` 2 f

?
2q

2
(1)
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and

c` d
?

2 “
18` 14

?
2´ pa` b

?
2` 2e` 2 f

?
2q

2
(2)

and so (from 1) c and d must be even and (from 2) a and b must be even as 2e and 2 f are even.
Now

e` f
?

2 “
18` 14

?
2q ´ pa` b

?
2` c` d

?
2q

2
(3)

Now since c` 2e is at least 4 we have from (1) that a is at most 6 so that a is 2, 4 or 6 and similarly
(also from 1) since d ` 2 f is at least 4 that b is 2 or 4. Hence there are 3 ¨ 2 “ 6 possibilities for

the first base and in fact for any base of the trapezoid. Hence there are
ˆ

6
2

˙

“ 15 combinations

for the two base lengths (since the bases must be different) and the resulting leg lengths are found

in the 15 rows of the chart. Note e “
18´ pa` cq

2
and f “

14´ pb` dq
2

. Note, for example, the

leg length 5 ` 4
?

2 can occur in 3 ways i.e., if the bases are 2 ` 2
?

2 and 6 ` 4
?

2 or 2 ` 4
?

2
and 6 ` 2

?
2 or 4 ` 2

?
2 and 4 ` 4

?
2. Note also that all sides determined are less than or equal

to the diameter as any chord of a circle would have to be.

a b c d e f
2 2 2 4 7 4
2 2 4 2 6 5
2 2 4 4 6 4
2 4 4 2 6 4
2 4 4 4 6 3
2 2 6 2 5 5
2 2 6 4 5 4
2 4 6 2 5 4
2 4 6 4 5 3
4 2 4 4 5 4
4 2 6 2 4 5
4 2 6 4 4 4
4 4 6 2 4 4
4 4 6 4 4 3
6 2 6 4 3 4

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

A cyclic quadrilateral with successive sides a, b, c, d and semiperimeter s has the circumradius
(the radius of the circumcircle) given by

R “
1
4

d

pab` cdq pac` bdq pad ` bcq
ps´ aq ps´ bq ps´ cq ps´ dq

.

(see for instance https://en.wikipedia.org/wiki/Cyclic_quadrilateral).
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By assumption, d “ b, s “
a` b` c` d

2
“

a` c
2

` b “ 9 ` 7
?

2, 2R “ 7 ` 5
?

2, and the
formula collapses to

2R “
pa` cq b
2 ps´ bq

d

ac` b2

ps´ aq ps´ cq
“ b

d

ac` b2

ps´ aq ps´ cq
“

ˆ

s´
a` c

2

˙

g

f

f

f

e

ac`
´

s´ a`c
2

¯2

ps´ aq ps´ cq
. p1q

We need to find all solutions of (1) subject to the constraints s “ 9`7
?

2, 2R “ 7`5
?

2, and a and
c belong to the ring Z

”?
2
ı

“

!

m` n
?

2 { m, n P Z
)

.At this point we recollect a few facts about

Z
”?

2
ı

(see for instance https://math.stackexchange.com/questions/3062306/primes-in-mathbbz-
sqrt2 and https://math.stackexchange.com/questions/150885/proving-that-mathbbz-sqrt2-is-a-euclidean-
domain):
Z
”?

2
ı

is a unique factorization domain.

The units in Z
”?

2
ı

are the numbers ˘
´

1`
?

2
¯k

with k an arbitrary integer.

The prime elements of Z
”?

2
ı

up to associates are

(i)
?

2,
(ii) α P Z

”?
2
ı

such that N(α)=˘p and p is a prime ” 1, 7 (mod 8),
(iii) integer primes p ” 3, 5 (mod 8).

Note: a unit is an element w P Z
”?

2
ı

that has a multiplicative inverse w´1
P Z

”?
2
ı

. The

multiplicative inverse of
´?

2` 1
¯

is
´?

2´ 1
¯

. The associates of a number w P Z
”?

2
ı

are the

numbers ˘
´

1`
?

2
¯k

w. The norm N(.) of an element m` n
?

2 P Z
”?

2
ı

is defined as

N
´

m` n
?

2
¯

“

´

m` n
?

2
¯´

m´ n
?

2
¯

“ m2
´ 2n2.

From s “
a` b` c` d

2
“

a` c
2

` b “ 9` 7
?

2 we deduce that
a` c

2
P Z

”?
2
ı

.

Put x:=s-a, y:=s-c, u B
x` y

2
, v B

x´ y
2

. Then x, y, u, vP Z
”?

2
ı

. Equation (1) is equivalent to
each of the following lines:

2R “
ˆ

x` y
2

˙

g

f

f

e

ps´ xq ps´ yq `
´

x`y
2

¯2

xy
,

4R2
“

ˆ

x` y
2

˙2 ps´ xq ps´ yq `
´

x`y
2

¯2

xy
,

4R2xy “
ˆ

x` y
2

˙2
˜

s2
´ s px` yq ` xy`

ˆ

x` y
2

˙2
¸

,
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xy

˜

4R2
´

ˆ

x` y
2

˙2
¸

“

ˆ

x` y
2

˙2ˆ

s´
x` y

2

˙2

,

xy
ˆ

2R´
x` y

2

˙ˆ

2R`
x` y

2

˙

“

ˆ

x` y
2

˙2ˆ

s´
x` y

2

˙2

,

pu` vq pu´ vq p2R´ uq p2R` uq “ u2ps´ uq2,

v2
“

2u2

ˆ

´40´ 28
?

2` u
´

9` 7
?

2´ u
¯

˙

´

7` 5
?

2
¯2
´ u2

“

“ 278` 196
?

2`
´

´18´ 14
?

2
¯

u` 2u2
´

2
´

1`
?

2
¯5

´

1`
?

2
¯3
´ u

´

16
´

1`
?

2
¯7

´

1`
?

2
¯3
` u

. p2q

The greatest common divisor of
´

1`
?

2
¯3
´ u and

´

1`
?

2
¯3
` u is a divisor of

´

1`
?

2
¯3
´

u `
´

1`
?

2
¯3
` u “ 2

´

1`
?

2
¯3

, hence of 2. Neither
´

1`
?

2
¯3
´ u nor

´

1`
?

2
¯3
` u

can be divisible by any prime other than
?

2 (and its associates), for suppose that p P Z
”?

2
ı

is

a prime other than
?

2 (and its associates) that divides
´

1`
?

2
¯3
´ u. Then p does not divide

´

1`
?

2
¯3
` u and therefore

´

2
´

1`
?

2
¯5

´

1`
?

2
¯3
´ u

´

16
´

1`
?

2
¯7

´

1`
?

2
¯3
` u

“

“ ´

2
´

1`
?

2
¯5

ˆ

´

1`
?

2
¯3
` u

˙

` 16
´

1`
?

2
¯7

ˆ

´

1`
?

2
¯3
´ u

˙

ˆ

´

1`
?

2
¯3
´ u

˙ˆ

´

1`
?

2
¯3
` u

˙ “

“ ´

2
´

1`
?

2
¯5

#

ˆ

´

1`
?

2
¯3
` u

˙

` 8
´

1`
?

2
¯2

ˆ

´

1`
?

2
¯3
´ u

˙

+

ˆ

´

1`
?

2
¯3
´ u

˙ˆ

´

1`
?

2
¯3
` u

˙ p3q

cannot be in Z
”?

2
ı

, since p divides the denominator, but not the numerator. We deduce from (??)

that
´

1`
?

2
¯3
´ u is a divisor of 2 and

´

1`
?

2
¯3
` u is a divisor of 16. So there are integers i,
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j, g, h, 0ďiď2, 0ďgď8 such that

u “
´

1`
?

2
¯3
˘

´?
2
¯i´

1`
?

2
¯ j
“ ´

´

1`
?

2
¯3
˘

´?
2
¯g´

1`
?

2
¯h

implying

2 “ ˘
´?

2
¯i´

1`
?

2
¯ j´3

˘

´?
2
¯g´

1`
?

2
¯h´3

.

The solutions of this equation are found by expanding the brackets by means of the binomial theo-
rem. They are

2 “
´?

2
¯0´

1`
?

2
¯0
`

´?
2
¯0´

1`
?

2
¯0

, leading to u “ 0, v2
“ 0,

2 “
´?

2
¯1´

1`
?

2
¯´1

`

´?
2
¯1´

1`
?

2
¯0

, leading to u “
´

1`
?

2
¯2
, v2

“ ´
?

2 ă 0,

2 “
´?

2
¯1´

1`
?

2
¯0
`

´?
2
¯1´

1`
?

2
¯´1

, leading to u “ ´
´

1`
?

2
¯2
ă 0,

2 “
´?

2
¯2´

1`
?

2
¯´4

`

´?
2
¯7´

1`
?

2
¯´2

, leading to u “ 3
´

3`
?

2
¯

, v2
“ ´9

´

1` 5
?

2
¯

ă

0,

2 “
´?

2
¯2´

1`
?

2
¯´2

`

´?
2
¯4´

1`
?

2
¯´1

, leading to u “ 5` 3
?

2, v2
“

´

1` 2
?

2
¯2
,

2 “
´?

2
¯2´

1`
?

2
¯´1

`

´?
2
¯3´

1`
?

2
¯´1

, leading to u “ 1`
?

2, v2
“ ´1´

?
2 ă 0,

2 “ ´
´?

2
¯0´

1`
?

2
¯´1

`

´?
2
¯0´

1`
?

2
¯1

, leading to u “
?

2
´

1`
?

2
¯3
, v2

“ 5
´?

2
¯5
p1`

?
2q

3
,

2 “ ´
´?

2
¯1´

1`
?

2
¯0
`

´?
2
¯1´

1`
?

2
¯1

, leading to u “
´

1`
?

2
¯4
, v2

“ 714 ` 505
?

2,

but 714` 505
?

2 cannot be the square of an element of Z
”?

2
ı

,

2 “ ´
´?

2
¯2´

1`
?

2
¯´2

`

´?
2
¯5´

1`
?

2
¯´1

, leading to u “ 9` 7
?

2, v2
“

´

9` 7
?

2
¯2
,

2 “ ´

´?
2
¯2´

1`
?

2
¯´1

`

´?
2
¯3´

1`
?

2
¯0

, leading to u “
´

1`
?

2
¯2 ´

3`
?

2
¯

, v2
“

365` 257
?

2, but 365` 257
?

2 cannot be the square of an element of Z
”?

2
ı

,

2 “ ´
´?

2
¯2´

1`
?

2
¯0
`

´?
2
¯4´

1`
?

2
¯0

, leading to u “ 3
´

1`
?

2
¯3
, v2
“ 9

´

5` 2
?

2
¯´?

2` 1
¯4

,

and 5` 2
?

2 is a prime element of Z
”?

2
ı

,

2 “ ´
´?

2
¯2´

1`
?

2
¯1
`

´?
2
¯3´

1`
?

2
¯1

, leading to u “
´

1`
?

2
¯5
, v2

“ 5415`3829
?

2,

but 5415` 3829
?

2 cannot be the square of an element of Z
”?

2
ı

,

2 “ ´
´?

2
¯2´

1`
?

2
¯2
`

´?
2
¯5´

1`
?

2
¯1

, leading to u “ 89`63
?

2, v2
“ 172

´

1`
?

2
¯6
,

2 “
´?

2
¯0´

1`
?

2
¯1
´

´?
2
¯0´

1`
?

2
¯´1

, leading to u “
´

1`
?

2
¯3
´

´

1`
?

2
¯4
ă 0,

2 “
´?

2
¯1´

1`
?

2
¯1
´

´?
2
¯1´

1`
?

2
¯0

, leading to u “
´

1`
?

2
¯3
´
?

2
´

1`
?

2
¯4
ă 0,

2 “
´?

2
¯2´

1`
?

2
¯1
´

´?
2
¯3´

1`
?

2
¯0

, leading to u “
´

1`
?

2
¯3
´ 2

´

1`
?

2
¯4
ă 0,

2 “
´?

2
¯2´

1`
?

2
¯2
´

´?
2
¯4´

1`
?

2
¯1

, leading to u “
´

1`
?

2
¯3
´ 2

´

1`
?

2
¯5
ă 0,
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2 “
´?

2
¯2´

1`
?

2
¯4
´

´?
2
¯7´

1`
?

2
¯2

, leading to u “
´

1`
?

2
¯3
´ 2

´

1`
?

2
¯7
ă 0.

Taking into account that uą0, v P Z
”?

2
ı

this leaves us with the following solutions for (u,v):

pu, vq P

#

ˆ

5` 3
?

2,˘
´

1` 2
?

2
¯

˙

,

ˆ

9` 7
?

2,˘
´

9` 7
?

2
¯

˙

,

ˆ

89` 63
?

2,˘
´

119` 85
?

2
¯

˙

+

.

We have x=u+v=s-a, y=u-v=s-c. Taking into account that xą0, yą0, we get

px, yq P
"

´

6` 5
?

2, 4`
?

2
¯

,
´

4`
?

2, 6` 5
?

2
¯

*

as only solutions in x, y. These solutions in turn imply

pa, b, c, dq “
´

3` 2
?

2, 5` 3
?

2, 5` 6
?

2, 5` 3
?

2
¯

or
pa, b, c, dq “

´

5` 6
?

2, 5` 3
?

2, 3` 2
?

2, 5` 3
?

2
¯

It’s easily verified that these two tuples indeed satisfy (1).

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We show that the dimensions are 5` 3
?

2, 3` 2
?

2, 5` 3
?

2, and 5` 6
?

2.

Since an inscribed trapezoid must be isosceles, we label the side lengths (in order around the
trapezoid) by w, x, w, and p´ 2w´ x, where p “ 18` 14

?
2. Using the circumradius formula of

Parameshvara with s “ p{2, we have

16

˜

7` 5
?

2
2

¸2

“
rwx` wpp´ 2w´ xqs2rw2 ` xpp´ 2w´ xqs

ps´ wq2ps´ xqp´s` 2w` xq
,

or equivalently p396`280
?

2qp´x2
`2sx´2wx`2sw´ s2

q “ 4w2
pw2
`2sx´2wx´x2

q. Next, we
write w “ a`b

?
2 and x “ c`d

?
2 for positive integers a, b, c, and d with 1 ď a ď 8, 1 ď b ď 6,

1 ď c ď 15, and 1 ď d ď 11. A computer search yields the unique solution pa, bq “ p5, 3q, which
produces pc, dq “ p3, 2q or pc, dq “ p5, 6q. Hence the dimensions of the trapezoid are 5 ` 3

?
2,

3` 2
?

2, 5` 3
?

2, and 5` 6
?

2 as claimed.

Also solved by David Stone, Georgia Southern University, Statesboro, GA.

Proposer Ken Korbin’s comments: In this problem we have a circle with diameter 7 ` 5
?

2. It
is possible to inscribe in this circle infinitely many different trapezoids with sides of the form
a ` b

?
2, where a and b are integers. Included among these are infinitely many different pairs of

trapezoids that both have the same perimeter.
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‚ 5650 Proposed by Ángel Plaza, Universidad de las Palmas de Gran Canaria, Spain.

Let Ln be the nth Lucas number defined by L0 “ 2, L1 “ 1, and Ln “ Ln´1 ` Ln´2 for n ě 2.
Prove

n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2´
?

33.

Solution 1 by Ajay Srinivasan, University of Southern California, Los Angeles.

Re-indexing the sum on the LHS of the inequality gives:

n´1
ÿ

j“0

a

L jL j`3 ď
a

Ln`1Ln`4 ` 2
?

2´
?

33

Note that
a

L0L3 “
?

8. This yields:

n´1
ÿ

j“1

a

L jL j`3 ď
a

Ln`1Ln`4 ´
?

33

Now one can rewrite the RHS terms as the result of a telescoping sum.

n´1
ÿ

j“1

a

L jL j`3 ď

n´1
ÿ

j“1

´

a

L j`2L j`5 ´
a

L j`1L j`4

¯

Evidently if the following inequality is true, then the problem is solved.
a

L jL j`3 ď
a

L j`2L j`5 ´
a

L j`1L j`4 (4)

Rewriting the involved Lucas Numbers in terms of L j, L j`1, one gets
L j`2 “ L j`1 ` L j, L j`3 “ 2L j`1 ` L j, L j`4 “ 3L j`1 ` 2L j, L j`5 “ 5L j`1 ` 3L j.

Using the substitution r “
L j`1

L j
in equation p4q and rearranging a little bit, we get:

b

p1` rqp3` 5rq ě
?

1` 2r `
b

rp2` 3rq

Squaring both sides of the inequality (given that both sides are always positive):

3` 8r ` 5r2
ě 1` 4r ` 3r2

` 2
b

rp1` 2rqp2` 3rq

Rearranging so that the square root is one side:

1` 2r ` r2
ě

b

rp1` 2rqp2` 3rq

Squaring both sides (given that both sides are always positive):

r4
` 4r3

` 6r2
` 4r ` 1 ě 2r ` 7r2

` 6r3

8



r4
´ 2r3

´ r2
` 2r ` 1 ě 0

Evidently, r4
´ 2r3

´ r2
` 2r` 1 “ pr2

´ r´ 1q2. This is a non-negative quantity for all r P R. The
proof is now complete.

Solution 2 by Péter Fülöp, Gyömrő, Hungary.

1 Complete induction

1.1 Induction Step 1
Let’s check the validity of the inequality (2) in the case of n “ 2 and n “ 3

n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 `
a

L0L3 ´
a

L2L5. (5)

n=2

LHS of (2):

a

L0L3 `
a

L1L4 “ 2
?

2
?

7 » 5, 474148 (6)

RHS of (2):

a

L3L6 ` 2
?

2´
?

33 “ 6
?

2` 2
?

2´
?

33 » 5, 5691458 (7)

n=3

LHS of (2):

a

L0L3 `
a

L1L4 `
a

L2L5 “ 2
?

2`
?

7`
?

33 » 11, 218741 (8)

RHS of (2):

a

L4L7 ` 2
?

2´
?

33 “
?

7 ˚ 29` 2
?

2´
?

33 » 11, 331671 (9)

The inequality is true for both cases (n=2,3)
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1.2 Induction Step 2

Let’s check: if the inequality (2) is true for k “ n then will it also be true for k “ n` 1. Based on
(2) for

n+1

n`1
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`2Ln`5 `
a

L0L3 ´
a

L2L5. (10)

n
ÿ

k“1

a

Lk´1Lk`2 `
a

LnLn`3 ď
a

Ln`2Ln`5 `
a

L0L3 ´
a

L2L5. (11)

LHS of (8) can be majorized by RHS of (2) we get:

a

Ln`1Ln`4 `
a

LnLn`3 ď
a

Ln`2Ln`5 (12)

If (9) is true then the statement (1) is proved.

- Express (9 )with Ln and Ln`1

Applying the following relation between Lucas and Fibonacci numbers in (9):

Ln`m “ Ln`1Fm ` LnFm´1 (13)

If x “
Ln

Ln`1
then LHS is equal to:

a

Ln`1

´?
3` 2x`

b

xpx` 2q
¯

(14)

and RHS is equal to:

a

Ln`1

a

3x2 ` 8x` 5 (15)

Using the complete induction again for (9)

Step 1

n=2

LHS “
?

4
´

c

3` 2p
3
4
q `

c

p2`
3
4
q
3
4

¯

» 7.114922

10



RHS “
?

4
´

c

3p
3
4
q2 ` 8p

3
4
q ` 5

¯

» 7.123903

n=3

LHS “
?

7
´

c

3` 2p
4
7
q `

c

p2`
4
7
q
4
7

¯

» 8.592300

RHS “
?

7
´

c

3p
4
7
q2 ` 8p

4
7
q ` 5

¯

» 8.594020

The inequality (9) is true for both cases (n=2,3).

Step 2

Provided the inequality is true for n:

a

Ln`1

´?
3` 2x`

b

xpx` 2q
¯

ď
a

Ln`1

a

3x2 ` 8x` 5 (16)

Both sides are positive because 0 ă x ă 1 we can square them:
b

p2x` 3qpx2 ` 2xq ď x2
` 2x` 1

Square both sides again and perform the possible cancellations we get:

0 ď x4
` 2x3

´ x2
´ 2x` 1 (17)

Inequality (14) is true in the range 0 ă x ă 1, because the values of the function

y “ x4
` 2x3

´ x2
´ 2x` 1 are positives. It is zero at x “

?
5´ 1
2

, where the function has the
local minimum value.

In case of n+1 we get:

LHS “
a

Ln`2Ln`5 `
a

Ln`1Ln`4, RHS “
a

Ln`3Ln`6 (18)

- Express (15 )with Ln`1 and Ln`2

Applying (10) and let x “
Ln`1

Ln`2
we get the LHS ď RHS for n+1, because of (13):

a

Ln`2

´?
3` 2x`

b

xpx` 2q
¯

ď
a

Ln`2

a

3x2 ` 8x` 5 (19)

We assumend that (13) was true, it follows that (16) is true.

11



So 1.2 Induction Step 2 (9) is also true. The statement (1) is proved.

Solution 3 by Moti Levy, Rehovot, Israel.

We rearrange the original inequality,

a

Ln`1Ln`4 ´

n
ÿ

k“1

a

Lk´1Lk`2 ě
?

33´
?

8, (20)

and define the sequence panqně1 as follows:

an :“
a

Ln`1Ln`4 ´

n
ÿ

k“1

a

Lk´1Lk`2, n “ 1, 2, . . . .

Clearly
a1 “

a

L2L5 ´
a

L0L3 “
?

33´
?

8,

hence the original inequality (20) can be rephrased as

an ě a1.

Now we show that the sequence panqně1 is increasing for n ě 1.
Let

dn :“ an`1 ´ an “
a

Ln`2Ln`5 ´

n`1
ÿ

k“1

a

Lk´1Lk`2 ´
a

Ln`1Ln`4 `

n
ÿ

k“1

a

Lk´1Lk`2

“
a

Ln`2Ln`5 ´
a

Ln`1Ln`4 ´
a

LnLn`3. (21)

The function f px, yq :“
?

xy is bivariate concave function over the convex region
 

px, yq
ˇ

ˇ

 

px, yq : x ě 0, y ě 0
(

.

By Jensen’s inequality for multivariate functions,
c

x1 ` x2

2
y1 ` y2

2
ě

?
x1y1 `

?
x2y2

2
,

or
b

px1 ` x2q py1 ` y2q ě
?

x1y1 `
?

x2y2. (22)

Now we substitute in (22)

x1 “ Ln`1, y1 “ Ln`4, x2 “ Ln, y2 “ Ln`3.

The right-hand side becomes
a

Ln`1Ln`4 `
a

LnLn`3

12



and the left-hand side becomes
b

pLn`1 ` Lnq pLn`4 ` Ln`3q “
a

Ln`2Ln`5.

It follows that dn ě 0 for n ě 1, which implies that an ě a1 for n ě 1, and the proof is complete.

Solution 4 by Michel Bataille, Rouen, France.

We use induction on n. Since L2 “ 3, L3 “ 4, L5 “ 11, we have
a

L0L3 “ 2
?

2 and
a

L2L5 “?
33, hence equality holds for n “ 1. Now, assume that the proposed inequality holds for some

integer n ě 1. Then we have

n`1
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2´
?

33`
a

LnLn`3

and it is sufficient to prove that
a

Ln`1Ln`4 `
a

LnLn`3 ď
a

Ln`2Ln`5

or, squaring and arranging, that

2
a

Ln`1Ln`4LnLn`3 ď Ln`2Ln`5 ´ Ln`1Ln`4 ´ LnLn`3. (1)

Since

Ln`2Ln`5 “ pLn`1 ` LnqpLn`4 ` Ln`3q “ Ln`1Ln`4 ` LnLn`3 ` Ln`1Ln`3 ` LnLn`4,

p1q can be written as

2
b

pLnLn`4qpLn`1Ln`3q ď LnLn`4 ` Ln`1Ln`3,

that is,
p
a

LnLn`4 ´
a

Ln`1Ln`3q
2
ě 0.

The latter clearly holds and the induction step follows.

Solution 5 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

We first collect the following well-known identities involving the Lucas numbers. For the first
identity, see sequence A0000032 of the Online Encyclopedia of Integer Sequences, with a com-
ment by John Blythe Dobson, 2007. The next two identities are immediate applications of the first,
while the last two follow from the recurrence relation for the Lucas sequence.

Lemma 1 For nonnegative integers n and m with n ď m,

1. Lm ¨ Ln “ Lm`n ` p´1qnLm´n;

13



2. Ln`3 ¨ Ln “ L2n`3 ` p´1qn ¨ 4;

3. L2
n “ L2n ` p´1qn ¨ 2;

4. 2Ln`4 “ 3Ln`3 ` Ln;

5. Ln`6 “ 4Ln`3 ` Ln.

We prove the inequality using induction on n. When n “ 1, then

n
ÿ

k“1

a

Lk´1Lk`2 “
a

L0 ¨ L3 “ 2
?

2 “
a

L2 ¨ L5 ` 2
?

2´
?

33.

We assume
n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2´
?

33

for some positive integer n. Then

n`1
ÿ

k“1

a

Lk´1Lk`2 ď
a

LnLn`3 `
a

Ln`1Ln`4 ` 2
?

2´
?

33,

so it suffices to show that
a

LnLn`3 `
a

Ln`1Ln`4 ď
a

Ln`2Ln`5,

or, equivalently, using part (b) of the Lemma,
b

L2n`3 ` p´1qn ¨ 4`
b

L2n`5 ` p´1qn`1 ¨ 4 ď
b

L2n`7 ` p´1qn`2 ¨ 4.

Since the terms are positive, this is equivalent to proving
ˆ

b

L2n`3 ` p´1qn ¨ 4`
b

L2n`5 ` p´1qn`1 ¨ 4
˙2

ď L2n`7 ` p´1qn ¨ 4.

The left side is

L2n`3 ` p´1qn ¨ 4` L2n`5 ` p´1qn`1
¨ 4` 2

b

L2n`3L2n`5 ` p´1qn`14L2n`3 ` p´1qn4L2n`5 ´ 16,

which using part (1) of the lemma, is equal to

L2n`3 ` L2n`5 ` 2
b

L4n`8 ` p´1qn ¨ 4L2n`4 ´ 19.

Meanwhile, using parts (4) and (5) of the lemma, the right side is

L2n`7 ` p´1qn ¨ 4 “ L2n`5 ` L2n`6 ` p´1qn ¨ 4
“ L2n`5 ` 4L2n`3 ` L2n ` p´1qn ¨ 4
“ L2n`5 ` L2n`3 ` 2L2n`4 ` p´1qn ¨ 4

14



Thus, it is sufficient to prove that

L2n`3 ` L2n`5 ` 2
b

L4n`8 ` p´1qn ¨ 4L2n`4 ´ 19 ď L2n`5 ` L2n`3 ` 2L2n`4 ` p´1qn ¨ 4

2
b

L4n`8 ` p´1qn ¨ 4L2n`4 ´ 19 ď 2L2n`4 ` p´1qn ¨ 4
b

L4n`8 ` p´1qn ¨ 4L2n`4 ´ 19 ď L2n`4 ` p´1qn ¨ 2

The square of the right side is

L2
2n`4 ` p´1qn ¨ 4L2n`4 ` 4 “ L4n`8 ` p´1qn ¨ 4L2n`4 ` 6

ě L4n`8 ` p´1qn ¨ 4L2n`4 ´ 19,

which is the square of the left side.

Solution 6 by David E. Manes, Oneonta, NY.

For each positive integer n, let Ppnq be the following statement:

Ppnq :
n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2 ´
?

33.

If n “ 1, then
a

Lk´1Lk`2 “
a

L0L3 “
?

2 ¨ 4 “ 2
?

2 and
a

Ln`1Ln`4 “
a

L2L5 “
?

3 ¨ 11 “
?

33. Therefore,

1
ÿ

k“1

a

Lk´1Lk`2 “ 2
?

2 ď
a

L2L5 ` 2
?

2´
?

33 “ 2
?

2.

Hence, the statement Pp1q is true. Assume inductively that the positive integer n ě 1 and the
statement Ppnq is true. Then the statement for the integer n` 1 reads

Ppn` 1q :
n`1
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`2Ln`5 ` 2
?

2´
?

33.

To show that this inequality is true, note that

n`1
ÿ

k“1

a

Lk´1Lk`2 “

n
ÿ

k“1

a

Lk´1Lk`2 `
a

LnLn`3

ď

´

a

Ln`1Ln`4 ` 2
?

2´
?

33
¯

`
a

LnLn`3

by the induction hypothesis. Therefore, the statement Ppn` 1q is true if and only if
a

Ln`1Ln`4 `
a

LnLn`3 ` 2
?

2´
?

33 ď
a

Ln`2Ln`5 ` 2
?

2´
?

33

or
a

Ln`1Ln`4 `
a

LnLn`3 ď
a

Ln`2Ln`5
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for each integer n ě 1. Since all terms are nonnegative, it follows that this inequality is true if and
only if

´

a

Ln`1Ln`4 `
a

LnLn`3

¯2
ď

´

a

Ln`2Ln`5

¯2

or Ln`1Ln`4 ` LnLn`3 ` 2
a

Ln`1Ln`4LnLn`3 ď Ln`2Ln`5. By definition of the Lucas numbers for
n ě 1, we get Ln`2 “ Ln`Ln`1 and Ln`5 “ Ln`3`Ln`4. Then substituting these values, expanding
the square, and simplifying the inequality, one obtains that Ppn` 1q is valid if and only if

2
a

Ln`1Ln`4LnLn`3 ď LnLn`4 ` Ln`1Ln`3

if and only if

0 ď
´

a

LnLn`4 ´
a

Ln`1Ln`3

¯2
.

Hence, by induction

n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2 ´
?

33

for each positive integer n.

Solution 7 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

Routine arithmetic shows that equality holds for n “ 1 since L2 “ 3, L3 “ 4, L4 “ 7, and
L5 “ 11. It suffices to prove that

a

Lk´1Lk`2 ă
a

Lk`1Lk`4 ´
a

LkLk`3 (23)

for k ě 2 as then

n
ÿ

k“1

a

Lk´1Lk`2 ă
a

L2L5`2
?

2´
?

33`
n
ÿ

k“2

´

a

Lk`1Lk`4 ´
a

LkLk`3

¯

“
a

Ln`1Ln`4`2
?

2´
?

33

for n ě 2. Squaring both sides of inequality p23q yields

Lk´1Lk`2 ă Lk`1Lk`4 ` LkLk`3 ´ 2
a

LkLk`1Lk`3Lk`4,

which in turn is equivalent to

2
a

LkLk`1Lk`3Lk`4 ă Lk`1Lk`4 ` LkLk`3 ´ Lk´1Lk`2

“ pLk`2 ´ LkqpLk`2 ` Lk`3q ` LkLk`3 ´ Lk´1Lk`2

“ Lk`2pLk`2 ` Lk`3 ´ Lk ´ Lk´1q

“ Lk`2pLk`2 ` Lk`3 ´ Lk`1q “ 2L2
k`2.

Canceling out the 2 and squaring both sides of the above inequality one more time yields

LkLk`1Lk`3Lk`4 ă L4
k`2. (24)
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To see that p24q is true, apply the Cassini-type identity (see equation 3.3 of [1])

Lm`iLm` j´1 ´ Lm´1Lm`i` j “ Fi`1p´1qm´1
pL j ´ 2L j`1q,

where Fn is the nth Fibonacci number, to get that

LkLk`1Lk`3Lk`4 “ pLkLk`4qpLk`1Lk`3q

“

´

L2
k`2 ´ F2p´1qkpL2 ´ 2L3q

¯´

L2
k`2 ´ F1p´1qk`1

pL1 ´ 2L2q

¯

“

´

L2
k`2 ` p´1qk5

¯´

L2
k`2 ´ p´1qk5

¯

“ L4
k`2 ´ 25 ă L4

k`2.

References
[1] Voll, Nils Gaute, The Cassini identity and its relatives, Fibonacci Quart., 48, (2010), 197-201.

Solution 8 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

We proceed by induction on n. With n “ 1,

1
ÿ

k“1

a

Lk´1Lk`2 “
a

L0L3 “ 2
?

2

and
a

Ln`1Ln`4 ` 2
?

2´
?

33 “
a

L2L5 ` 2
?

2´
?

33 “ 2
?

2,

so
n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2´
?

33

holds for n “ 1. Now, suppose

N
ÿ

k“1

a

Lk´1Lk`2 ď
a

LN`1LN`4 ` 2
?

2´
?

33

holds for some positive integer N. Then

N`1
ÿ

k“1

a

Lk´1Lk`2 ď
a

LN LN`3 `
a

LN`1LN`4 ` 2
?

2´
?

33.

By Mahler’s inequality,

a

LN LN`3 `
a

LN`1LN`4 ď

b

pLN ` LN`1qpLN`3 ` LN`4q “
a

LN`2LN`5,
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so
N`1
ÿ

k“1

a

Lk´1Lk`2 ď
a

LN`2LN`5 ` 2
?

2´
?

33.

Thus,
n
ÿ

k“1

a

Lk´1Lk`2 ď
a

Ln`1Ln`4 ` 2
?

2´
?

33

holds for all positive integers n.

Solution 9 by Brian D. Beasley, Presbyterian College, Clinton, SC.

For each positive integer n, let an “

n
ÿ

k“1

a

Lk´1Lk`2 and bn “
a

Ln`1Ln`4 ` 2
?

2 ´
?

33.

We apply induction on n and use the following identities:

Ln`2Ln`5 ´ Ln`1Ln`4 ´ LnLn`3 “ 2L2
n`2 (25)

LnLn`1Ln`3Ln`4 ` 25 “ L4
n`2 (26)

First, we check that a1 “ b1 “ 2
?

2. Next, assume an ď bn for some positive integer n. Then
an`1 ď bn`1 will follow provided that

a

Ln`1Ln`4 `
a

LnLn`3 ď
a

Ln`2Ln`5.

This inequality in turn is equivalent to Ln`1Ln`4 ` 2
a

LnLn`1Ln`3Ln`4 ` LnLn`3 ď Ln`2Ln`5. By
(25), the latter inequality holds if and only if

a

LnLn`1Ln`3Ln`4 ď L2
n`2, which follows immedi-

ately from (26).

Addendum. (i) We note the similarity of this problem to Problem 12213 in The American Mathe-
matical Monthly (127:9, Nov. 2020, p. 853), which gives the corresponding result for the Fibonacci
sequence:

12213. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth Fibonacci
number, defined by F0 “ 0, F1 “ 1, and Fn “ Fn´1 ` Fn´2 for n ě 2. Prove

n
ÿ

k“1

a

Fk´1Fk`2 ď
a

Fn`1Fn`4 ´
?

5.

(ii) To establish (25), we have

Ln`2Ln`5 “ pLn`1 ` LnqpLn`4 ` Ln`3q

“ pLn`1Ln`4 ` LnLn`3q ` pLnLn`4 ` Ln`1Ln`3q,

with

LnLn`4 ` Ln`1Ln`3 “ pLn`2 ´ Ln`1qpLn`2 ` Ln`3q ` Ln`1Ln`3

“ L2
n`2 ` Ln`2pLn`3 ´ Ln`1q

“ 2L2
n`2.
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To establish (26), it is straightforward to apply Binet’s formula Ln “ αn
` βn with α “ p1 `?

5q{2 and β “ p1´
?

5q{2 to show that LnLn`4´ 5p´1qn “ L2
n`2 and Ln`1Ln`3` 5p´1qn “ L2

n`2.

Solution 10 Albert Stadler, Herrliberg, Switzerland.

We will prove that
a

Lk´1Lk`2 ď
a

Lk`1Lk`4 ´
a

LkLk`3, k ě 1. p1q

The claim then follows from (1), since

n
ÿ

k“1

a

Lk´1Lk`2 “
a

L0L3 `

n
ÿ

k“2

´

a

Lk`1Lk`4 ´
a

LkLk`3

¯

“ 2
?

2`
a

Ln`1Ln`4 ´
a

L2L5 “

“
a

Ln`1Ln`4 ` 2
?

2´
?

33.

(??) is equivalent to each of the following lines:
a

Lk´1Lk`2 `
a

LkLk`3 ď
a

Lk`1Lk`4,

Lk´1Lk`2 ` 2
a

Lk´1LkLk`2Lk`3 ` LkLk`3 ď Lk`1Lk`4,

Lk´1Lk`2 ` 2
a

Lk´1LkLk`2Lk`3 ` LkLk`3 ď Lk`1 pLk`2 ` Lk`3q ,

2
a

Lk´1LkLk`2Lk`3 ď pLk`1Lk`2 ´ Lk´1Lk`2q ` pLk`1Lk`3 ´ LkLk`3q ,

2
a

Lk´1LkLk`2Lk`3 ď LkLk`2 ` Lk´1Lk`3,

and the last inequality is true by the AM-GM inequality.
Note: a slightly better estimate is obtained by applying the Cauchy-Schwarz inequality. We have

n
ÿ

k“1

a

Lk´1Lk`2 “
a

L0L3 `

n
ÿ

k“2

a

Lk´1Lk`2 ď 2
?

2`

g

f

f

e

˜

n
ÿ

k“2

Lk´1

¸˜

n
ÿ

k“2

Lk`2

¸

“

“ 2
?

2`

g

f

f

e

˜

n
ÿ

k“2

pLk`1 ´ Lkq

¸˜

n
ÿ

k“2

pLk`4 ´ Lk`3q

¸

“ 2
?

2`
b

pLn`1 ´ L2q pLn`4 ´ L5q “

“ 2
?

2`
b

pLn`1 ´ 3q pLn`4 ´ 11q.

Then
b

pLn`1 ´ 3q pLn`4 ´ 11q ď
a

Ln`1Ln`4 ´
?

33,

since the last inequality is equivalent to

pLn`1 ´ 3q pLn`4 ´ 11q ď Ln`1Ln`4 ´ 2
a

33Ln`1Ln`4 ` 33

which in turn is equivalent to

2
a

33Ln`1Ln`4 ď 11Ln`1 ` 3Ln`4
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which is true by the AM-GM inequality.

Also solved by Daniel Văcaru, Pites, ti, Romania; and the proposer.

‚ 5651 Proposed by José Díaz-Barrero, Barcelona Tech, Barcelona, Spain.

Let f : r0,`8q Ñ p0,`8q be a concave function. Show that

20
ż 1{4

0
f pxq dx` 15

ż 1{3

0
f pxq dx` 24

ż 5{12

0
f pxq dx ě 75

ż 1{6

0
f pxq dx` 10

ż 1{2

0
f pxq dx.

Editor’s note: A real-valued function f defined over an interval I is said to be concave (down) if
and only if @α, β P r0, 1s , with α` β “ 1, @a, b P I : α f paq ` β f pbq ď f pαa` βbq .

Solution 1 by Michel Bataille, Rouen, France.

For any real k , 0, the change of variables x “ ku gives
ż k

0
f pxq dx “ k

ż 1

0
f pkuq du. It read-

ily follows that the required inequality is equivalent to
ż 1

0
f
ˆ

x
4

˙

dx`
ż 1

0
f
ˆ

x
3

˙

dx` 2
ż 1

0
f
ˆ

5x
12

˙

dx ě
5J
2
` K (1)

where we set J “
ż 1

0
f
ˆ

x
6

˙

dx and K “
ż 1

0
f
ˆ

x
2

˙

dx.

Using the concavity of f and the identities

x
4
“

3
4
¨

x
6
`

1
4
¨

x
2
,

x
3
“

1
2
¨

x
6
`

1
2
¨

x
2
,

5x
12
“

1
4
¨

x
6
`

3
4
¨

x
2
,

we obtain

f
ˆ

x
4

˙

ě
3
4

f
ˆ

x
6

˙

`
1
4

f
ˆ

x
2

˙

, f
ˆ

x
3

˙

ě
1
2

f
ˆ

x
6

˙

`
1
2

f
ˆ

x
2

˙

, f
ˆ

5x
12

˙

ě
1
4

f
ˆ

x
6

˙

`
3
4

f
ˆ

x
2

˙

and we deduce that
ż 1

0
f
ˆ

x
4

˙

dx ě
3
4
¨ J `

1
4
¨ K,

ż 1

0
f
ˆ

x
3

˙

dx ě
1
2
¨ J `

1
2
¨ K,

ż 1

0
f
ˆ

5x
12

˙

dx ě
1
4
¨ J `

3
4
¨ K.

As a result, p1q will be satisfied if

3
4
¨ J `

1
4
¨ K `

1
2
¨ J `

1
2
¨ K ` 2

ˆ

1
4
¨ J `

3
4
¨ K

˙

ě
5J
2
` K

or, arranging,

K ě
3J
5
. (2)
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Again, since
x
2
“

3
5
¨

x
6
`

2
5
¨ x, we have f

ˆ

x
2

˙

ě
3
5

f
ˆ

x
6

˙

`
2
5

f pxq ą
3
5

f
ˆ

x
6

˙

(the last inequality

because f is positive). The inequality p2q immediately follows by integration between 0 and 1.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

We will prove more precisely that

20
ż 1

4

0
f pxq dx`15

ż 1
3

0
f pxq dx`24

ż 5
12

0
f pxq dx ě 75

ż 1
6

0
f pxq dx`10

ż 1
2

0
f pxq dx`

5
2

ż 1

0
f pxq dx. p1q

Inequality (1) is sharper than the claimed inequality, because by assumption f(x)ą0 for xě0. We
perform a change of variables and obtain the equivalent inequality

5
ż 1

0
f
ˆ

x
4

˙

dx`5
ż 1

0
f
ˆ

x
3

˙

dx`10
ż 1

0
f
ˆ

5x
12

˙

dx ě
25
2

ż 1

0
f
ˆ

x
6

˙

dx`5
ż 1

0
f
ˆ

x
2

˙

dx`
5
2

ż 1

0
f pxq dx. p2q

By assumption,

f
ˆ

x
4

˙

ě
3
4

f
ˆ

x
6

˙

`
1
4

f
ˆ

x
2

˙

,

f
ˆ

x
3

˙

ě
1
5

f pxq `
4
5

f
ˆ

x
6

˙

,

f
ˆ

5x
12

˙

ě
5
8

f
ˆ

11x
30

˙

`
3
8

f
ˆ

x
2

˙

ě
5
8

˜

6
25

f pxq `
19
25

f
ˆ

x
6

˙

¸

`
3
8

f
ˆ

x
2

˙

“

“
3

20
f pxq `

19
40

f
ˆ

x
6

˙

`
3
8

f
ˆ

x
2

˙

.

Hence

5
ż 1

0
f
ˆ

x
4

˙

dx` 5
ż 1

0
f
ˆ

x
3

˙

dx` 10
ż 1

0
f
ˆ

5x
12

˙

dx ě

ě 5
ż 1

0

˜

3
4

f
ˆ

x
6

˙

`
1
4

f
ˆ

x
2

˙

¸

dx` 5
ż 1

0

˜

1
5

f pxq `
4
5

f
ˆ

x
6

˙

¸

dx

`10
ż 1

0

˜

3
20

f pxq `
19
40

f
ˆ

x
6

˙

`
3
8

f
ˆ

x
2

˙

¸

dx “

“
25
2

ż 1

0
f
ˆ

x
6

˙

dx` 5
ż 1

0
f
ˆ

x
2

˙

dx`
5
2

ż 1

0
f pxq dx,

as claimed in (2).

Solution 3 by David Huckaby, Angelo State University, San Angelo, TX.

With the substitutions x “
1
4

u, x “
1
3

u, x “
5

12
u, x “

1
6

u, and x “
1
2

u in the five integrals
from left to right, the desired inequality becomes
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5
ż 1

0
f
ˆ

1
4

u
˙

du` 5
ż 1

0
f
ˆ

1
3

u
˙

du` 10
ż 1

0
f
ˆ

5
12

u
˙

du

ě
25
2

ż 1

0
f
ˆ

1
6

u
˙

du` 5
ż 1

0
f
ˆ

1
2

u
˙

du.

Since f p0q ą 0, the following two properties hold:

1. For t P r0, 1s, f ptxq ě t f pxq.

2. For a, b P r0,8q, f paq ` f pbq ě f pa` bq.

(See https://en.wikipedia.org/wiki/Concave_function.)

Therefore

5
ż 1

0
f
ˆ

1
4

u
˙

du` 5
ż 1

0
f
ˆ

1
3

u
˙

du` 10
ż 1

0
f
ˆ

5
12

u
˙

du

“ 5
ż 1

0

«

f
ˆ

1
4

u
˙

` f
ˆ

1
3

u
˙

` f
ˆ

5
12

u
˙

ff

du` 5
ż 1

0
f
ˆ

5
12

u
˙

du

ě 5
ż 1

0

«

f
ˆ

1
4

u`
1
3

u`
5

12
u
˙

ff

du` 5
ż 1

0
f
ˆ

5
12

u
˙

du

“ 5
ż 1

0
f puq du` 5

ż 1

0
f
ˆ

5
12

u
˙

du

“ 5
ż 1

0

«

f puq ` f
ˆ

5
12

u
˙

ff

du

ě 5
ż 1

0
f
ˆ

17
12

u
˙

du

“ 5
ż 1

0
f
ˆ

11
17
¨

17
12

u`
6

17
¨

17
12

u
˙

du

ě 5
ż 1

0

«

11
17

f
ˆ

17
12

u
˙

`
6

17
f
ˆ

17
12

u
˙

ff

du

ě 5
ż 1

0

«

11
17
¨

17
2

f
ˆ

1
6

u
˙

`
6

17
¨

17
6

f
ˆ

1
2

u
˙

ff

du

“
55
2

ż 1

0
f
ˆ

1
6

u
˙

du` 5
ż 1

0
f
ˆ

1
2

u
˙

du

ą
25
2

ż 1

0
f
ˆ

1
6

u
˙

du` 5
ż 1

0
f
ˆ

1
2

u
˙

du.
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(The first and second inequalities follow from the second property stated above, the third in-
equality follows from the editor’s note given after the problem statement, and the fourth inequality
follows from the first property stated above.)

Also solved by Péter Fülöp, Gyömrő, Hungary; and the proposer.

‚ 5652 Proposed by Daniel Sitaru, National Economic College, “Theodor Costescu" Drobeta
Turnu-Severin, Mehedinti, Romania.

Prove:
1 ď a ď b ď c ùñ aa

¨ ec´a
¨

´?
ab
¯b´a

¨

´?
bc
¯c´b

ď cc.

Solution by Michel Bataille, Rouen, France.

Suppose that 1 ď a ď b ď c. Taking logarithms, the equality to be proved is equivalent to

c´ a ď c ln c´ a ln a´
b´ a

2
pln a` ln bq ´

c´ b
2
pln b` ln cq

or
c´ a ď

b` c
2

ln
c
b
´

a` b
2

ln
a
b
.

Writing c´ a as pb` cq ´ pa` bq, the latter is easily transformed into

f
ˆ

c
b

˙

ě f
ˆ

a
b

˙

(1)

where f is the function defined on p0,8q by f pxq “ p1` xqplnpxq ´ 2q.

The derivative of f satisfies f 1pxq “ lnpxq ´ 2 `
1
x
¨ p1 ` xq “

1
x
´ 1 ´ ln

ˆ

1
x

˙

, hence f 1pxq ě 0

(since ln u ď u´1 for all positive u) and therefore the function f is nondecreasing on p0,8q. Since
c
b
ě 1 ě

a
b
ą 0, p1q follows.

Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.

‚ 5653 Proposed by Toyesh Prakash Sharma (Student) St. C.F Andrews School, Agra, India.

Evaluate the following limit:

lim
nÑ8

sin
`

F´1
n

˘

sin
´

L´1
n

¯ ¨

ˆ

1`
1
Fn

˙Ln

¨

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

where α “
1`

?
5

2
and β “

1´
?

5
2

.

23



Editor’s note: Here, Fn and Ln respectively denote the Fibonacci and Lucas numbers.

Solution 1 by Moti Levy, Rehovot, Israel.

The limit in the problem statement is equal to the product of three limits:

lim
nÑ8

sin
´

1
Fn

¯

sin
´

1
Ln

¯

ˆ

1`
1
Fn

˙Ln n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

“

¨

˚

˝
lim
nÑ8

sin
´

1
Fn

¯

sin
´

1
Ln

¯

˛

‹

‚

˜

lim
nÑ8

ˆ

1`
1
Fn

˙Ln
¸

¨

˝ lim
nÑ8

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

˛

‚.

The first limit is

lim
nÑ8

sin
´

1
Fn

¯

sin
´

1
Ln

¯ “ lim
nÑ8

sinp 1
Fn q

1
Fn

sinp 1
Ln q

1
Ln

Ln

Fn
“ lim

nÑ8

Ln

Fn

The following formulas are well known,

Ln “ αn
` βn,

Fn “
αn ´ βn

?
5

.

lim
nÑ8

Ln

Fn
“
?

5 lim
nÑ8

αn ` βn

αn ´ βn “
?

5 lim
nÑ8

1`
´

β

α

¯n

1´
´

β

α

¯n

ˇ

ˇ

ˇ

ˇ

β

α

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1´
?

5

1`
?

5

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1

lim
nÑ8

Ln

Fn
“
?

5

The second limit is

lim
nÑ8

ˆ

1`
1
Fn

˙Ln

“ lim
nÑ8

˜

ˆ

1`
1
Fn

˙Fn
¸

Ln
Fn

“ elimnÑ8
Ln
Fn “ e

?
5.
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The third limit is

lim
nÑ8

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

“
1
2

8
ÿ

y“1

8
ÿ

x“1

ˆ

1
x2αy2β px2αy2β ` x2βy2αq

`
1

x2βy2α px2βy2α ` x2αy2βq

˙

“
1
2

8
ÿ

y“1

8
ÿ

x“1

1
x2α`2βy2α`2β “

1
2

¨

˝

n
ÿ

y“1

1
y2α`2β

˛

‚

˜

8
ÿ

x“1

1
x2α`2β

¸

“
1
2
ζ2
`

2 pα` βq
˘

“
1
2
ζ2 p2q “

π4

72
.

We conclude that

lim
nÑ8

sin
´

1
Fn

¯

sin
´

1
Ln

¯

ˆ

1`
1
Fn

˙Ln n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

“

?
5

72
π4e

?
5 � 28.305.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

Clearly,

lim
nÑ8

sin
´

1
Fn

¯

sin
´

1
Ln

¯ “ lim
nÑ8

Ln

Fn
“
?

5 lim
nÑ8

pαn ` βnq

pαn ´ βnq
“
?

5,

lim
nÑ8

ˆ

1`
1
Fn

˙Ln

“ lim
nÑ8

˜

ˆ

1`
1
Fn

˙Fn
¸

Ln
Fn

“ e
?

5,

1
x2αy2β px2αy2β ` x2βy2αq

“
1

x4αy4β ` x2y2 “
1

x2y2 px4α´2y4β´2 ` 1q
“

“
1

x2y2
´

x2
?

5y´2
?

5 ` 1
¯ “

y2
?

5

x2y2
´

x2
?

5 ` y2
?

5
¯ .

Hence, by interchanging the summation variables,

n
ÿ

y“1

n
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

“

n
ÿ

y“1

n
ÿ

x“1

y2
?

5

x2y2
´

x2
?

5 ` y2
?

5
¯ “

“
1
2

n
ÿ

y“1

n
ÿ

x“1

y2
?

5 ` x2
?

5

x2y2
´

x2
?

5 ` y2
?

5
¯ “

1
2

˜

n
ÿ

x“1

1
x2

¸2

“
1
2

˜

π2

6
` O

ˆ

1
n

˙

¸2

,
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and

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

“

n
ÿ

y“1

8
ÿ

x“1

y2
?

5

x2y2
´

x2
?

5 ` y2
?

5
¯ “

“

n
ÿ

y“1

n
ÿ

x“1

y2
?

5

x2y2
´

x2
?

5 ` y2
?

5
¯ `

n
ÿ

y“1

8
ÿ

x“n`1

y2
?

5

x2y2
´

x2
?

5 ` y2
?

5
¯ “

“
1
2

˜

π2

6
` O

ˆ

1
n

˙

¸2

` O

¨

˝

8
ÿ

y“1

8
ÿ

x“n`1

1
x2y2

˛

‚“
π4

72
` O

ˆ

1
n

˙

,

as n tends to infinity. Finally,

lim
nÑ8

sin
´

1
Fn

¯

sin
´

1
Ln

¯ ¨

ˆ

1`
1
Fn

˙Ln

¨

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2β px2αy2β ` x2βy2αq

“
?

5 ¨ e
?

5
¨
π4

72
.

Solution 3 by Michel Bataille, Rouen, France.

Recall that Fn “
αn ´ βn

?
5

and Ln “ αn
` βn for n P N. Since |β{α| ă 1, it follows that Fn „

αn

?
5

and Ln „ αn as n Ñ 8. Thus lim
nÑ8

F´1
n “ lim

nÑ8
L´1

n “ 0 and therefore

sinpF´1
n q

sinpL´1
n q

„
F´1

n

L´1
n

„
αn

αn{
?

5

as n Ñ 8. As a result,

lim
nÑ8

sinpF´1
n q

sinpL´1
n q

“
?

5. (1)

We have ln

˜

ˆ

1`
1
Fn

˙Ln
¸

“ Ln ln
ˆ

1`
1
Fn

˙

„ Ln ¨
1
Fn

as n Ñ 8. It follows that

lim
nÑ8

ln

˜

ˆ

1`
1
Fn

˙Ln
¸

“
?

5 and therefore lim
nÑ8

ˆ

1`
1
Fn

˙Ln

“ e
?

5. (2)

Since upx, yq :“
1

x2αy2βpx2αy2β ` x2βy2αq
ą 0, we have lim

nÑ8

n
ÿ

y“1

8
ÿ

x“1

upx, yq “ S where

S “
8
ÿ

y“1

8
ÿ

x“1

upx, yq “
8
ÿ

x“1

8
ÿ

y“1

upx, yq,
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a positive real number or8. We remark that S “
8
ÿ

x“1

8
ÿ

y“1

upy, xq, hence

2S “
8
ÿ

x“1

8
ÿ

y“1

pupy, xq ` upx, yqq “
8
ÿ

x“1

8
ÿ

y“1

1
x2αx2βy2αy2β “

8
ÿ

x“1

8
ÿ

y“1

1
x2y2

(the last equality because α` β “ 1).
Thus,

2S “

¨

˝

8
ÿ

y“1

1
y2

˛

‚

˜

8
ÿ

x“1

1
x2

¸

“
π4

36
. (3)

From p1q, p2q, p3q, we conclude that the required limit is

π4
?

5 e
?

5

72
.

Solution 4 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

The Binet forms for the nth Fibonacci number and the nth Lucas number are

Fn “
αn ´ βn

?
5

and Ln “ αn
` βn,

respectively. Because |α| ą 1 and |β| ă 1, it follows that

Fn „
αn

?
5

and Ln „ αn

as n Ñ 8. Consequently,

lim
nÑ8

sinpF´1
n q

sinpL´1
n q

“ lim
nÑ8

Ln

Fn
“
?

5,

and

lim
nÑ8

ˆ

1`
1
Fn

˙Ln

“ lim
nÑ8

˜

1`

?
5

αn

¸αn

“ e
?

5.

Now,
8
ÿ

y“1

8
ÿ

x“1

1
x2αy2βpx2αy2β ` x2βy2αq

“

8
ÿ

y“1

8
ÿ

x“1

1
x2βy2α

ˆ

1
x2αy2β ´

1
x2αy2β ` x2βy2α

˙

“

8
ÿ

y“1

8
ÿ

x“1

1
x2y2 ´

8
ÿ

y“1

8
ÿ

x“1

1
x2βy2αpx2αy2β ` x2βy2αq

“

8
ÿ

y“1

8
ÿ

x“1

1
x2y2 ´

8
ÿ

y“1

8
ÿ

x“1

1
x2αy2βpx2αy2β ` x2βy2αq

,
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so
8
ÿ

y“1

8
ÿ

x“1

1
x2αy2βpx2αy2β ` x2βy2αq

“
1
2

¨

˝

8
ÿ

y“1

1
y2

˛

‚

˜

8
ÿ

x“1

1
x2

¸

“
π4

72
.

Thus,

lim
nÑ8

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2βpx2αy2β ` x2βy2αq

“
π4

72
,

and

lim
nÑ8

sinpF´1
n q

sinpL´1
n q

¨

ˆ

1`
1
Fn

˙Ln

¨

n
ÿ

y“1

8
ÿ

x“1

1
x2αy2βpx2αy2β ` x2βy2αq

“
?

5e
?

5
¨
π4

72
.

Also solved by the proposer.

‚ 5654 Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Calculate
8
ÿ

m“1

8
ÿ

n“1

Hn`m

mn2pn` mq2

where Hn “ 1`
1
2
` ¨ ¨ ¨ `

1
n

denotes the nth harmonic number.

Solution 1 by Moti Levy, Rehovot, Israel.

We apply the Borwein’s trick to get symmetric double sum:

S :“
8
ÿ

n“1

8
ÿ

m“1

Hm`n

mn2 pm` nq2
“

1
2

˜

8
ÿ

n“1

8
ÿ

m“1

Hm`n

mn2 pm` nq2
`

8
ÿ

n“1

8
ÿ

m“1

Hm`n

m2n pm` nq2

¸

“
1
2

8
ÿ

n“1

8
ÿ

m“1

Hm`n

m2n2 pm` nq
. (27)

Integral representation of the harmonic number is well known:

Hn “ ´n
ż 1

0
zn´1 ln p1´ zq dz (28)
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We plug (28) into (27) and change the order of summation and integration,

S “
1
2

8
ÿ

n“1

8
ÿ

m“1

´pn` mq
ş1

0 zn`m´1 ln p1´ zq

m2n2 pm` nq
dz

“ ´
1
2

8
ÿ

n“1

8
ÿ

m“1

ş1
0 zn`m´1 ln p1´ zq

m2n2 dz

“ ´
1
2

ż 1

0

ln p1´ zq
z

8
ÿ

n“1

8
ÿ

m“1

zn`m

m2n2 dz. (29)

By definition of the dilogarithm Li2 pzq,

8
ÿ

n“1

8
ÿ

m“1

zn`m

m2n2 “

˜

8
ÿ

n“1

zn

n2

¸˜

8
ÿ

n“1

zm

m2

¸

“
`

Li2 pzq
˘2
. (30)

Substitution of (30) into (29) and integration produce the required result:

S “ ´
1
2

ż 1

0

ln p1´ zq
z

`

Li2 pzq
˘2

dz “
1
2

ż 1

0

ˆ

d
dz

Li2 pzq
˙

`

Li2 pzq
˘2

dz “
1
6

`

Li2 p1q
˘3
,

S “
π6

1296
� 0.741 81..

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

We reduce this double sum to known evaluations of Euler sums. All involved terms are positive.
We may therefore rearrange the double sum by grouping all tuples pm, nq for which m` n “ k` 1
and then sum over k from 1 to infinity:

8
ÿ

m“1

8
ÿ

n“1

Hn`m

mn2 pn` mq2
“

8
ÿ

k“1

Hk`1

pk ` 1q2

k
ÿ

n“1

1
pk ` 1´ nq n2

“

“

8
ÿ

k“1

Hk`1

pk ` 1q2

k
ÿ

n“1

˜

1
pk ` 1qn2 `

1

pk ` 1q2n
`

1

pk ` 1q2 pk ` 1´ nq

¸

“

“

8
ÿ

k“1

Hk`1Hp2q
k

pk ` 1q3
` 2

8
ÿ

k“1

Hk`1Hk

pk ` 1q4
,

where Hp2q
k “

k
ÿ

n“1

1
n2 . We have

8
ÿ

k“1

Hk`1Hp2q
k

pk ` 1q3
“

8
ÿ

k“1

Hk`1Hp2q
k`1

pk ` 1q3
´

8
ÿ

k“1

Hk`1

pk ` 1q5
“

8
ÿ

k“1

HkHp2q
k

k3 ´

8
ÿ

k“1

Hk

k5 ,

8
ÿ

k“1

Hk`1Hk

pk ` 1q4
“

8
ÿ

k“1

H2
k`1

pk ` 1q4
´

8
ÿ

k“1

Hk`1

pk ` 1q5
“

8
ÿ

k“1

H2
k

k4 ´

8
ÿ

k“1

Hk

k5 .
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We will use the following results:

8
ÿ

k“1

Hk

k5 “
7
2
ζ p6q ´ ζ p2q ζ p4q ´

1
2
ζ2 p3q “

1
540

π6
´

1
2
ζ2 p3q , r1s , Theorem 2.2 pEulerq

8
ÿ

k“1

H2
k

k4 “
97
24
ζ p6q ´ 2ζ2 p3q “

97π6

22680
´ 2ζ2 p3q , r1s , p4´ 1q

8
ÿ

k“1

HkHp2q
k

k3 “
5
2
ζ2 p3q´

101
45360

π6. r2s , p4.11q

Hence

8
ÿ

k“1

Hk`1Hp2q
k

pk ` 1q3
“

8
ÿ

k“1

Hk`1Hp2q
k`1

pk ` 1q3
´

8
ÿ

k“1

Hk`1

pk ` 1q5
“

8
ÿ

k“1

HkHp2q
k

k3 ´

8
ÿ

k“1

Hk

k5 ,

8
ÿ

k“1

Hk`1Hk

pk ` 1q4
“

8
ÿ

k“1

H2
k`1

pk ` 1q4
´

8
ÿ

k“1

Hk`1

pk ` 1q5
“

8
ÿ

k“1

H2
k

k4 ´

8
ÿ

k“1

Hk

k5 ,

and finally

8
ÿ

m“1

8
ÿ

n“1

Hn`m

mn2 pn` mq2
“

8
ÿ

k“1

Hk`1Hp2q
k

pk ` 1q3
` 2

8
ÿ

k“1

Hk`1Hk

pk ` 1q4
“

8
ÿ

k“1

HkHp2q
k

k3 ´ 3
8
ÿ

k“1

Hk

k5 ` 2
8
ÿ

k“1

H2
k

k4 “

“
5
2
ζ2 p3q ´

101
45360

π6
´ 3

ˆ

1
540

π6
´

1
2
ζ2 p3q

˙

` 2

˜

97π6

22680
´ 2ζ2 p3q

¸

“
π6

1296
.
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Solution 3 by Michel Bataille, Rouen, France.

We show that the required sum S is
π6

1296
.
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Since
Hn`m

mn2pn` mq2
,

Hn`m

n2pn` mq3
,

Hn`m

mnpn` mq3
are positive and the first one is the sum of the other

two, we may write

S “
8
ÿ

m“1

8
ÿ

n“1

Hn`m

n2pn` mq3
`

8
ÿ

m“1

8
ÿ

n“1

Hn`m

mnpn` mq3
.

Since
8
ÿ

m“1

8
ÿ

n“1

Hn`m

mnpn` mq3
“

8
ÿ

m“1

8
ÿ

n“1

Hn`m

pn` mq4

ˆ

n` m
mn

˙

“ 2
8
ÿ

m“1

8
ÿ

n“1

Hn`m

npn` mq4

we see that

S “
8
ÿ

m“1

8
ÿ

n“1

Hn`m

n2pn` mq3
` 2

8
ÿ

m“1

8
ÿ

n“1

Hn`m

npn` mq4
.

Now, we have
8
ÿ

m“1

8
ÿ

n“1

Hn`m

npn` mq4
“

8
ÿ

k“2

k´1
ÿ

n“1

Hk

k4 ¨
1
n
“

8
ÿ

k“2

H2
k

k4 ´

8
ÿ

k“2

Hk

k5

and similarly
8
ÿ

m“1

8
ÿ

n“1

Hn`m

n2pn` mq3
“

8
ÿ

k“2

HkHp2q
k

k3 ´

8
ÿ

k“2

Hk

k5

(where Hp2q
k “

k
ÿ

j“1

1
j2 ). Note that the series on the right are convergent since Hk „ lnpkq as k Ñ 8

and
ÿ

kě1

plnpkqqβ

kα
is convergent if α ą 1. Finally, we obtain

S “
8
ÿ

n“1

HnHp2q
n

n3 ` 2
8
ÿ

n“1

H2
n

n4 ´ 3
8
ÿ

n“1

Hn

n5 .

To finish the calculation, we use some known results:

First, a result of Euler’s: for p P N with p ě 2, 2
8
ÿ

n“1

Hn

np “ pp` 2qζpp` 1q ´
p´2
ÿ

j“1

ζpp´ jqζp j` 1q,

which readily leads to
8
ÿ

n“1

Hn

n5 “
7
2
ζp6q ´ ζp4qζp2q ´

1
2
pζp3qq2 “

π6

540
´
pζp3qq2

2

(since ζp2q “
π2

6
, ζp4q “

π4

90
, ζp6q “

π6

945
q.

Second, we have
8
ÿ

n“1

HnHp2q
n

n3 “
5pζp3qq2

2
´

101π6

45360

(see J. Choi, H.M. Srivastava, Explicit Evaluation of Euler and Related Sums, Ramanujan Journal,
Vol 10, 2005, formula 4-11, p. 63) and

8
ÿ

n“1

H2
n

n4 “
97π6

22680
´ 2pζp3qq2
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(see De-Yin Zheng, Further summation formulae related to generalized harmonic numbers, J. Math.
Anal. Appl. 335, 2007, formula 3.4b p. 698).
All these results yield

S “
2ˆ 97π6

22680
´

101π6

45360
´

3π6

540
“

π6

1296
.

Solution 4 by Seán M. Stewart, Physical Sciences and Engineering Division, King Abdullah
University of Science and Technology, Saudi Arabia.

Denote the sum to be found by S . We claim S “
π6

1296
.

As m, n P N, observer that
ż 1

0
tm`n´1 dt “

1
m` n

.

Also, from the integral representation for the harmonic numbers of

Hk

k
“ ´

ż 1

0
xk´1 logp1´ xq dx,

replacing the positive integer k with the positive integer m` n one has

Hm`n

m` n
“ ´

ż 1

0
xm`n´1 logp1´ xq dx.

The sum S may therefore be rewritten as

S “
8
ÿ

m“1

8
ÿ

n“1

1
mn2 ¨

1
m` n

¨
Hm`n

m` n

“ ´

8
ÿ

m“1

8
ÿ

n“1

1
mn2

ż 1

0
tm`n´1 dt

ż 1

0
xm`n´1 logp1´ xq dx,

or, after interchanging the summation and integration signs which is permissible due to the unsigned
nature of all terms involved, as

S “ ´
ż 1

0

ż 1

0

logp1´ xq
xt

8
ÿ

m“1

pxtqm

m

8
ÿ

n“1

pxtqn

n2 dt dx. (31)

Recalling

´ logp1´ zq “
8
ÿ

n“1

zn

n
, ´1 6 z ă 1,

and

Li2pzq “
8
ÿ

n“1

zn

n2 , |z| 6 1,

where Li2pzq denotes the dilogarithm, the sum in (31) can be expressed as

S “
ż 1

0

ż 1

0

logp1´ xq logp1´ xtqLi2pxtq
xt

dt dx.
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Enforcing a substitution of u “ xt, du “ x dt produces

S “
ż 1

0

logp1´ xq
x

ż x

0

logp1´ uqLi2puq
u

du dx.

Denoting the inner u-integral by Ipxq, integrating by parts we have

Ipxq “ ´Li2puq ¨ Li2puq
ˇ

ˇ

ˇ

x

0
´

ż x

0

logp1´ uqLi2puq
u

du “ ´Li2
2pxq ´ Ipxq,

or
Ipxq “ ´

1
2

Li2
2pxq.

Returning to the sum S one has

S “ ´
1
2

ż 1

0

logp1´ xqLi2
2pxq

x
dx.

Integrating by parts again produces

S “ ´
1
2

«

´Li2pxq ¨ Li2
2pxq

ˇ

ˇ

ˇ

1

0
´ 2

ż 1

0

logp1´ xqLi2
2pxq

x
dx

ff

“
1
2

Li3
2p1q ´ 2S .

Thus
3S “

1
2

Li3
2p1q or S “

1
6

Li3
2p1q.

As

Li2p1q “
8
ÿ

n“1

1
n2 “

π2

6
,

where the result for the famous Basel problem has been recalled, we have

S “
1
6

˜

π2

6

¸3

“
π6

1296
,

as claimed.

Also solved by Narendra Bhandari, Bajura district, Nepal; and the proposers.

Late Acknowledgement: Joe L. Howard, from Portales, N.M., submitted via regular mail (snail
mail) his solution to Problem #5638. Due to restricted accessibility of received physical mail, Joe’s
solution regrettably did not reach the editor on time for proper timely acknowledgment and publica-
tion. In the transition period from the former editor to the current one, some solutions did not reach
the current editor on time for timely acknowledgement. These are Problems #5633, #5634, #5636
from Michel Bataille, Rouen, France; and Problems #5634, #5635, #5636 from Albert Stadler, Her-
rilberg, Switzerland. This editor, in a continuing tradition as practiced by the former editor, thanks
all contributors, including the latter three even if their solutions regrettably did not get published.
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*********** *********** ***********

*********** *********** ***********

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution pro-
posers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Section
of the Journal, I consider myself fortunate to be in a position to receive, compile and organize a
wealth of proposed ingenious problems and solutions intended for online publication. My unwa-
vering gratitude goes to all the amazingly creative contributers. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask all
contributors to adhere to the following recommendations. As you peruse below, you may construe
that the recommendations amount to a lot of work. But, as the samples show, there’s not much to
do. Your cooperation is much appreciated! . . . And don’t worry about making a mistake. All is
well!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .
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All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .
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Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.
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Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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