
Problems and Solutions Albert Natian, Section Editor

***************************************************************

This section of the SSMA Journal offers readers an opportunity to exchange interesting mathemat-
ical problems and solutions. Please send them to Prof. Albert Natian, Department of Mathematics,
Los Angeles Valley College, 5800 Fulton Avenue, Valley Glen, CA, 91401, USA. It’s highly prefer-
able that you send your contributions via email.

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before May 15, 2022.

‚ 5673 Proposed by Goran Conar, Varaždin, Croatia.

Let α, β, γ be angles of an arbitrary triangle. Prove the inequality

α cotα` β cot β` γ cot γ ď
π
?

3
.

When does equality occur?

‚ 5674 Proposed by Kenneth Korbin, New York, NY.

Find positive rational numbers x and y such that

”

px` iyq7 ` px´ iyq7
ı2
`

”

py` ixq7 ` py´ ixq7
ı2
“ 4,

where i2
“ ´1.

‚ 5675 Proposed by Nikos Ntorvas, Athens, Greece.

Suppose a, b, c, n ą 0 and a` b` c “ 1. Prove:

en pa` 1qnb
pb` 1qnc

pc` 1qna
ă e4 pnaqna

pnbqnb
pncqnc

.

1



‚ 5676 Proposed by Peter Fulop, Gyomro, Hungary.

Without using integral identities of the Catalan’s constant G, prove

1
2

ż π{4

0

ż π{4

0

„

1
cospu` vq

`
1

cospu´ vq



dudv “
8
ÿ

n“0

p´1qn

p2n` 1q2
.

‚ 5677 Proposed by Brian Bradie, Department of Mathematics, Christopher Newport Univer-
sity, Newport News, VA.

Solve the differential equation

dy
dx
“ tanpx` yq ´ cotpx´ yq.

‚ 5678 Proposed by Seán M. Stewart, Physical Sciences and Engineering Division, King Ab-
dullah University of Science and Technology, Saudi Arabia.

For positive integers m and n define

S m pnq “
n
ÿ

k“1

tan2m

ˆ

kπ
2n` 1

˙

.

Express S 1 pnq, S 2 pnq and S 3 pnq, each as a polynomial in n.

Solutions

‚ 5655 Proposed by Kenneth Korbin, New York, NY.

Given a Heronian triangle 4ABC with altitude CD “ y ´ 1, sides AC “ y and BC “ y ` 1,
find four possible values of y.

Editor’s note: A trianlge with integer sides and integer area is called Heronian.
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Solution 1 by Dionne Bailey, Elsie Campbell. and Charles Diminnie, Angelo State Univer-
sity, San Angelo, TX.

Since ∠CDB “ ∠CDA “ 90˝,

DB “
b

BC
2
´CD

2

“

b

py` 1q2 ´ py´ 1q2

“
a

4y
“ 2

?
y

and

AD “
b

AC
2
´CD

2

“

b

y2 ´ py´ 1q2

“
a

2y´ 1.

It follows that

AB “ DB` AD

“ 2
?

y`
a

2y´ 1.

To insure that AB is an integer, we must find positive integers x and z for which y “ x2 and

2y ´ 1 “ z2, i.e., x2
“

z2 ` 1
2

. After considerable trial and error, we came up with the following
assignments for x and z.

x z y 2y´ 1 AB
5 7 25 49 10` 7 “ 17

29 41 841 1, 681 58` 41 “ 99
169 239 28, 561 57, 121 338` 239 “ 577
985 1, 393 970, 225 1, 940, 449 1, 970` 1, 393 “ 3, 363

.

Since the area X of 4ABC is given by

X “
1
2
pCDq

´

AB
¯

,

we obtain
y CD “ y´ 1 AB X

25 24 17 204
841 840 99 41, 580

28, 561 28, 560 577 8, 239, 560
970, 225 970, 224 3, 363 1, 631, 431, 656

.

It follows that these four values of y satisfy the required properties to make 4ABC Heronian.
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Solution 2 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

Four possible values of y are 25, 841, 28561 and 970225.
Assuming D lies between A and B, then AD2

“ y2
´ py´ 1q2 “ 2y´ 1 and BD2

“ py` 1q2 ´
py´ 1q2 “ 4y. If y and 2y´ 1 are both squares, then AB “ AD` BD “

a

2y´ 1` 2
?

y will be

an integer. If y is odd, then the area of ∆ABC will be AB ¨
y´ 1

2
, which is also an integer, and the

triangle will be Heronian.
Thus, if a and b are integers satisfying 2y´ 1 “ a2 and y “ b2, then a2

“ 2b2
´ 1, giving Pell’s

equation a2
´ 2b2

“ ´1. Solutions for this equation may be determined from the convergents of
the continued fraction expansion of

?
2, which is r1; 2s. We set p0 “ q0 “ 1, p1 “ 3, q1 “ 2, and

for integers k ě 2,
pk “ 2pk´1 ` pk´2, qk “ 2qk´1 ` qk´2.

Since the period of the continued fraction expansion of
?

2 is 1, which is odd, then solutions to
Pell’s equation are given by a “ p2k, b “ q2k, where k is a nonnegative integer. The first few
solutions are given in the table below.

k a “ p2k b “ q2k y “ b2
“ AC BC AB AD

0 1 1 1 2 3 0
1 7 5 25 26 17 24
2 41 29 841 842 99 840
3 239 169 28,561 28,562 577 28,560
4 1393 985 970,225 970,226 3363 970,224

Notice that if a “ b “ 1, then ∆ABC is a degenerate triangle with AC “ 1, BC “ 2, AB “ 3,
and altitude AD “ 0. For the first four positive values of k, we get the values of y given in the
table, and Heronian triangles with side lengths p25, 26, 17q, p841, 842, 99q, p28561, 28562, 577q,
and p970225, 970226, 3363q. Notice that since all values of y are odd, then in each case the altitude
y´ 1 is even, and the area of ∆ABC is an integer.

Solution 3 by Ajay Srinivasan, University of Southern California, Los Angeles, CA.

y
y` 1

y´ 1

2
?

y
a

2y´ 1

C

A BD

By AB we denote the line segment that joins the points labelled A and B. We are given CD “ y´1,
AC “ y and that BC “ y ` 1. Since 4ABC is Heronian, y is obviously an integer. Using the
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pythagorean theorem, we get the following:

AD “
a

2y´ 1

BD “ 2
?

y

This makes AB “
a

2y´ 1 ` 2
?

y for y P Z`. Note that AB P Z` since the triangle is Heronian.
Evidently Dx P Z` : y “ x2. We also need 2y ´ 1 “ 2x2

´ 1 “ z2 for some z P Z`. Consider the
relevant diophantine equation 2x2

´ 1 “ z2. Since the LHS is an odd number, z ” 1 pmod 2q, i.e.
Dk P Zě0 : z “ 2k ` 1. The new diophantine is 2x2

´ 1 “ 4k2
` 4k ` 1, and evidently x must be

odd (and y´ 1 must be even). So all positive integral solutions to 2x2
´ 1 “ z2 yield triangles with

both integral area and integral sides.

z2
´ 2x2

“ ´1 is a negative Pell’s Equation

It is soluble (refer to A031396 in OEIS). The fundamental solution for this eqn. is p1, 1q, and all
positive integral solutions to the equation are generated by p1, 1q in the following manner:

zn `
?

2xn “

´

z1 `
?

2x1

¯n

zn “ 3zn´2 ` 4xn´2

xn “ 3xn´2 ` 2zn´2

(1)

where pz1, x1q “ p1, 1q and n is odd. The solutions generated include p7, 5q, p41, 29q, p239, 169q,
and p1393, 985q. 4 possible values for y include: 52, 292, 1692, 9852 since y “ 1 gives a triangle
with zero area.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We show that there are infinitely many possible values for y, the smallest of which are 25, 841,

28561, and 970225. Since CD ă AC, we note that ∠A cannot be a right angle. Letting c “ AB,

we have c “ 2
?

y `
a

2y´ 1 if ∠A is acute and c “ 2
?

y ´
a

2y´ 1 if ∠A is obtuse. To
ensure that c is a positive integer, we first define the sequence txnu by x0 “ 1, x1 “ 5, and
xn`1 “ 6xn ´ xn´1 for n ě 1 and then let yn “ x2

n for each n ě 0. We establish that for each
positive integer n, yn is a possible value of y. It is straightforward to verify that for each

n ě 0, xn “ rp2 `
?

2qγn
` p2 ´

?
2qδn

s{4, where γ “ 3 ` 2
?

2 and δ “ 3 ´ 2
?

2. Then
yn “ pγ

2n`1
` 2` δ2n`1

q{8, so 2
?

yn “ 2xn is a positive integer for each n. Next,

a

2yn ´ 1 “

?
2

4
rp2`

?
2qγn

´ p2´
?

2qδn
s,

so letting zn “
a

2yn ´ 1, we have z0 “ 1, z1 “ 7, and zn`1 “ 6zn ´ zn´1 for n ě 1. Hence
cn “ 2

?
yn ˘

a

2yn ´ 1 is a positive integer as required. Finally, since each yn is odd, the area of
∆ABC is a positive integer, given by p1{2qcnpyn ´ 1q. Addenda. (i) Each value of yn produces two

triangles. The side lengths of these two triangles for the first four values of yn are: p25, 26, 17q with
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area = 204 and p25, 26, 3q with area = 36 p841, 842, 99q with area = 41580 and p841, 842, 17q

with area = 7140 p28561, 28562, 577q with area = 8239560 and p28561, 28562, 99q with area =

1413720 p970225, 970226, 3363q with area = 1631431656 and p970225, 970226, 577q with area =

279909624

(ii) The values of xn and zn are connected with the continued fraction convergents 1/1, 3/2, 7/5,
17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, ... to

?
2:

txnu
8
n“0 “ t1, 5, 29, 169, 985, . . . u and tznu

8
n“0 “ t1, 7, 41, 239, 1393, . . . u.

Solution 5 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

By the Pythagorean theorem,

AD “
b

y2 ´ py´ 1q2 “
a

2y´ 1 and DB “
b

py` 1q2 ´ py´ 1q2 “ 2
?

y.

We need 2y ´ 1 and y to be perfect squares in order for AB “ AD ` DB to be an integer as well
(cf [2]). This amounts to solving the negative Pell’s equation 2n2

´ 1 “ m2, which has a general
solution given by the matrix formula (see Theorem 3.4.1 of [1])

˜

m
n

¸

“

˜

1 2
1 1

¸˜

3 4
2 3

¸k ˜

1
0

¸

, k P N.

The first four values of m “ AD, n, y “ n2, CD, DB “ 2n, AB, and the area of 4ABC “
1
2

AB ¨CD
are provided in the following table, with values of y in bold.

k m n y CD DB AB area of 4ABC
1 7 5 25 24 10 17 204
2 41 29 841 840 58 99 41 580
3 239 169 28 561 28 560 338 577 8 239 560
4 1393 985 970 225 970 224 1970 3363 1 631 431 656

References
[1] Andreescu, Titu and Andrica, Dorin and Cucurezeanu, Ion, An introduction to Diophantine

equations, Birkhäuser Verlag, New York, (2010), ISBN 978-0-8176-4548-9.

[2] Besicovitch, A. S., On the linear independence of fractional powers of integers, J. London
Math. Soc., 15, (1940), 3-6.
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Solution 6 by David E. Manes, Oneonta, NY.

The four possible values of y that yield a Heronian triangle 4ABC are y “ 25, 841, 28561 and
970225.

Note that the altitude CD divides the triangle 4ABC into two right triangles 4ACD and 4CDB with
right angles at vertex D. Let x “ AD and z “ DB. Then y2

“ x2
`py´1q2 and py`1q2 “ z2

`py´1q2.
These equations reduce to x2

` 1 “ 2y and z2
“ 4y. Therefore, z2

“ 2px2
` 1q or z2

´ 2x2
“ 2.

This equation has the immediate solution z “ 10 and x “ 7. These values then define the following
Heronian triangle 4ABC: AC “ y “ z2

{4 “ 25, BC “ y` 1 “ 26 and AB “ x` z “ 17. The area
of triangle 4ABC is A “ p1{2qpABqpCDq “ p1{2qp17qp24q “ 204.

To find the other values of y, we will use the following result. If the equation z2
´ dx2

“ c is
solvable, then it has infinitely many solutions given by: if u, v satisfy z2

´ dx2
“ c and r, s satisfy

z2
´ dx2

“ 1, then

pur ˘ dvsq2 ´ dpus˘ vrq2 “ pu2
´ dv2

qpr2
´ ds2

q “ c.

Therefore, z “ ur ˘ dvs and x “ us ˘ vr is a solution of z2
´ 2x2

“ 1. Note that if d “ 2, then
z “ 3, x “ 2 is a fundamental solution of z2

´ 2x2
“ 1. In the following, we will use the positive

values for ur ` dvs and us ` vr. Moreover, for all cases of this result we will use d “ 2 “ s and
r “ 3.

We begin by using the above result with the first solution of z2
´ 2x2

“ 2; namely, u “ 10 and
v “ 7. Then

pur ` dvsq2 ´ 2pus` vrq2 “ p10 ¨ 3` 2 ¨ 7 ¨ 2q2 ´ 2p10 ¨ 2` 7 ¨ 3q2

“ 582
´ 2p41q2 “ 2.

Therefore, u “ 58 and v “ 41 is a solution of z2
´2x2

“ 2 and defines the Heronian triangle 4ABC
such that AC “ y “ u2

{4 “ 582
{4 “ 841, BC “ y ` 1 “ 842 and AB “ u ` v “ 58 ` 41 “ 99.

The area of 4ABC is A “ p1{2qpABqpCDq “ p1{2qp99qp840q “ 41580.

Continuing in this manner, let u “ 58 and v “ 41. Then

pur ` 2vsq2 ´ 2pus` vrq2 “ p58 ¨ 3` 4 ¨ 41q2 ´ 2p58 ¨ 2` 41 ¨ 3q2

“ 3382
´ 2p239q2 “ 2.

Hence, the values u “ 338, v “ 239 define the Heronian triangle 4ABC with AC “ u2
{4 “

3382
{4 “ 28561, BC “ y ` 1 “ 28562 and AB “ u ` v “ 338 ` 239 “ 577 with area

A “ p1{2qp577qp28560q “ 8 239 560.

For the fourth value of y, let u “ 338 and v “ 239. Then

p3u` 4vq2 ´ 2p2u` 3vq2 “ p338 ¨ 3` 4 ¨ 239q2 ´ 2p2 ¨ 338` 3 ¨ 239q2

“ p1970q2 ´ 2p1393q2 “ 2.
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Therefore, u “ 1970 and v “ 1393 define the Heronian triangle 4ABC with sides AC “ y “
u2
{4 “ 19702

{4 “ 970 225, BC “ y` 1 “ 970 226 and AB “ u` v “ 1970` 1393 “ 3363. The
area of 4ABC is A “ p1{2qp3363qp970224q “ 1 631 431 656. Furthermore, continuing this proce-
dure, one can see that there are infinitely many Heronian triangles 4ABC with altitude CD “ y´ 1
and sides AC “ y, BC “ y` 1. This completes the solution.

Solution 7 by Michael Brozinsky, Central Islip, NY, and Andrew Bulawa, Brooklyn, NY.

The Pell’s equation x2
´ 2y2

“ ´1 clearly has its fundamental solution x1 “ 1, y1 “ 1 and
thus its general solution xn, yn is given by xn ` yn

?
2 “ px1 ` y1

?
2qn for n “ 1, 3, 5, 7, . . . . (See,

for example, Introduction to Number Theory by James E. Shockley pages 174-178 in the 1967
edition). In particular, we note the following expansions

p1`
?

2q3 “ 7` 5
?

2

p1`
?

2q5 “ 41` 29
?

2

p1`
?

2q7 “ 239` 169
?

2

p1`
?

2q9 “ 1393` 985
?

2

p1`
?

2q11
“ 8119` 5741

?
2

Now in the problem at hand we have using the Pythagorean Theorem DB “
b

py` 1q2 ´ py´ 1q2 “

2
?

y and so if angle A is acute AB “ 2
?

y`
b

y2 ´ py´ 1q2 “ 2
?

y`
a

2y´ 1. Otherwise, i.e.,

if angle A is not acute, AB “ 2
?

y´
b

y2 ´ py´ 1q2 “ 2
?

y´
a

2y´ 1.
We thus need y and 2y ´ 1 to be perfect squares so let y “ k2 and 2y ´ 1 “ m2 so that

m2
´ 2k2

“ ´1 is in the form of Pell’s equation. We thus can make the following table using the
results above.
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m k y “ k2 AB “ 2
?

y `
a

2y´ 1
AB “ 2

?
y ´

a

2y´ 1
Sides y “ AC, y ` 1 “
BC and side AB

1 1 1 1 1 no triangles since altitude
y´ 1 “ 0

7 5 25 17 3 Two triangles 25, 26, 17
and 25, 26, 3

41 29 841 99 17 Two triangles 841, 842,
99 and 841, 842, 17

239 169 28561 577 99 Two triangles 28561,
28562, 577 and 28561,
28562, 99

1393 985 970225 3363 577 Two triangles 970225,
970226, 3363 and
970225, 970226, 577

8119 5741 32959081 19601 3363 Two triangles 32959081,
32959082, 19601 and
32959081, 32959082,
3363

Hence 4 possible values for y are 25, 841, 28561, 970225.

Solution 8 by Michel Bataille, Rouen, France.

Let x “ AB and let S be the area of the triangle ABC. Then, from well-known formulas, we
have

2S “ xpy´1q and 16S 2
“ p2y`1`xqp2y`1´xqpx´1qpx`1q “ px2

´1qpp2y`1q2´x2
q. (1)

It follows that y is a solution if and only if y is an integer with y ě 2 such that for some integer x
satisfying 1 ă x ă 2y` 1, the equations p1q are compatible.
Here are four solutions: y1 “ 25 (with x1 “ 3), y2 “ 841 (with x2 “ 17), y3 “ 28561 (with
x3 “ 99) and y4 “ 970225 (with x4 “ 577).
For i “ 1, 2, 3, 4, it is easily checked that the inequalities 1 ă xi ă 2yi ` 1 hold and that the
equations 2S i “ xipyi ´ 1q and 16S 2

i “ px
2
i ´ 1qpp2yi ` 1q2 ´ x2

i q are satisfied with S 1 “ 36, S 2 “

7140, S 3 “ 1413720, and S 4 “ 279909624.

These four values of y were found as follows: Expressing that x “ AB “
b

py` 1q2 ´ py´ 1q2 ˘
b

y2 ´ py´ 1q2 leads to p6y´ 1´ x2
q

2
“ 16yp2y´ 1q. This shows that yp2y´ 1q must be a perfect

square, which is achieved by taking y “ k2, 2y ´ 1 “ `2 where k, ` are positive integers satisfying
`2
´ 2k2

“ ´1. From classical results about Fermat-Pell equations, we can take k, ` defined by
` ` k

?
2 “ p1`

?
2q2n`1 for some positive integer n. Taking successively n “ 1, 2, 3, 4 we obtain

k1 “ 5, k2 “ 29, k3 “ 169, k4 “ 985. Thus, y1 “ 52, y2 “ 292, y3 “ 1692, y4 “ 9852 are possible
solutions. Checking (as pointed above) shows that they are indeed solutions.

Also solved by Daniel Văcaru, Pites, ti, Romania; Albert Stadler, Herrliberg, Switzerland;
Brian Bradie, Department of Mathematics, Christopher Newport University, Newport News,
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VA; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA; and the
proposer.

‚ 5656 Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College, Bucharest, Ro-
mania and Neculai Stanciu, “George Emil Palade” School, Buzău, Romania.

Find lim
nÑ8

n

˜

π2

4
´ a2

n

¸

where an “

n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

.

Solution 1 by Toyesh Prakash Sharma (Student) Agra College, Agra, India.

As
n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“

n
ÿ

k“1

arctan
ˆ

k ´ pk ´ 1q
1` k pk ´ 1q

˙

“

n
ÿ

k“1

`

arctan pkq ´ arctan pk ´ 1q
˘

“

arctan n.
Now, applying Stolz-Cesaro result to the given limit. Then,

lim
nÑ8

´

π2

4 ´ a2
n

¯

1
n

“ lim
nÑ8

´

π2

4 ´ a2
n

¯

´

´

π2

4 ´ a2
n´1

¯

1
n ´

1
n´1

“ lim
nÑ8

a2
n´1 ´ a2

n
1
n ´

1
n´1

“ lim
nÑ8

ptan´1 n` tan´1 pn´ 1qq
`

tan´1 n´ tan´1 pn´ 1q
˘

´

´

1
n ´

1
n´1

¯ “ π ‚ lim
nÑ8

tan´1 n´ tan´1 pn´ 1q

´

´

1
n ´

1
n´1

¯

By using L Hospital rule

π ‚ lim
nÑ8

tan´1 n´ tan´1 pn´ 1q

´

´

1
n ´

1
n´1

¯ “ π ‚ lim
nÑ8

1
1`n2 ´

1
1`p1´nq2

1
n2 ´

1
p1´nq2

“ π

Solution 2 by Daniel Văcaru, Pites, ti, Romania.

We write

arctan
ˆ

1
k2 ´ k ` 1

˙

“ arctan
ˆ

k ´ pk ´ 1q
1` k pk ´ 1q

˙

“ arctan k ´ arctan pk ´ 1q .

It follows that

an “
r

k“ 1sn
ÿ

arctan
ˆ

1
k2 ´ k ` 1

˙

“
r

k“ 1sn
ÿ

“

arctan k ´ arctan pk ´ 1q
‰

“ arctan n.

We have

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
nÑ8

n

«

ˆ

π

2

˙2

´ parctan nq2
ff

“ lim
nÑ8

n
ˆ

π

2
´ arctan n

˙ˆ

arctan n`
π

2

˙

,
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lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
nÑ8

ˆ

arctan n`
π

2

˙

¨ lim
nÑ8

π
2 ´ arctan n

1
n

“ π ¨ lim
nÑ8

π
2 ´ arctan n

1
n

.

We use Césaro - Stolz for

lim
nÑ8

π
2 ´ arctan n

1
n

“ lim
nÑ8

arctan pn` 1q ´ arctan n
1

n2`n

“ lim
nÑ8

arctan 1
n2`n`1

1
n2`n

,

lim
nÑ8

π
2 ´ arctan n

1
n

“ lim
nÑ8

arctan 1
n2`n`1

1
n2`n`1

¨ lim
nÑ8

1
n2`n`1

1
n2`n

“ 1 ¨ 1 “ 1.

Consequently, our limit is π.

Solution 3 by Ajay Srinivasan, University of Southern California, Los Angeles, CA.

It is given that

an :“
n
ÿ

k“1

tan´1

ˆ

1
k2 ´ k ` 1

˙

Notice tan´1

ˆ

1
k2 ´ k ` 1

˙

“ tan´1

ˆ

k ´ pk ´ 1q
1` kpk ´ 1q

˙

“ tan´1
pkq ´ tan´1

pk ´ 1q. Thus:

an “

n
ÿ

k“1

ptan´1
pkq ´ tan´1

pk ´ 1qq

This is a telescoping sum that yields an “ tan´1
pnq @n P Z`. We now calculate the limit

lim
nÑ8

n

˜

π2

4
´ arctan2

pnq

¸

. Say f pxq “ x

˜

π2

4
´ arctan2

pxq

¸

. Observe that

f 1pxq “
π2

4
´ ptan´1

pxqq2 ´
2x tan´1pxq

1` x2 ą 0

when x P R`. Thus f is monotonic. It now suffices to evaluate

lim
xÑ8

x

˜

π2

4
´ arctan2

pxq

¸

. A simple calculation using L’Hôpital’s Rule yields:

lim
xÑ8

´

π2

4 ´ arctan2pxq
¯

1
x

“ lim
xÑ8

2x2 tan´1pxq
1` x2

“ lim
xÑ8

2 tan´1pxq
1` x´2

“ 2
ˆ

π

2

˙

“ π

(2)
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Solution 4 by Albert Stadler, Herrliberg, Switzerland.

By the addition theorem for the arctan function,

arctan
1

k ´ 1
´ arctan

1
k
“ arctan

1
k2 ´ k ` 1

.

Hence

an “ arctan1 `
n
ÿ

k“2

ˆ

arctan
1

k ´ 1
´ arctan

1
k

˙

“ 2arctan1 ´ arctan
1
n
“
π

2
´ arctan

1
n

and

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
nÑ8

n
ˆ

π

2
´ an

˙ˆ

π

2
` an

˙

“ π lim
nÑ8

n
ˆ

arctan
1
n

˙

“ π.

Solution 5 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

By induction it may be proved that
n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“ arctan n “
π

2
´ arctan

1
n

, so the

limit becomes

lim
nÑ8

n

˜

π2

4
´

ˆ

π

2
´ arctan

1
n

˙2
¸

“ lim
nÑ8

n
ˆ

π arctan
1
n
´ arctan2 1

n

˙

“ π.

Solution 6 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

For k ą 1,

arctan
ˆ

1
k ´ 1

˙

´ arctan
ˆ

1
k

˙

“ arctan
1

k´1 ´
1
k

1` 1
k2´k

“ arctan
ˆ

1
k2 ´ k ` 1

˙

,

so

an “

n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“
π

4
`

n
ÿ

k“2

˜

arctan
ˆ

1
k ´ 1

˙

´ arctan
ˆ

1
k

˙

¸

“
π

2
´ arctan

ˆ

1
n

˙

.

Therefore,
π2

4
´ a2

n “ π arctan
ˆ

1
n

˙

´

˜

arctan
ˆ

1
n

˙

¸2

.

12



By L’Hôpital’s Rule,

lim
nÑ8

n arctan
ˆ

1
n

˙

“ lim
nÑ8

arctan
´

1
n

¯

1
n

“ lim
nÑ8

1
1`1{n2

´

´ 1
n2

¯

´ 1
n2

“ 1;

it then follows that

lim
nÑ8

n

˜

arctan
ˆ

1
n

˙

¸2

“ lim
nÑ8

n arctan
ˆ

1
n

˙

¨ lim
nÑ8

arctan
ˆ

1
n

˙

“ 1 ¨ 0 “ 0.

Finally,

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ π.

Remark by Solver: This problem is a generalization of Problem 868 from The Pentagon, the jour-
nal of the Kappa Mu Epsilon mathematics honor society and a special case of Problem 424 from
La Gaceta de la RSME.

Solution 7 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

Observe that by the angle addition formula for tangent,

an “

n
ÿ

k“1

arctan
ˆ

k ´ pk ´ 1q
1` kpk ´ 1q

˙

“

n
ÿ

k“1

“

arctanpkq ´ arctanpk ´ 1q
‰

“ arctanpnq.

The desired limit thus yields a 0 ¨ 8 indeterminant form, and so we use L’Hôpital’s rule to get

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
xÑ8

π2

4 ´ parctanpxqq2

1
x

“ lim
xÑ8

´
2 arctanpxq

1`x2

´ 1
x2

“ lim
xÑ8

2x2 arctanpxq
1` x2 “ π.

Solution 8 by David Huckaby, Angelo State University, San Angelo, TX.

Making use of the identity arctanα´ arctan β “ arctan
α´ β

1` αβ
, we have

an “

n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“

n
ÿ

k“1

arctan
ˆ

k ´ pk ´ 1q
1` kpk ´ 1q

˙

“

n
ÿ

k“1

“

arctan k ´ arctanpk ´ 1q
‰

“ arctan n´ arctan 0 “ arctan n.

So

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
nÑ8

n

«

π2

4
´ parctan nq2

ff

,

13



which yields the indeterminate form8 ¨ 0.

Rearranging to obtain the indeterminate form
0
0

and then applying L’Hôpital’s Rule gives

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
nÑ8

n

«

π2

4
´ parctan nq2

ff

“ lim
nÑ8

π2

4 ´ parctan nq2

1
n

“ lim
nÑ8

´2parctan nq ¨ 1
1`n2

´ 1
n2

“ 2
ˆ

lim
nÑ8

arctan n
˙

˜

lim
nÑ8

n2

1` n2

¸

“ 2
ˆ

π

2

˙

p1q “ π.

Solution 9 by David E. Manes, Oneonta, NY.

The value of the limit is π.

We begin with the following identity:

arctan
ˆ

1
k2 ´ k ` 1

˙

“ arctan
ˆ

k ` p1´ kq
1´ kp1´ kq

˙

“ arctanpkq ` arctanp1´ kq.

Therefore,

an “

n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“

n
ÿ

k“1

rarctanpkq ` arctanp1´ kqs “ arctanpnq

since the sum telescopes using the facts that arctan 0 “ 0 and the identity arctanp´kq “ ´ arctanpkq
for 1 ď k ď n´ 1. Hence, a2

n “ parctan nq2. Then

lim
nÑ8

˜

π2

4
´ a2

n

¸

“
π2

4
´

ˆ

π

2

˙2

“ 0.

Since lim
nÑ8

n “ 8, it follows that the proposed limit is an indeterminate product limit of type8 ¨ o.

To evaluate it, define the functions f pxq “ x and gpxq “ pπ2
{4q ´ parctan xq2for real numbers x.

Note that lim
nÑ8

ˆ

1
f pxq

˙

“ 0 “ lim
nÑ8

gpxq. Therefore, using L’Hôpital’s rule,

lim
nÑ8

gpxq
p1{ f pxqq

“ lim
nÑ8

d
dx

´

π2

4 ´ parctan xq2
¯

d
dx

´

1
x

¯

“ lim
xÑ8

¨

˚

˝

´2 arctan x
´

1
1`x2

¯

p´1qpx´2q

˛

‹

‚

“ lim
nÑ8

¨

˝2 arctan x

˜

x2

1` x2

¸

˛

‚“ 2
ˆ

π

2

˙

p1q “ π.
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Hence,

lim
nÑ8

n

˜

π2

4
´ parctan nq2

¸

“ lim
nÑ8

2 arctan n

˜

n2

1` n2

¸

“ π.

This completes the solution.

Solution 10 by Michel Bataille, Rouen, France.

Recall that arctanpaq ` arctanpbq “ arctan
ˆ

a` b
1´ ab

˙

whenever ab ă 1. In particular for k ą 1,

we have

arctan
ˆ

1
k ´ 1

˙

` arctan
ˆ

´
1
k

˙

“ arctan

¨

˝

1
k´1 ´

1
k

1` 1
kpk´1q

˛

‚“ arctan
ˆ

1
k2 ´ k ` 1

˙

.

Since arctanp´xq “ ´ arctanpxq and arctanp1q “
π

4
, it follows that for n ě 2 we have

an “
π

4
`

n
ÿ

k“2

˜

arctan
ˆ

1
k ´ 1

˙

´ arctan
ˆ

1
k

˙

¸

“
π

4
`
π

4
´ arctan

ˆ

1
n

˙

“
π

2
´ arctan

ˆ

1
n

˙

.

We deduce that

n

˜

π2

4
´ a2

n

¸

“ n
ˆ

π

2
` an

˙ˆ

π

2
´ an

˙

“ n

˜

π´ arctan
ˆ

1
n

˙

¸

arctan
ˆ

1
n

˙

“

˜

π´ arctan
ˆ

1
n

˙

¸

arctan
´

1
n

¯

1
n

.

Since lim
nÑ8

arctan
ˆ

1
n

˙

“ 0 and lim
xÑ0

arctanpxq
x

“ 1, we finally obtain

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ π.

Solution 11 by Seán M. Stewart, Physical Sciences and Engineering Division, King Abdullah
University of Science and Technology, Saudi Arabia.

Denote the limit to be found by L. We claim L “ π. From the following well-known identity
for the inverse tangent function

arctanpuq ´ arctanpvq “ arctan
ˆ

u´ v
1` uv

˙

, uv ą ´1,

we see that

arctanpkq ´ arctanpk ´ 1q “ arctan
ˆ

1
k2 ´ k ` 1

˙

,
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for all k P N. Thus

an “

n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“

n
ÿ

k“1

“

arctanpkq ´ arctanpk ´ 1q
‰

“ arctanpnq,

since the sum telescopes.
We now find an asymptotic expansion for the term arctan2

pnq as n approaches infinity. From
the property

arctanpzq “
π

2
´ arctan

ˆ

1
z

˙

, z ą 0,

we can write

arctan2
pnq “

˜

π

2
´ arctan

ˆ

1
n

˙

¸2

“

ˆ

π

2

˙2
˜

1´
2
π

arctan
ˆ

1
n

˙

¸2

“

ˆ

π

2

˙2
»

–1´
2
π

#

1
n
´ O

ˆ

1
n3

˙

+

fi

fl

2

“

ˆ

π

2

˙2
«

1´
2
n

ˆ

2
π

˙

`
1
n2

ˆ

2
π

˙2

` O

ˆ

1
n3

˙

ff

“

ˆ

π

2

˙2

´
2
n

ˆ

π

2

˙

`
1
n2 ` O

ˆ

1
n3

˙

. (3)

Note in the second line the well-known Maclaurin series expansion for arctanpxq has been used.
Returning to the limit we find

L “ lim
nÑ8

n

«

2
n

ˆ

π

2

˙

´
1
n2 ` O

ˆ

1
n3

˙

ff

“ lim
nÑ8

«

π´
1
n
` O

ˆ

1
n2

˙

ff

“ π,

as claimed.

Solution 12 by Moti Levy, Rehovot, Israel.

Theorem: Let f be of fixed sign and define

h pxq “
f px` 1q ´ f pxq

1` f px` 1q f pxq
.

Then
n
ÿ

k“1

arctan h pkq “ arctan
`

f pn` 1q
˘

´ arctan
`

f p1q
˘

.

Proof of Theorem: Since arctan h pkq “ arctan
`

f pk ` 1q
˘

´ arctan
`

f pkq
˘

, the statement
follows by telescoping.
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In this case, set f pxq :“ x´ 1, then
1

x2 ´ x` 1
“

x´ px´ 1q
1` x px´ 1q

, hence by the theorem,

an “

n
ÿ

k“1

arctan
ˆ

1
k2 ´ k ` 1

˙

“ arctan pnq .

Now we find asymptotic expression for an and a2
n.

arctan pxq “
π

2
´ arctan

ˆ

1
x

˙

arctan
ˆ

1
x

˙

“
1
x
´

1
3x3 ` O

ˆ

1
x5

˙

an “ arctan pnq “
π

2
´

1
n
`

1
3n3 ` O

ˆ

1
n5

˙

a2
n “

π2

4
´
π

n
` O

ˆ

1
n2

˙

lim
nÑ8

n

˜

π2

4
´ a2

n

¸

“ lim
nÑ8

n

¨

˝

π2

4
´

˜

π2

4
´
π

n
` O

ˆ

1
n2

˙

¸

˛

‚“ π.

Solution 13 by G. C. Greubel, Newport News, VA.

First note that
n
ÿ

k“1

tan´1

ˆ

1
k2 ´ k ` 1

˙

“

n
ÿ

k“1

tan´1

ˆ

k ´ pk ´ 1q
1` kpk ´ 1q

˙

“

n
ÿ

k“1

´

tan´1
pkq ´ tan´1

pk ´ 1q
¯

“ tan´1
pnq.

Now, for x ą 0, tan´1
pxq “

π

2
´ tan´1

ˆ

1
x

˙

and

´

tan´1
pxq

¯2
“
π2

4
´ π tan´1

ˆ

1
x

˙

`

˜

tan´1

ˆ

1
x

˙

¸2

«
π2

4
´
π

x
`

1
x2 `

π

3 x3 ` O

ˆ

1
x4

˙

which leads to
π2

4
´

´

tan´1
pnq

¯2
«
π

n
´

1
n2 ´

π

n3 ` O

ˆ

1
n4

˙

17



and

n

˜

π2

4
´

´

tan´1
pnq

¯2
¸

« π´
1
n
´

π

3 n2 ` O

ˆ

1
n3

˙

.

The limit then follows and yields

lim
nÑ8

n

˜

π2

4
´

´

tan´1
pnq

¯2
¸

“ π.

Also solved by Ankush Kumar Parcha, Indira Gandhi National Open University, New Delhi,
India; Bruno Salgueiro Fanego, Viveiro, Lugo, Spain; Hatef Arshagi, Guilford technical
Community College, Jamestown, NC; Arkady Alt, San Jose, CA; Marian Ursărescu-National
College “Roman-Vodă”, Roman City, Romania; Péter Fülöp, Gyömrő, Hungary; and the
proposer.

‚ 5657 Proposed by Paolo Perfetti, Dipartimento di Matematica, Università degli studi di Tor
Vergata Roma, Roma, Italy.

Let α, β, γ ą 0 and define

S n “

n
ÿ

m“2

pln mqγ
m
ź

k“2

α` k ln k
β` pk ` 1q lnpk ` 1q

.

Determine sufficient and necessary condition(s) governing the parameters α, β and γ so that lim
nÑ8

S n

exists.

Solution 1 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

We claim that the limit exists if and only if 0 ă γ ă β´ α. To see why, observe that if α ě β, then

S n ě

n
ÿ

m“2

pln mqγ
m
ź

k“2

β` k ln k
β` pk ` 1q lnpk ` 1q

“

n
ÿ

m“2

pln mqγ
β` 2 ln 2

β` pm` 1q lnpm` 1q

ą
pln 2qγpβ` 2 ln 2q

β` 3 ln 3
`

n
ÿ

m“3

β` 2 ln 2
β` pm` 1q lnpm` 1q

for n ě 3. Since
8
ÿ

m“1

1
pm` 1q lnpm` 1q

is a divergent series, it follows that the sequence pS nqně2

diverges as well due to the Limit Comparison Test.
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Meanwhile, if α ă β, then

S n “

n
ÿ

m“2

pln mqγ
α` 2 ln 2

β` pm` 1q lnpm` 1q

m
ź

k“3

α` k ln k
β` k ln k

“

n
ÿ

m“2

pln mqγpα` 2 ln 2q
β` pm` 1q lnpm` 1q

m
ź

k“3

ˆ

1´
β´ α

β` k ln k

˙

“

n
ÿ

m“2

pln mqγpα` 2 ln 2q
β` pm` 1q lnpm` 1q

m
ź

k“3

«

e´pβ´αq{pβ`k ln kq
´ ck

ˆ

β´ α

β` k ln k

˙2
ff

,

where, by virtue of Taylor’s theorem,
1
2

expp´
β´ α

β` k ln k
q ď ck ď

1
2
. We further manipulate S n to

get

S n “

n
ÿ

m“2

pln mqγpα` 2 ln 2q
β` pm` 1q lnpm` 1q

m
ź

k“3

e´pβ´αq{pβ`k ln kq

«

1´ ck

ˆ

β´ α

β` k ln k

˙2

epβ´αq{pβ`k ln kq

ff

Note that the limit of the product can be reorganized to get

8
ź

k“3

«

1´ ck

ˆ

β´ α

β` k ln k

˙2

epβ´αq{pβ`k ln kq

ff

“ exp

¨

˝

8
ÿ

k“3

log

˜

1´ ck

ˆ

β´ α

β` k ln k

˙2

epβ´αq{pβ`k ln kq

¸

˛

‚

“ exp

¨

˝

8
ÿ

k“3

8
ÿ

j“1

1
j

˜

ck

ˆ

β´ α

β` k ln k

˙2

epβ´αq{pβ`k ln kq

¸ j
˛

‚.

Since ckepβ´αq{pβ`k ln kq
ă 1 and ln k ą β for sufficiently large k, we can bound the tail of the double

sum inside of the exponential by
8
ÿ

k“1

8
ÿ

j“1

1
j

ˆ

β´ α

βp1` kq

˙2 j

ď

8
ÿ

k“1

8
ÿ

j“1

p1´ α{βq2 j

jk2 j “

8
ÿ

j“1

p1´ α{βq2 jζp2 jq
j

, (4)

which converges by virtue of the Root Test since j
b

p1´ α{βq2 jqζp2 jq{ j can be sandwiched be-

tween p1´ α{βq2
j
b

1{ j and p1´ α{βq2
j
b

ζp2q{ j, both of which tend to p1´ α{βq2 ă 1 as j Ñ 8.

We can thus appeal to the Limit Comparison Test to find that pS nqně2 and
8
ÿ

m“2

pln mqγ

pm` 1q lnpm` 1q

m
ź

k“3

e´pβ´αq{pk ln kq

either both converge or both diverge. If γ ě β´ α, then
8
ÿ

m“2

pln mqγ

pm` 1q lnpm` 1q

m
ź

k“3

e´pβ´αq{pk ln kq
ě

8
ÿ

m“2

pln mqγ

pm` 1q lnpm` 1q
exp

ˆ

´
β´ α

3 ln 3
´

ż m

3

β´ α

x ln x
dx
˙

ě

8
ÿ

m“2

e´
β´α
3 ln 3 pln mqγ

pm` 1q lnpm` 1q
exp

`

pβ´ αq ln ln 3´ pβ´ αq ln ln m
˘

“

8
ÿ

m“2

e´
β´α
3 ln 3 pln 3qβ´αpln mqγ´β`α

pm` 1q lnpm` 1q
,
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which can be seen to diverge by comparison to
8
ÿ

m“1

1
pm` 1q lnpm` 1q

. However, if γ ă β´α, then

8
ÿ

m“2

pln mqγ

pm` 1q lnpm` 1q

m
ź

k“3

e´pβ´αq{pk ln kq
ď

8
ÿ

m“2

pln mqγ

pm` 1q lnpm` 1q
exp

ˆ

´

ż m

3

β´ α

x ln x
dx
˙

ď

8
ÿ

m“2

pln 3qβ´αpln mqγ´β`α

pm` 1q lnpm` 1q

ď

8
ÿ

m“2

pln 3qβ´αpln mqγ´β`α´1

m
,

which can be seen to converge due to the integral test. Indeed
ż 8

2

pln xqγ´β`α´1

x
dx “ ´

pln 2qγ´β`α

pγ ´ β` αq
` lim

bÑ8

pln bqγ´β`α

pγ ´ β` αq
“ ´

pln 2qγ´β`α

2pγ ´ β` αq
,

since γ ´ β` α ă 0.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

We have
m
ź

k“2

α` klnk
β` pk ` 1q ln pk ` 1q

“

m
ź

k“2

α` klnk
β` klnk

‚

m
ź

k“2

β` klnk
β` pk ` 1q ln pk ` 1q

“

“ exp

˜

m
ÿ

k“2

ln
ˆ

1`
α

klnk

˙

¸

exp

˜

´

m
ÿ

k“2

ln
ˆ

1`
β

klnk

˙

¸

β` 2ln2
β` pm` 1q ln pm` 1q

.

If f(x) is a continuously differentiable function on R0 then integration by parts yields
ż k`1

k
f pxq dx “

1
2

f pk ` 1q `
1
2

f pkq ´
ż k`1

k

ˆ

x´ rxs ´
1
2

˙

f 1 pxq dx.

In particular, if f pxq “
1

xlnx
, then

lnlnm ´ lnln2 “

ż m

2

1
xlnx

dx “

“
1
2

m´1
ÿ

j“2

ˆ

1
jln j

`
1

p j` 1q ln p j` 1q

˙

´

ż m

2

ˆ

x´ rxs ´
1
2

˙

d
dx

ˆ

1
xlnx

˙

dx

and
m
ÿ

j“2

1
jln j

“
1

4ln2
`

1
2mlnm

` lnlnm ´ lnln2 `

ż 8

2

ˆ

x´ rxs ´
1
2

˙

d
dx

ˆ

1
xlnx

˙

dx
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´

ż 8

m

ˆ

x´ rxs ´
1
2

˙

d
dx

ˆ

1
xlnx

˙

dx.

We conclude that
m
ÿ

j“2

1
jln j

“ lnlnm ` c1 ` O
ˆ

1
mlnm

˙

,

and
m
ÿ

k“2

ln
ˆ

1`
α

klnk

˙

“

m
ÿ

k“2

α

klnk
`

8
ÿ

k“2

˜

ln
ˆ

1`
α

klnk

˙

´
α

klnk

¸

´

8
ÿ

k“m`1

˜

ln
ˆ

1`
α

klnk

˙

´
α

klnk

¸

“

“ αlnlnm ` c2 pαq ` Oα

ˆ

1
mlnm

˙

`

8
ÿ

k“m`1

Oα

ˆ

1
k2ln2k

˙

“ αlnlnm ` c2 pαq ` Oα

ˆ

1
mlnm

˙

.

Finally
m
ź

k“2

α` klnk
β` pk ` 1q ln pk ` 1q

“

“ exp

˜

pα´ βq lnlnm ` c2 pαq ´ c2 pβq ` Oα,β

ˆ

1
mlnm

˙

¸

β` 2ln2
β` pm` 1q ln pm` 1q

“

“
1
m

c3 pα, βq lnα´β´1
pmq

˜

1` Oα,β

ˆ

1
mlnm

˙

¸

.

Hence the limit of Sn as n tends to infinity exists if and only if βąα+γ, since
8
ÿ

m“2

1
mlnrm

converges

if and only if rą1.

Solution 3 by Michel Bataille, Rouen, France.

We will use the following well-known result: if r, s are real numbers, the series
ÿ

mě2

1
mrpln mqs

is convergent if and only if (r ą 1) or (r “ 1 and s ą 1).

Let Pm “

m
ź

k“2

α` k ln k
β` pk ` 1q lnpk ` 1q

. The problem amounts to determining in which case(s) the

series
ÿ

mě2

pln mqγPm is convergent.

If α “ β, then Pm “
α` 2 ln 2

α` pm` 1q lnpm` 1q
„

α` 2 ln 2
m ln m

as m Ñ 8 so that pln mqγPm „

α` 2 ln 2
mpln mq1´γ

and therefore the series
ÿ

mě2

pln mqγPm is divergent (since 1´ γ ă 1).

Now, we suppose that α , β and we set Qm “

m
ź

k“2

α` k ln k
β` k ln k

. Clearly, we have, as m Ñ 8

Pm “ pβ` 2 ln 2q ¨ Qm ¨
1

β` pm` 1q lnpm` 1q
„ pβ` 2 ln 2q ¨

Qm

m ln m
. (1)
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We have
α` k ln k
β` k ln k

“ 1`
α´ β

β` k ln k
and

ln
ˆ

1`
α´ β

β` k ln k

˙

´
α´ β

β` k ln k
„

´pα´ βq2

2pβ` k ln kq2
„
´pα´ βq2

2k2pln kq2

as k Ñ 8. Therefore the series
ÿ

kě2

˜

ln
ˆ

1`
α´ β

β` k ln k

˙

´
α´ β

β` k ln k

¸

is convergent. Let C1 be

its sum. We deduce that as m Ñ 8

m
ÿ

k“2

ln
ˆ

1`
α´ β

β` k ln k

˙

“

m
ÿ

k“2

α´ β

β` k ln k
`C1 ` op1q.

Similarly, as k Ñ 8, we have

1
β` k ln k

´
1

k ln k
“

´β

k ln kpβ` k ln kq
„

´β

k2pln kq2

and therefore
m
ÿ

k“2

1
β` k ln k

“

m
ÿ

k“2

1
k ln k

`C2 ` op1q

as m Ñ 8 for some constant C2.

Finally, since the function f pxq “
1

x ln x
is positive, nonincreasing on r2,8q, the difference

δm “

m
ÿ

k“2

1
k ln k

´

ż m

2

dx
x ln x

has a finite limit as m Ñ 8. [From the inequalities f pk ` 1q ď
ż k`1

k
f ptq dt ď f pkq pk “

2, 3, . . . ,mq, we deduce that δm ě 0 and δm`1 ´ δm “ f pm` 1q ´
ż m`1

m
f pxq dx ď 0 for m ě 2.

Thus, pδmq is nonincreasing and bounded below, hence convergent.]
It follows that

m
ÿ

k“2

1
k ln k

“ lnpln mq `C3 ` op1q

as m Ñ 8 for some constant C3.
Gathering the results provides

m
ÿ

k“2

ln
ˆ

1`
α´ β

β` k ln k

˙

“ pα´ βq lnpln mq `C4 ` op1q

as m Ñ 8 for some constant C4.
By exponentiation, we obtain Qm „ eC4pln mqα´β as m Ñ 8 and using p1q,

pln mqγPm „
C5

mpln mq1´γ´α`β
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where C5 is a positive constant. Thus,
ÿ

mě2

pln mqγPm is convergent if and only if β ą α` γ.

Also solved by the proposer.

‚ 5658 Proposed by Titu Zvonaru, Comănes, ti, Romania.

Let a, b and c be positive with a` b` c “ 3. Prove
1

5` a3 `
1

5` b3 `
1

5` c3 ď
1
2
.

Solution 1 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Function f pxq “
1

5` x3 is concave for x P p0, 1q since f 2pxq “
6xp2x3 ´ 5q
p5` x3q3

ă 0 for x P p0, 1q.

Therefore, by Jensen’s inequality

1
5` a3 `

1
5` b3 `

1
5` c3 ď 3 ¨

1
5` p a`b`c

3 q3
“

3
6
“

1
2
.

Solution 2 by Arkady Alt, San Jose, CA.

Let F pa, b, cq :“
1

5` a3 `
1

5` b3 `
1

5` c3

Assuming a “ max ta.b, cu (due symmetry of the inequality) we will prove that

Fpa, b, cq ď Fpa, p, pq, where p :“
b` c

2
.

Since a ě p then 3 “ a` b` c ě 3p ðñ p ď 1 and also bc ď
ˆ

b` c
2

˙2

“ p2.

Then Fpa, p, pq ´ Fpa, b, cq “
ˆ

1
5` p3 ´

1
5` b3

˙

`

ˆ

1
5` p3 ´

1
5` c3

˙

“

pb´ pq
`

b2 ` bp` p2
˘

ps3 ` 5q pb3 ` 5q
`
pc´ pq

`

c2 ` cp` p2
˘

pp3 ` 5q pc3 ` 5q
“
pb´ cq

`

b2 ` bp` p2
˘

2 pp3 ` 5q pb3 ` 5q
´
pb´ cq

`

c2 ` cp` s2
˘

2 pp3 ` 5q pc3 ` 5q
“

pb´ cq
´

`

b2 ` bp` p2
˘ `

c3 ` 5
˘

´
`

c2 ` cp` p2
˘ `

b3 ` 5
˘

¯

2 pp3 ` 5q pb3 ` 5q pc3 ` 5q
“

pb´ cq2
´

5 pb` cq ` 5p´ b2c2 ´ p2
`

b2 ` bc` c2
˘

´ bcp pb` cq
¯

2 pp3 ` 5q pb3 ` 5q pc3 ` 5q
.

We have 5 pb` cq ` 5p´ b2c2
´ p2

´

b2
` bc` c2

¯

´ bcp pb` cq “

15p´ p2 pb` cq2 ´ bcp2
´ b2c2

“ 15p´ 4p4
´ bcp2

´ b2c2
ě 0 because

15p´ 4p4
´ bcp2

´ b2c2
ě 15p´ p4

´ 4p4
´ p4

“ 15p´ 6p4
“ 3p

´

5´ 2p3
¯

ě 6p ą 0.

Since a “ 3´ 2p then
1
2
´ Fpa, p, pq “

1
2
´ Fp3´ 2p, p, pq “

1
2
´

1

5` p3´ 2pq3
´

2
5` p3 “

p1´ pq2
`

11` 10p3 ´ 5p´ 3p2 ´ 4p4
˘

pp3 ` 5q
´

5` p3´ 2pq3
¯ ě 0

because 11` 10p3
´ 5p´ 3p2

´ 4p4
“ 5 p1´ pq ` 3

´

1´ p2
¯

` 4p3 p1´ pq ` 3` 6p3
ą 0
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and 5` p3´ 2pq3 ě 5` p3´ 2 ¨ 1q3 “ 6.

Solution 3 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

We use the method of Lagrange multipliers to maximize

f pa, b, cq “
1

5` a3 `
1

5` b3 `
1

5` c3

subject to the constraints that a, b, and c are positive real numbers and gpa, b, cq “ a ` b ` c “ 3.
Extrema can be found where ∇ f “ λ∇g, or fa “ fb “ fc “ λ, since ∇g “ x1, 1, 1y. Thus,

´3a2

p5` a3q2
“

´3b2

p5` b3q2
“

´3c2

p5` c3q2
.

Since a, b, and c are all positive, so are 5` a3, 5` b3, and 5` c3; hence

a
5` a3 “

b
5` b3 “

c
5` c3 ,

and
pb´ aqrabpa` bq ´ 5s “ 0 “ pc´ bqrbcpb` cq ´ 5s “ pa´ cqrcapc` aq ´ 5s.

Suppose a , b; then abpa ` bq “ 5. If b “ c, then a “ 3 ´ 2b and a ` b “ 3 ´ b, so
that p3 ´ 2bqbp3 ´ bq “ 5; but this equation has no solution for 0 ă b ă 3. If b , c, then
bcpb` cq “ 5 “ abpa` bq, so that cpb` cq “ apa` bq, cp3´ aq “ ap3´ cq, and a “ c. But then
b “ 3 ´ 2a, a ` b “ 3 ´ a, and ap3 ´ 2aqp3 ´ aq “ 5, which also has no solution for 0 ă a ă 3.

So, the only extreme value of f occurs where a “ b “ c “ 1; namely f p1, 1, 1q “
3
6
“

1
2

. Since

f p2, 1{2, 1{2q “
186
533

ă
1
2

, then f p1, 1, 1q “
1
2

must be the absolute maximum, and

1
5` a3 `

1
5` b3 `

1
5` c3 ď

1
2
.

Solution 4 by Michael Brozinsky, Central Islip, NY and Andrew Bulawa, Brooklyn NY.

Without loss of generality let a ď b ď c and so a ď 1 and a ` b ď 2 and c “ 3 ´ a ´ b.

Consider the function f px, yq “
1

5` x3 `
1

5` y3 `
1

p3´ x´ yq3
where x and y are non negative

and 0 ă x ď 1 and x ď y and x`y ď 2. On the line x`y “ k where k is constant where 0 ă k ď 2

we have x ď
k
2

and f px, k ´ xq “
1

5` x3 `
1

5` pk ´ xq3
`

1

5` p3´ kq3
and

d
dx

`

f px, k ´ xq
˘

“ ´
3 pk ´ 2xq

`

k2x´ k x2 ´ 5
˘ `

k3x´ 3k2x2 ` 4k x3 ´ 2x4 ` 5k
˘

px3 ` 5q2 pk3 ´ 3k2x` 3k x2 ´ x3 ` 5q2

“ 3 p2x´ kq

`

k2x´ k x2 ´ 5
˘ `

k3x´ 3k2x2 ` 4k x3 ´ 2x4 ` 5k
˘

px3 ` 5q2 pk3 ´ 3k2x` 3k x2 ´ x3 ` 5q2

(5)
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We will show this derivative changes sign from positive to negative at x “
k
2

and thus the

maximum of f px, yq must be on the line y “ x since if x “
k
2

then y “
k
2

because x` y “ k. In (5)

the denominator factors are clearly positive (note 5`pk´ xq3 “ k3
´3k2x`3kx2

´ x3
`5. Now the

numerator factor k2x´kx2
´5 is always negative since the discriminant k4

´20k “ k
´

k3
´ 20

¯

ă 0

and the leading coefficient ´k ă 0. The numerator factor k3x ´ 3k2x2
` 4k x3

´ 2x4
` 5k using

Vieta’s substitution x “ z`
k
2

becomes
1
8

k4
´ 2z4

` 5k so that its zeros are

z “

`

k4 ` 40k
˘

1
4

2
, z “

i
2

´

k4
` 40k

¯
1
4
, z “ ´

`

k4 ` 40k
˘

1
4

2
, z “ ´

i
2

´

k4
` 40k

¯
1
4

and so the zeros for this numerator factor are

x “

`

k4 ` 40k
˘

1
4

2
`

k
2
, x “

i
`

k4 ` 40k
˘

1
4

2
`

k
2
, x “ ´

`

k4 ` 40k
˘

1
4

2
`

k
2
, x “ ´

i
`

k4 ` 40k
˘

1
4

2
`

k
2
.

Now since
´

k4
` 40k

¯1{4
ą k the first real zero x “

`

k4 ` 40k
˘1{4

2
`

k
2
ą k and the second (and

last) real zero x “ ´

`

k4 ` 40k
˘1{4

2
`

k
2
ă 0 and so k3x ´ 3k2x2

` 4kx3
´ 2x4

` 5k must be of

constant sign when 0 ď x ď
k
2

(by the intermediate value theorem). Choosing x “ 0 in this factor

i.e., k3x´3k2x2
`4k x3

´2x4
`5k we get 5k ą 0 and so the constant sign for this factor is positive.

Finally since 2x ´ k changes sign from negative to positive at x “
k
2

, the derivative in question

changes sign from positive to negative at x “
k
2

and thus the maximum of f px, yq must be on the
line y “ x.

Hence replacing y by x in f px, yq we get

f px, xq “
1

5` x3 `
1

5` x3 `
1

p3´ 2xq3

If we can show this expression increases with x then the maximum value will be when x “ 1 and

will be
1
6
`

1
6
`

1
6
“

1
2

. (*)
Now

d
dx

`

f px, xq
˘

“ ´
6
`

15x6 ´ 96x5 ` 216x4 ´ 226x3 ` 81x2 ´ 25
˘

px3 ` 5q2 p´3` 2xq4

“ ´
6
`

15x6 ´ 96x5 ` 216x4 ´ 226x3 ` 81x2 ´ 25
˘

px3 ` 5q2 p´3` 2xq4

“ ´

6
´

`

5x3 ´ 12x2 ` 9x` 5
˘ `

3x3 ´ 12x2 ` 9x´ 5
˘

¯

px3 ` 5q2 p´3` 2xq4

(6)
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Now the factor p5x3
´ 12x2

` 9x ` 5q ą 0 since 0 ă x ď 1 because 5x3
´ 12x ą ´12x and

so x
´

5x2
´ 12

¯

ą ´12x and thus x
´

5x2
´ x

¯

` 9x ` 5 ą ´12x ` 9x ` 5 “ ´3x ` 5 ą 0

since x ă
5
3

, but this is just (reading from left to right) 5x3
´ 12x2

` 9x ` 5 ą 0. Now the

factor
´

3x3
´ 12x2

` 9x´ 5
¯

ă 0 since 0 ă x ď 1 because
d
dx

´

3x3
´ 12x2

` 9x´ 5
¯

“

3
´

3x2
´ 8x` 3

¯

which can be written as 9 px´ r1q px´ r2q where r1 “
4`

?
7

3
and r2 “

4´
?

7
3

. Note 0 ă r2 ă 1 and r1 ą 1 and so (by the first derivative test) 3x3
´ 12x2

` 9x ´ 5

has an absolute maximum on r0, 1s when x “
4´

?
7

3
or ´

65
9
`

14
?

7
9

which is negative. The
denominator in (6) is clearly positive and (noticing the negative sign) in front of (6) we have shown
(6) is a positive expression and the goal stated in (*) has been verified. Identifying a with x, b with
y, and c with 3´ x´ y completes the proof.

Note the factorization of 15x6
´ 96x5

` 216x4
´ 226x3

` 81x2
´ 25 was obtained via Maple.

Solution 5 by Ajay Srinivasan, University of Southern California, Los Angeles, CA.

This is a constrained optimization problem. Define the constraint function as gpx, y, zq “ x` y` z,

and the objective function as f px, y, zq “
1

5` x3 `
1

5` y3 `
1

5` z3 . It suffices to show that the

maximum value of f under the constraint gpx, y, zq “ 3 is
1
2

. The Lagrange multiplier for this
scenario is:

Lpx, y, z, λq “ f px, y, zq ´ λgpx, y, zq “
1

5` x3 `
1

5` y3 `
1

5` z3 ´ λx´ λy´ λz

Evidently,

∇L “

C

´3x2

p5` x3q2
´ λ,

´3y2

p5` y3q2
´ λ,

´3z2

p5` z3q2
´ λ

G

∇L “ 0 implies that
´3x2

p5` x3q2
“

´3y2

p5` y3q2
“

´3z2

p5` z3q2

One possible solution to this is x “ y “ z. Using x “ y “ z in gpx, y, zq “ 3 yields that

px, y, z, λq “ p1, 1, 1,
´1
12
q is a solution for the Lagrange multiplier problem Lpx, y, z, λq “ 0 and

gpx, y, zq “ 3. The Bordered Hessian Matrix for L is:

H4 “

¨

˚

˚

˚

˝

Lλλ Lλx Lλy Lλz

Lxλ Lxx Lxy Lxz

Lyλ Lyx Lyy Lyz

Lzλ Lzx Lzy Lzz

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

0 ´1 ´1 ´1
´1 Lxx 0 0
´1 0 Lyy 0
´1 0 0 Lzz

˛

‹

‹

‹

‚
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Using the values of double-derivatives:

H4 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ´1 ´1 ´1

´1
´1
12

0 0

´1 0
´1
12

0

´1 0 0
´1
12

˛

‹

‹

‹

‹

‹

‹

‹

‚

detpH4q “

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ´1 ´1 ´1

´1
´1
12

0 0

´1 0
´1
12

0

´1 0 0
´1
12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
“ ´

1
48
ă 0

detpH3q “

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 ´1 ´1

´1
´1
12

0

´1 0
´1
12

∣∣∣∣∣∣∣∣∣∣∣∣∣
“

1
6
ą 0

By the second derivative test for constrained optimization problems, p1, 1, 1q is a local maximum

for f under the constraint gpx, y, zq “ 3. Since f p1, 1, 1q “
1
2

,
1
2

is the local maximal value for f .

Solution 6 by David E. Manes, Oneonta, NY.

The proposed inequality is equivalent to the following:
ˆ

1
5` a3 ´

1
6

˙

`

ˆ

1
5` b3 ´

1
6

˙

`

ˆ

1
5` c3 ´

1
6

˙

ď 0.

Therefore,
1´ a3

6p5` a3q
`

1´ b3

6p5` b3q
`

1´ c3

6p5` c3q
ď 0.

Factoring the numerators, one obtains

p1´ aqpa2 ` a` 1q
6p5` a3q

`
p1´ bqpb2 ` b` 1q

6p5` b3q
`
p1´ cqpc2 ` c` 1q

6p5` c3q
ď 0.

Multiplying by ´6 yields

pa´ 1q

˜

a2 ` a` 1
5` a3

¸

` pb´ 1q

˜

b2 ` b` 1
5` b3

¸

` pc´ 1q

˜

c2 ` c` 1
5` c3

¸

ě 0.
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Without loss of generality, we may assume a ď b ď c. This implies a ´ 1 ď b ´ 1 ď c ´ 1 and
a2 ` a` 1

5` a3 ď
b2 ` b` 1

5` b3 ď
c2 ` c` 1

5` c3 . By Chebyshev’s inequality, we get

ÿ

cyclic

pa´ 1q

˜

a2 ` a` 1
5` a3

¸

ě
1
3
pa´ 1` b´ 1` c´ 1q

ÿ

cyclic

˜

a2 ` a` 1
5` a3

¸

“ 0

since a` b` c “ 3. Equality occurs if and only if a “ b “ c “ 1. This completes the solution.

Solution 7 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Solution (a):

The function f pxq “ 1{p5 ` x3
q is concave on p0, 1s : f 2pxq “ 6xp2x3

´ 5q{px3
` 5q3 ă 0.

Therefore, we can apply Jensen’s inequality to see that

ÿ

cyclic

1
5` a3 ď 3 ¨

1

5`
´

a`b`c
3

¯3 “
3
6
“

1
2
.

Equality holds if and only if a “ b “ c “ 1.

Solution (b):

First the AGM inequality gives us 5 ` a3
“ 1 ` 1 ` 1 ` 1 ` 1 ` a3

ě 6
6?

a3 “ 6
?

a, so that
1{p5` a3

q ď 1{p6
?

aq. Then the power mean inequality yields

˜

a´1{2 ` b´1{2 ` c´1{2

3

¸´2

ď
a` b` c

3
,

which implies
ÿ

cyclic

1
5` a3 ď

ÿ

cyclic

1
6
?

a
ď

3
6

ˆ

a` b` c
3

˙´1{2

“
1
2
.

Equality holds if and only if a “ b “ c “ 1.

Solution (c):

The function f pxq “ 1{p5 ` x3
q is concave on p0, 1s : f 2pxq “ 6xp2x3

´ 5q{px3
` 5q3 ă 0.

Therefore, the function lies on or below the tangent line drawn to the point p1, 1{6q on the curve
y “ f pxq:

1
5` x3 ď

1
2
px´ 1q `

1
6
.

Therefore,

ÿ

cyclic

1
5` a3 ď

ÿ

cyclic

ˆ

1
2
pa´ 1q `

1
6

˙

“
1
2
pa` b` c´ 3q `

3
6
“

1
2
.
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Equality holds if and only if a “ b “ c “ 1.

Solution (d):

The AGM inequality yields 5` a3
“ 1` 1` 1` 1` 1` a3

ě 6
?

a, so that

ÿ

cyclic

1
5` a3 ď

1
6

ÿ

cyclic

1
?

a
.

But the power mean inequality gives us
˜

a´1{2 ` b´1{2 ` c´1{2

3

¸´2

ď
a` b` c

3
“ 1, or

ÿ

cyclic

1
?

a
ď 3,

which completes the proof of the given inequality.

Solution 8 by Moti Levy, Rehovot, Israel.

Using the identity
1

5` a3 “
1
5
´

1
5

a4

a pa3 ` 5q
, we rewrite the original inequality as follows,

3
5
´

1
5

˜

a4

a pa3 ` 5q
`

b4

b pb3 ` 5q
`

c4

c pc3 ` 5q

¸

ď
1
2
,

or,
a4

a pa3 ` 5q
`

b4

b pb3 ` 5q
`

c4

c pc3 ` 5q
ě

1
2
. (7)

By Titu’s lemma

a4

a pa3 ` 5q
`

b4

b pb3 ` 5q
`

c4

c pc3 ` 5q
ě

`

a2 ` b2 ` c2
˘2

a pa3 ` 5q ` b pb3 ` 5q ` c pc3 ` 5q
“

`

a2 ` b2 ` c2
˘2

a4 ` b4 ` c4 ` 5 pa` b` cq
.

Hence it is enough to show that
`

a2 ` b2 ` c2
˘2

a4 ` b4 ` c4 ` 5 pa` b` cq
ě

1
2
,

or that
2
´

a2
` b2

` c2
¯2
´

´

a4
` b4

` c4
` 5 pa` b` cq

¯

ě 0 (8)

Now we use the p, q, r notation, namely p “ a` b` c, q “ ab` bc` ca, r “ abc.

a2
` b2

` c2
“ p2

´ 2q

a4
` b4

` c4
“ p4

´ 4p2q` 2q2
` 4pr

Inequality (8) becomes

2
´

p2
´ 2q

¯2
´

´

p4
´ 4p2q` 2q2

` 4pr ` 5p
¯

ě 0.
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or
p4
´ 4p2q´ 4pr ´ 5p` 6q2

ě 0. (9)

setting p “ 3 in (9), we get
q2
´ 6q´ 2r ` 11 ě 0 (10)

By AM-GM inequality, 3
?

abc ď
a` b` c

3

r ď 1, (11)

and
ab` bc` ca

3
ě

´

3
?

abc
¯2

q ě 3r
2
3 ě 3r. (12)

By the known inequality

q ď
p3 ` 9r

4p
and (11), we get

q ď 3.

Using (12) in (10) we get

q2
´ 6q´ 2r ` 11 ě q2

´ 6q´ 2
q
3
` 11 “

1
3
p3´ qq p11´ 3qq ě 0, f or 0 ď q ď 3,

and this completes the proof.

Solution 9 by Seán M. Stewart, Physical Sciences and Engineering Division, King Abdul-
lah University of Science and Technology, Saudi Arabia.

Equality occurs when a “ b “ c “ 1. As a, b, c ą 0 such that a ` b ` c “ 3, we see that
0 ă a, b, c ă 3. Now consider the function

f pxq “
1

5` x3 , 0 ă x ă 3.

Here

f 1pxq “ ´
3x2

p5` x3q2
, and f 2pxq “ ´

6xp5´ 2x3q

p5` x3q3
.

As f 2pxq ă 0 for x ą
3

c

5
2
p“ 1.35 . . .q then f is clearly concave for x ą 2. Also, on finding the

equation of the tangent to the curve f at the point x “ 1 we have

ypxq “ ´
x

12
`

1
4
.

This tangent will be above, or touches, the curve f for

0 ă x ă
1`

?
13

2
p“ 2.30 . . .q.
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So clearly ypxq > f pxq for 0 ă x 6 2.
For 0 ă a, b, c 6 2 we have:

1
5` a3 6 ´

a
12
`

1
4

1
5` b3 6 ´

b
12
`

1
4

1
5` c3 6 ´

c
12
`

1
4

Thus
ÿ

cyc

1
5` a3 6

ÿ

cyc

ˆ

´
a

12
`

1
4

˙

“ ´
1
12
pa` b` cq `

3
4

“ ´
3

12
`

3
4
“

1
2
.

And, for 2 ă a, b, c ă 3 the conditions for Jensen’s inequality as applied to the function f are
satisfied. Letting f paq “ 1{p5` a3

q, on applying this inequality we see that

ÿ

cyc

f paq 6 3 f

¨

˝

1
3

ÿ

cyc

a

˛

‚“ 3 f
ˆ

a` b` c
3

˙

“ 3 f p1q “ 3 ¨
1
6
“

1
2
.

So from the above two results, on combining them, for 0 ă a, b, c ă 3 such that a` b` c “ 3
we conclude that

ÿ

cyc

1
5` a3 6

1
2
,

as required to show.

Also solved by G. C. Greubel, Newport News, VA; Hatef Arshagi, Guilford technical Commu-
nity College, Jamestown, NC; Albert Stadler, Herrliberg, Switzerland; Brian Bradie, Depart-
ment of Mathematics, Christopher Newport University, Newport News, VA; Toyesh Prakash
Sharma, St. C.F. Andrews School, Agra, India; Goran Conar, Varaždin, Croatia; and the
proposer.

‚ 5659 Proposed by Narendra Bhandari, National Academy of Science and Technology, Pokhara
University, Nepal.

Prove that
8
ÿ

n“0

p´1qn

p2n` 1q3

´

H n
2
´ H n´1

2

¯

“
π4

32
´ 2G2

where G is Catalan’s constant defined by

G “

8
ÿ

n“0

p´1qn

p2n` 1q2
and H n

2
´ H n´1

2
“ 2

n
ÿ

k“0

p´1qk

k ` n` 1
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Solution 1 by Albert Stadler, Herrliberg, Switzerland.

The integral representation of the harmonic numbers Hn, namely

Hn “

ż 1

0

1´ tn

1´ t
dt,

permits to extend the definition of the harmonic numbers to non-integral indices. We find

H n
2
´ H n´1

2
“

ż 1

0

1´ t
n
2

1´ t
dt ´

ż 1

0

1´ t
n´1

2

1´ t
dt “

ż 1

0

t
n´1

2 ´ t
n
2

1´ t
dt “

ż 1

0

un´1 ´ un

1´ u2 2udu,

H n
2
´ H n´1

2
“ 2

ż 1

0

un

1` u
du “ 2

8
ÿ

k“0

p´1qk

k ` n` 1
.

Thus

8
ÿ

n“0

p´1qn

p2n` 1q3

´

H n
2
´ H n´1

2

¯

“ 2
ż 1

0

1
1` u

8
ÿ

n“0

p´1qnun

p2n` 1q3
du

u“v2
hkkikkj

“ 4
ż 1

0

1
1` v2

8
ÿ

n“0

p´1qnv2n`1

p2n` 1q3
dv “

“ 4arctanv
8
ÿ

n“0

p´1qnv2n`1

p2n` 1q3

ˇ

ˇ

ˇ

ˇ

ˇ

1

0

´ 4
ż 1

0
arctanv

8
ÿ

n“0

p´1qnv2n

p2n` 1q2
dv “

“ π
8
ÿ

n“0

p´1qn

p2n` 1q3
´ 4

ż 1

0

arctanv
v

ż v

0

arctanw
w

dwdv,

where we have used Taylor’s expansion of the arctan function for |x|ă1, namely

arctanx “
8
ÿ

n“0

p´1qnx2n`1

2n` 1
.

Clearly,

4
ż 1

0

arctanv
v

ż v

0

arctanw
w

dwdv “ 2
ż 1

0

d
dv

ˆ
ż v

0

arctanw
w

dw
˙2

dv “ 2

˜

ż 1

0

arctanw
w

dw

¸2

“ 2G2,

while
8
ÿ

n“0

p´1qn

p2n` 1q3
“

1
2

8
ÿ

n“0

p´1qn
ż 1

0

´

ln2x
¯

x2ndx “
1
2

ż 1

0

ln2x
1` x2 dx “

1
2

ż 8

1

ln2x
1` x2 dx “

1
4

ż 8

0

ln2x
1` x2 dx “

“
1
4

d2

du2

ż 8

0

xu´1

1` x2 dx

ˇ

ˇ

ˇ

ˇ

ˇ

u“1

.

It is known that
ż 8

0

xu´1

1` xv dx “
π

vsin
´

πu
v

¯ , Re pvq ą Re puq ą 0.
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(see for instance, I.S. Gradshteyn / I.M. Ryzhik, Table of Integrals, Series, and Products, corrected
and enlarged edition, Academic Press, 1980, 3.241, formula 2).
So

1
4

d2

du2

ż 8

0

xu´1

1` x2 dx

ˇ

ˇ

ˇ

ˇ

ˇ

u“1

“
1
4

d2

du2

π

2sin
´

πu
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u“1

“
π3

64
3` cos pπuq

sin3
´

πu
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u“1

“
π3

32
,

and the sum of the problem statement equals

π4

32
´ 2G2.

Solution 2 by Seán M. Stewart, Physical Sciences and Engineering Division, King Abdullah
University of Science and Technology, Saudi Arabia.

Note the Hx with x ą ´1 that appear in the question are the analytic continuation of the nth

harmonic numbers defined by
n
ÿ

k“1

1
k

. Denote the sum to be proved by S . For n P Z>0 observe that

H n
2
´ H n´1

2
“ 2

ż 1

0

xn

1` x
dx,

which is result (17) proved in the Appendix, and
ż 1

0
x2n logpxq dx “

´1
p2n` 1q2

.

The series given by S can thus be rewritten as

S “
8
ÿ

n“0

p´1qn

2n` 1
¨

1
p2n` 1q2

¨

´

H n
2
´ H n´1

2

¯

“ ´2
ż 1

0

ż 1

0

logptq
1` x

8
ÿ

n“0

p´1qnpt
?

xq2n

2n` 1
dx dt

“ ´2
ż 1

0

ż 1

0

logptq arctanpt
?

xq
t
?

xp1` xq
dx dt.

Here the interchange that has been made between the integration signs and the summation is per-
missible due to Fubini’s theorem while the well-known Maclaurin series expansion for arctanpxq
has been used. Enforcing a substitution of x ÞÑ x2 in the inner integral followed by an integration
by parts yields

S “ ´4
ż 1

0

ż 1

0

logptq arctanpxtq
tp1` x2q

dx dt “ 2
ż 1

0

ż 1

0

x log2
ptq

p1` x2qp1` x2t2q
dx dt.

From the partial fraction decomposition of

x
p1` x2qp1` x2t2q

“
x

p1´ t2qp1` x2q
´

xt2

p1´ t2qp1` x2t2q
,
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we see the inner x-integral is elementary. Thus

S “
ż 1

0
log2

ptq

«

logp1` x2q ´ logp1` x2t2q

1´ t2

ffx“1

x“0

dt

“

ż 1

0

log2
ptq log

´

2
1`t2

¯

1´ t2 dt

“ logp2q
ż 1

0

log2
pxq

1´ x2 dx´
ż 1

0

log2
pxq logp1` x2q

1´ x2 dx

“
7
4
ζp3q logp2q ´ I. (13)

Here the dummy variable has been reverted back to x while the result found for the first of the
integrals to the right of the equality comes from setting n “ 2 in (16).

We now turn our attention to the evaluation of the integral I. Define on the interval x P r0, 1s
the function

Rpxq “
ż x

0

log2
ptq

1´ t2 dt.

Setting t ÞÑ xt produces

Rpxq “
ż 1

0

x log2
pxtq

1´ t2x2 dt.

Note that Rp0q “ 0 and Rp1q “
ż 1

0

log2
ptq

1´ t2 dt “
7
4
ζp3q, a result which comes from setting n “ 2 in

(16). Integrating by parts we have

I “
”

Rpxq logp1` x2
q

ı1

0
´ 2

ż 1

0

xRpxq
1` x2 dx

“
7
4
ζp3q logp2q ´ 2

ż 1

0

ż 1

0

x2 log2
pxtq

p1´ t2x2qp1` x2q
dt dx.

The partial fraction decomposition of

x2

p1` x2qp1´ x2t2q
“

1
p1` t2qp1´ x2t2q

´
1

p1` t2qp1` x2q
,

allows one to rewrite the integral for I as

I “
7
4
ζp3q logp2q ` 2

ż 1

0

ż 1

0

log2
pxtq

p1` t2qp1` x2q
dt dx

´ 2
ż 1

0

ż 1

0

log2
pxtq

p1` t2qp1´ x2t2q
dt dx.

Since
log2

pxtq “ log2
pxq ` 2 logpxq logptq ` log2

ptq,
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using this to rewrite the log2
pxtq term appearing in the integrand of the first of the double integrals

in I yields

I “
7
4
ζp3q logp2q ` 4

ż 1

0

ż 1

0

log2
pxq

p1` t2qp1` x2q
dt dx` 4

˜

ż 1

0

logpxq
1` x2 dx

¸2

´ 2
ż 1

0

ż 1

0

log2
pxtq

p1` t2qp1´ x2t2q
dt dx.

Here we have exploited those symmetries which appeared in the integrands. For the first of the
double integrals we have

ż 1

0

ż 1

0

log2
pxq

p1` t2qp1` x2q
dt dx “

π

4

ż 1

0

log2
pxq

1` x2 dx “
π

4
¨
π3

16
,

where result (15) given in the Appendix has been used. The second integral corresponds to result
(14) given in the Appendix. Thus

I “
7
4
ζp3q logp2q ` 4 ¨

π

4
¨
π3

16
` 4p´Gq2 ´

ż 1

0

2
tp1` t2q

˜

ż 1

0

t log2
pxtq

1´ x2t2 dx

¸

dt

“
7
4
ζp3q logp2q `

π4

16
` 4G2

´

ż 1

0

2Rptq
tp1` t2q

dt.

For the remaining integral, noting that R1ptq “
log2

ptq
1´ t2 , integrating by parts gives

ż 1

0

2Rptq
tp1` t2q

dt “
”

Rptq
´

2 logptq ´ logp1` t2
q

¯ ı1

0

´

ż 1

0

´

2 logptq ´ logp1` t2
q

¯ log2
ptq

1´ t2 dt

“ ´
7
4
ζp3q logp2q ´ 2

ż 1

0

log3
ptq

1´ t2 dt `
ż 1

0

log2
ptq logp1` t2q

1´ t2 dt

“ ´
7
4
ζp3q logp2q ´ 2

˜

´π4

16

¸

` I “ ´
7
4
ζp3q logp2q `

π4

8
` I,

where we have used
ż 1

0

log3
ptq

1´ t2 dt “ ´
π4

16
and comes from setting n “ 3 in (16) given in the

Appendix. So

I “
7
4
ζp3q logp2q `

π4

16
` 4G2

´

˜

´
7
4
ζp3q logp2q `

π4

8
` I

¸

“
7
2
ζp3q logp2q ´

π4

16
` 4G2

´ I,
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or

I “
7
4
ζp3q logp2q ´

π4

32
` 2G2.

Substituting this result into (13) yields

S “
7
4
ζp3q logp2q ´

˜

7
4
ζp3q logp2q ´

π4

32
` 2G2

¸

“
π4

32
´ 2G2,

as required to prove.

Appendix
In this appendix a number of integrals that we shall have a need for are given.

A well-known integral representation for the Catalan constant G is [1, Entry 4.231.12, p. 539]
ż 1

0

logpxq
1` x2 dx “ ´G. (14)

And when the logarithm term appearing in the integrand is squared one has [1, Entry 4.261.6, p.
546]

ż 1

0

log2
pxq

1` x2 dx “
π3

16
. (15)

Lemma 1 If n P N then
ż 1

0

logn
pxq

1´ x2 dx “ p´1qnn!
ˆ

1´
1

2n`1

˙

ζpn` 1q, (16)

where ζpxq denotes the Riemann zeta function.

Proof. Calling the integral to be evaluated `n, then

`n “

ż 1

0
logn

pxq
8
ÿ

k“0

x2k dx “
8
ÿ

k“0

ż 1

0
x2k logn

pxq dx.

The interchange made between the order of the summation and integration is permissible since
for fixed n P N all terms involved are unsigned (all negative if n is odd, all positive if n is even).
Integrating by parts n times gives

`n “ p´1qnn!
8
ÿ

k“0

1
p2k ` 1qn

“ p´1qnn!λpn` 1q.

Here λpxq denotes the Dirichlet lambda function. As this function is known to be related to the
Riemann zeta function by

λpnq “
ˆ

1´
1
2n

˙

ζpnq,

the desired result then follows and completes the proof.
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Lemma 2 If n ą ´1 then the following identity holds:
ż 1

0

xn

1` x
dx “

1
2

´

H n
2
´ H n´1

2

¯

. (17)

Here Hz, z ą ´1, is the analytic continuation of the nth harmonic numbers defined by
n
ÿ

k“1

1
k

.

Proof. Recalling the following integral representation for the harmonic numbers of

Hz “

ż 1

0

1´ xz

1´ x
dx,

we see that

H n
2
´ H n´1

2
“

ż 1

0

1´ x
n
2

1´ x
dx´

ż 1

0

1´ x
n´1

2

1´ x
dx “

ż 1

0

x
n´1

2 ´ x
n
2

1´ x
dx.

Enforcing a substitution of x ÞÑ x2 produces

H n
2
´ H n´1

2
“ 2

ż 1

0

xnp1´ xq
1´ x2 dx “ 2

ż 1

0

xn

1` x
dx,

and completes the proof.

Result (17) is not new. It can be found, for example, in [2, p. 156, Eq. (3.98)].
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Solution 3 by Moti Levy, Rehovot, Israel.

We begin with the following partial fractions expansion:

1

p2n` 1q3 pk ` n` 1q
“ ´

1

p2k ` 1q3 pk ` n` 1q
`

2

p2k ` 1q p2n` 1q3

´
2

p2k ` 1q2 p2n` 1q2
`

2

p2k ` 1q3 p2n` 1q
, (18)
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then apply (18) to expand the sum into four terms,

S :“ 2
8
ÿ

n“0

8
ÿ

k“0

p´1qn

p2n` 1q3
p´1qk

k ` n` 1
“ ´2

8
ÿ

k“0

p´1qk

p2k ` 1q3

8
ÿ

n“0

p´1qn

pk ` n` 1q
` 4

8
ÿ

n“0

p´1qn

p2n` 1q3

8
ÿ

k“0

p´1qk

p2k ` 1q

´ 4
8
ÿ

n“0

p´1qn

p2n` 1q2

8
ÿ

k“0

p´1qk

p2k ` 1q2
` 4

8
ÿ

n“0

p´1qn

2n` 1

8
ÿ

k“0

p´1qk

p2k ` 1q3
.

S “ ´S ` 8
8
ÿ

n“0

p´1qn

p2n` 1q3

8
ÿ

k“0

p´1qk

2k ` 1
´ 4

8
ÿ

n“0

p´1qn

p2n` 1q2

8
ÿ

k“0

p´1qk

p2k ` 1q2

S “ 4

˜

8
ÿ

n“0

p´1qn

p2n` 1q3

¸˜

8
ÿ

k“0

p´1qk

2k ` 1

¸

´ 2

˜

8
ÿ

n“0

p´1qn

p2n` 1q2

¸2

(19)

The Dirichlet beta function is defined as β psq :“
8
ÿ

n“0

p´1qn

p2n` 1qs , Re psq ą 0.

S “ 4β p3q β p1q ´ 2β2 p1q (20)

The first values of Dirichlet beta function are tabulated:

β p1q “
8
ÿ

n“0

p´1qn

2n` 1
“
π

4
, (21)

β p2q “
8
ÿ

n“0

p´1qn

p2n` 1q2
“ G, (22)

β p3q “
8
ÿ

k“0

p´1qn

p2n` 1q3
“
π3

32
. (23)

The required result follows after plugging (21), (22), and (23) into (20).

Also solved by G. C. Greubel, Newport News, VA; and the proposer.

‚ 5660 Proposed by José Díaz-Barrero, Barcelona Tech, Barcelona, Spain.

Suppose the sequences pxnqně0 and pynqně0 of real numbers satisfy the equation

x2
n ` x2

n´1 ` y2
n ` y2

n´1 “ pynxn´1 ´ xnyn´1q `
?

3 pxnxn´1 ` ynyn´1q .

Show that the sequences pxnqně0 and pynqně0 are periodic and find their period.

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

Put cn B
b

x2
n ` y2

n ě 0. There are unique numbers ϕn P r0, 2πr such that

xn “ cncosϕn , yn “ cnsinϕn .
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The equation of the problem statement can then be rewritten as

c2
n´1 ` c2

n “

“ cn´1cn psinϕn cosϕn´1 ´ cosϕn sinϕn q ` cn´1cn

?
3 pcosϕn cosϕn´1 ´ sinϕn sinϕn q “

“ cn´1cn

´

sin pϕn ´ ϕn´1q `
?

3cos pϕn ´ ϕn´1q

¯

“

“ 2cn´1cnsin
ˆ

ϕn ´ ϕn´1 `
π

3

˙

.

By the AM-GM inequality,
c2

n´1 ` c2
n ě 2cn´1cn.

Hence sin
ˆ

ϕn ´ ϕn´1 `
π

3

˙

ě 1 for all n, implying that

ϕn ´ ϕn´1 `
π

3
”
π

2
pmod 2πq

or equivalently,
ϕn ” ϕn´1 `

π

6
pmod 2πq .

Furthermore c2
n´1 ` c2

n “ 2cn´1cn implies cn=cn´1 for all n. We conclude that the sequences (xn)n0

and (yn)n0 are periodic with period 12.

Solution 2 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

If xk “ yk “ 0 for some integer k ě 0, then both pxnqně0 and pynqně0 trivially reduce to the
zero sequence, so suppose instead that xn and yn are never simultaneously zero. For each integer
n ě 0, let prn, θnq be the unique polar coordinate representation of pxn, ynq in which rn ą 0 and
0 ď θn ă 2π. Then

x2
n ` x2

n´1 ` y2
n ` y2

n´1 “ r2
n ` r2

n´1,

whereas

pynxn´1 ´ xnyn´1q “ rnrn´1psin θn cos θn´1 ´ cos θn sin θn´1q “ rnrn´1 sinpθn ´ θn´1q

and
?

3pxnxn´1 ` ynyn´1q “
?

3rnrn´1pcos θn cos θn´1 ` sin θn sin θn´1q “
?

3rnrn´1 cospθn ´ θn´1q.

Due to the harmonic addition formula

a cos θ ` b sin θ “ sgnpaq
a

a2 ` b2 cos

˜

θ ´ tan´1

ˆ

b
a

˙

¸

,

the original recurrence can be transformed to

r2
n ` r2

n´1 ´ 2rnrn´1 cos
ˆ

θn ´ θn´1 ´
π

6

˙

“ 0.
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Appealing to the law of cosines, we then need θn ´ θn´1 “ π{6 pmod 2πq, otherwise there would
be a nondegenerate triangle with sides rn, rn´1, and 0. Consequently,

prn ´ rn´1q
2
“ r2

n ` r2
n´1 ´ 2rnrn´1 “ 0.

Thus rn “ rn´1. It follows that prnqně0 is a constant sequence, and so pxn, ynq is attained by itera-
tively rotating the point px0, y0q counterclockwise about the origin by π{6 radians n times. Hence,
pxnqně0 and pynqně0 are periodic sequences with period 2π{pπ{6q “ 12.

Solution 3 by Michael Brozinsky, Central Islip, NY and Andrew Bulawa, Brooklyn, NY.

If we view the given equation as quadratic in both xn and then in yn the quadratic formula gives

xn “

?
3 xn´1

2
´

yn´1

2
`

b

´x2
n´1 ´ 2

?
3 xn´1yn´1 ` 4

?
3 yn´1yn ` 4ynxn´1 ´ 4y2

n ´ 3y2
n´1

2

and

yn “

?
3 yn´1

2
`

xn´1

2
`

b

´y2
n´1 ` 4

?
3 xn´1xn ` 2

?
3 xn´1yn´1 ´ 4x2

n ´ 4xnyn´1 ´ 3x2
n´1

2

Now since both radicands are non positive because

´x2
n´1 ´ 2

?
3 xn´1yn´1 ` 4

?
3 yn´1yn ` 4ynxn´1 ´ 4y2

n ´ 3y2
n´1 “ ´

´

xn´1 `
?

3 yn´1 ´ 2yn

¯2

and

´y2
n´1 ` 4

?
3 xn´1xn ` 2

?
3 xn´1yn´1 ´ 4x2

n ´ 4xnyn´1 ´ 3x2
n´1 “ ´

´?
3 xn´1 ´ 2xn ´ yn´1

¯2

both radicands must be 0 since the sequences are of real numbers.

Hence we have the recursion formulas xn “

?
3xn´1

2
´

yn´1

2
and yn “

?
3yn´1

2
`

xn´1

2
and

in particular, x1 “

?
3x0

2
´

y0

2
and y1 “

?
3y0

2
´

x0

2
; x2 “

x0

2
´

?
3y0

2
and y2 “

y0

2
´

?
3x0

2
;

x3 “ ´y0 and y3 “ x0. Since three iterations thus end up interchanging x0 and y0 but change the
sign of y0, it follows that three more iterations will give x6 “ ´x0 and y6 “ ´y0 and 6 more will
give x12 “ x0 and y12 “ y0 so that the sequences are periodic and repeat very 12 elements.

Solution 4 by Michel Bataille, Rouen, France.

Let Un “

˜

xn `
1
2

yn´1 ´

?
3

2
xn´1

¸2

`

˜

yn ´
1
2

xn´1 ´

?
3

2
yn´1

¸2

.

Expanding and using the hypothesis gives Un “ 0. It follows that the sequences pxnq and pynq

satisfy the recursions

xn “

?
3

2
xn´1 ´

1
2

yn´1, yn “
1
2

xn´1 `

?
3

2
yn´1,
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that is,

˜

xn

yn

¸

“ A

˜

xn´1

yn´1

¸

where A “

¨

˚

˚

˝

?
3

2
´

1
2

1
2

?
3

2

˛

‹

‹

‚

.

The characteristic polynomial of A is λ2
´
?

3λ ` 1 “ pλ ´ eiπ{6
qpλ ´ e´iπ{6

q, hence A “ PDP´1

for some invertible matrix P where

D “

˜

eiπ{6 0
0 e´iπ{6

¸

.

It follows that for nonnegative integers n, k we have
˜

xn`k

yn`k

¸

“ Ak

˜

xn

yn

¸

“ PDkP´1

˜

xn

yn

¸

.

Since D12
“

˜

1 0
0 1

¸

, we deduce that xn`12 “ xn, yn`12 “ yn for all n and we conclude that pxnq

and pynq are periodic with period 12.

Solution 5 by Moti Levy, Rehovot, Israel.

Let punqně0 be a sequence of vectors un :“

«

xn

yn

ff

.

Using vector notation,
x2

n ` x2
n´1 ` y2

n ` y2
n´1 “ uT

n un ` uT
n´1un´1. (24)

ynxn´1 ´ xnyn´1 “ pAunq
T un´1 “ uT

n AT un´1, (25)

where A “

«

0 1
´1 0

ff

.

xnxn´1 ` ynyn´1 “ uT
n un´1. (26)

Then the equation in the problem statement becomes

uT
n un ` uT

n´1un´1 “ unAT un´1 `
?

3uT
n un´1

“ 2uT
n Lun´1, (27)

where L :“
1
2

AT
`

?
3

2
I “

»

—

—

–

?
3

2
´

1
2

1
2

?
3

2

fi

ffi

ffi

fl

. One can check that L is unitary matrix (that is

L´1
“ LT ).

We rewrite (27) to get
uT

n un ` uT
n´1un´1 “ uT

n Lun´1 ` uT
n Lun´1,

or
uT

n pun ´ Lun´1q “
`

uT
n L´ uT

n´1

˘

un´1. (28)
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We manipulate the left and side of (28) to get,
`

uT
n L´ uT

n´1

˘

un´1 “ uT
n´1

`

LT un ´ un´1
˘

“ uT
n´1LT L

`

LT un ´ un´1
˘

“ uT
n´1LT

`

LLT un ´ Lun´1
˘

“ pLun´1q
T
pun ´ Lun´1q . (29)

By plugging (29) into (28) we will show that un “ Lun´1, as follows

uT
n pun ´ Lun´1q “ pLun´1q

T
pun ´ Lun´1q

´

uT
n ´ pLun´1q

T
¯

pun ´ Lun´1q “ 0

pun ´ Lun´1q
T
pun ´ Lun´1q “ 0

ñ un “ Lun´1.

Now to show that the sequence is periodic, we note that

un “ Lnu0,

and find that the eigenvalues of L are te
πi
6 , e´

πi
6 u. Hence

L “ P´1

«

e
πi
6 0

0 e´
πi
6

ff

P,

and

Ln
“ P´1

«

e
nπi
6 0

0 e´
nπi
6

ff

P.

The smallest integer for which Lp
“ I is p “ 12.

We conclude that sequence is periodic and its period is 12.

Also solved by by Brian Bradie, Department of Mathematics, Christopher Newport Univer-
sity, Newport News, VA; and the proposer.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated! . . . And don’t worry about making a mistake. All is well!

Keep in mind that the examples given below are your best guide!
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Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.
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4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns
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Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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