Problems and Solutions Albert Natian, Section Editor
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This section of the SSMA Journal offers readers an opportunity to exchange interesting mathemat-
ical problems and solutions. Please send them to Prof. Albert Natian, Department of Mathematics,
Los Angeles Valley College, 5800 Fulton Avenue, Valley Glen, CA, 91401, USA. It’s highly prefer-
able that you send your contributions via email.

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at <www.ssma.org/publications>.

Solutions to the problems published in this issue should be submitted before June 15, 2022.

e 5679 Proposed by Paolo Perfetti, Dipartimento di Matematica, Universita degli studi di Tor
Vergata Roma.

Compute

n—-+00 =1 k4 + 9k2 - 11

3n 4 2
3(k* +k*+5
lim (—1)" - sin ( E arctan V3K + R )) :

¢ 5680 Proposed by Sedn M. Stewart, Physical Sciences and Engineering Division, King Abdullah
University of Science and Technology, Saudi Arabia..

Let

2 cos(2x) * tanh(x) sech(x)
I = ———dx and J= dx.
o log(tanx) 0 X

(a) Show that the ratio 1/J exists, and without explicitly evaluating either of the improper integrals,
find its value. (b) Find the value of /.

e 5681 Proposed by Brian Bradie, Department of Mathematics, Christopher Newport Univer-
sity, Newport News, VA.

Let a > 0. Evaluate

1 —1
tan” " x
[ ey,
o X* —ax—1



e 5682 Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”, Drobeta
Turnu - Severin, Romania.

Suppose 0 < a < b. Prove

b b (b
27f f f (x +y)(y + 2)(z + x)dxdydz < (b — a)*(a* + ab + b* + 3)°.

¢ 5683 Proposed by Michel Bataille, Rouen, France.

Let n be a nonnegative integer. Evaluate in closed form

n+1Y\_
Z(2k+1)5'

k=0
e 5684 Proposed by Goran Conar, VaraZdin, Croatia.

Let a, B,y be angles of an acute triangle. Prove that the arithmetic mean of sines of half-angles
is bounded between sine of harmonic mean of that half-angles and sine of arithmetic mean of that
half-angles. In other words, prove that the following inequalities hold

‘ 3 sin%+sin§+sin%
sin < 3

1 1 1
2<E+E+;’>

~

| =

When does equality occur?

Solutions
to Formerly Published Problems

¢ 5661 Proposed by Kenneth Korbin, New York, NY.

Given positive acute angles A, B, C with sin* (A + B+ C) = 1/10, find two triples of positive
integers (x,y,z), with x < y < z, such that sin” A = 1/x, sin” B = 1/y, sin’C = 1/z.

Solution 1 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

Two such triples are (50, 65,325) and (26, 170,442).
- - —1
First notice that cos’A = 1 — 1 /x = ol , and similarly, cos’ B = Y and cos’> C = Z—.

y Z




From the angle sum formulas for sine and cosine,

sin(A + B+ C) = sinA cos Bcos C + cos A sin Bcos C + cos A cos Bsin C — sin A sin Bsin C

so that

_1-wy—L\&—1+\M—J-Lx&—1+\M—l-v&—kli 1

A/ XYZ A/ XYZ A/ XYZ A/ XYZ

A= DE=-D+ /DD + /-1 -1)—1

xXyzZ

3~
)

Mm[v%~4xz—n+\ﬂx—n@—1y+¢u—1xy—n—1]:V@m

If (y—1)(z—1),(z—1)(x—1),and (x — 1)(y — 1) are all perfect squares, then we may write

(x,y,2) = (da* + 1,db* + 1,dc* + 1),

where a, b, ¢, and d are positive integers and a < b < ¢. Squaring both sides gives

10 [d(be + ca + ac) — 1]” = (da® + 1)(db* + 1)(dc* + 1).

A search using Mathematica found the following triples (a, b, ¢), all with d = 1:

(a,b,¢c) (x,5,2)
(4,14,183) | (17,197, 33490)
(4,15,98) | (17,226,9605)
(4,18,47) | (17,325,2210)
(4,23,30) | (17,530,901)

(5,9,73) | (26,82,5330)
(5,13,21) | (26,170,442)

(6,7,68) | (37,50,4625)

(6,8,31) | (37,65,962)

(7,8,18) | (50,65,325)

Of these, the only triples with x < y < z < 500 are (26, 170,442) and (50, 65, 325).

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We apply the identity

sin(A + B+ C) = sinA cos Bcos C + sin Bcos A cos C + sin C cos A cos B — sin A sin Bsin C

to yield

G i) 0D 0D 0D 09 e



orxyz = 10[4/(y — D)(z — 1)+ 4/(x = 1)(z = 1) + 4/(x — 1)(y — 1) — 1]*. This in turn inspires

us to try values for x, y, and z of the form n*> 4+ 1 with n an integer, sowe let x = a®> + 1,y = b* + 1,
and z = ¢* + 1. Then the previous equation becomes

(@® + 1)(B* + 1)(c* + 1) = 10(ab + bc + ca — 1)

This allows us to find at least nine solutions for (a,b,c), with the corresponding solutions for
(x,y,2):

(a,b,c) (x,¥,2)
(4,14,183) | (17,197,33490)
(4,15,98) | (17,226,9605)
(4,1847) | (17,325,2210)
(4,23,30) | (17,530,901)
(59.73) | (26,82,5330)
(5,13.21) | (26,170,442)
(6.7.68) | (37.50,4625)
(6.831) | (37.65.962)
(7.8.18) | (50,65,325)

Solution 3 by Albert Stadler, Herrliberg, Switzerland.

1 1 1
We deduce from sinA =——, sinB =——, sinC =—— that

NE b Vz

sin (A+B+C) =sinA cosB cosC +sinB cosC cosA +sinC cosA cosB —sinA sinB sinC =

:\/(x—l)(y—l)+ -1 (@z—-1)+ (z—l)(x—l)—l:iL. (1)

NERE V10
An exhaustive computer search reveals that the solutions of (1) with 0<x<y<z<1000 are given by
(x,y,2)e{(1,2,5), (17, 530, 901), (26,170,442), (37,65,962), (50,65,325)}. We next show that any
integer triple (X,y,z) that solves (1) is a root of a polynomial equation.
When expanding

p(s, I, V,W) = H <S+51l+6zu+63v—|—64w>
61,62,03,046{—1,1}

=(s+t+u+v+w)(s+t+u+v—w)(s+t+u—v+w)(s+t+u—v—w)
(s+t—ut+v+w)(s+t—u+v—w)(s+t—u—v+w)(s+t—u—v—w)
(s—t+ut+v+w)(s—t+u+v—w)(s—t+u—v+w)(s—t+u—v—w)
(s—t—ut+v+w)(s—t—u+v—w)(s—t—u—v+w)(s—t—u—v—w)

2

we get a polynomial with integer coefficients in s?, t2, u?, v*, w>. We put

S_¢a—n@—nt_J@—n&—nu_Jg—nu—nv__ I I
xXyz ’ xyz ’ xyz ’ Xz V10
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We find with the help of Mathematica that p (s, ¢, u, v, w) = 0 implies either
2560000 — 5120000x + 2560000x> — 5120000y + 10240000xy — 5120000x2y

+2560000y* — 5120000xy* + 2240000x%y* + 320000x>y* + 320000x%y°
—320000x*y* + 10000x*y* — 5120000z + 10240000xz — 5120000x°7
+10240000yz — 22016000xyz + 12544000x%yz — 768000x>yz — 5120000y°z
+12544000xy*z — 7936000xy*z + 512000x°y*z — 768000xy°7
+512000x°y’z + 320000xy*z — 32000x*y*z — 32000x°y*z
—4000x*y*z 4+ 2560000z — 5120000xz> + 2240000x°z* 4+ 320000x°z*
—5120000yz> 4 12544000xyz> — 7936000x*yz* + 512000x7yz*
+2240000y%z> — 7936000xy°z* + 6761600x%y*z* — 1065600x°y*z
+45600x"y*z* 4+ 320000y°z* 4 512000xy°z> — 1065600xy* 7>
+137600x°y°z* + 2400x*y’z* + 45600x%y*7* + 2400x7y*7>
+600x*y*z% + 320000x%2° — 320000x°z> — 768000xyz>
+512000x%yz> + 320000x°yz® — 32000x*yz® + 320000y%7>
+512000xy*z° — 1065600x*y*z* + 137600xy*z* + 2400x*y*7>
—320000y°z> + 320000xy°z* + 137600x%y°z* — 47360x%y*7
+480x*y’ 7} — 32000xy*7’ + 2400x7y*Z + 480x7y*7
—40x*y*Z} + 10000x*z* — 32000x°yz* — 4000x*yz* + 45600x°y?z*
+2400x°y*z* + 600x*y*z* — 32000xy°z* 4 2400x%y°7*
+480x°y3z* — 40x*y*z* 4+ 10000y*z* — 4000xy*z*
+600x%y* 7" — 4053y 2 + 2yt =0

or
10000x*y* 4+ 64000x°y*z — 32000x*y*z — 32000xy*z — 4000x*y*z

+160000x*y*z* — 160000x°y*z* + 45600x*y*z* — 160000x%y’z>
+64000x°y’ 7 + 2400x*y 2% + 45600x%y*7* + 2400x°y* 7
+600x*y*z? + 64000x°yz> — 32000x*yz* — 160000x%y*Z>
+64000x°y*7° + 2400x*y*z’ + 64000xy°z° + 64000x7y°7’
—37760x°y’2® + 480x*y’z® — 32000xy*z* + 2400x%y*7’
+480xy*z® — 40x*y*Z> + 10000x*z* — 32000x°yz* — 4000x*yz*
+45600x*y*z* + 2400x*y*7* + 600x*y?*z* — 32000xy°z*
+2400x%°Z" + 480x°y32* — 40x*y*Z* + 10000y*z* — 4000xy*2*

+600x*y*z* — 40x°y*Z* + 2ty = 0.
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Solution 4 by William Chang, University of Southern California, Los Angeles, CA.

1 3
Let s := A + B + C and suppose s € [0, /2| so that sin(s) = and cos(s) = ——. From this
pp [0, /2] (s) 715 (s) i
it follows that
1
z= 1
sin*(s — (A + B)) )
= 1 (2)
~ (sin(s)cos(A + B) — cos(s)sin(A + B))?
1
" (= cos(A + B) — —sin(A + B))? ©)
<\/_ﬁ cos(A + B) — i sin(A + B))
By the cosine addition angle formulas we have
cos(A + B) = cos(A) cos(B) — sin(A) sin(B) 4)
Vx—14/y—1-1 )
VXY
where in the second equality we took the positive square roots because A, B, C are acute. Similarly,
sin(A + B) = sin(A) cos(B) + cos(A) sin(B) (6)
Ayl Va1 -
NG
Thus, we have
10
z = (8)

C(Wr— Ty —1=3(Jx—1+4 y/y—1)—1)
Suppose that v/x — 1 and 4/y — 1 are integers, we set m = v/x— 1 andn = 4/y — 1 so our

expression for z becomes

10(m? + 1)(n* + 1)
z= )
(mn —3m —3n — 1)?
Testing pairs of m, n that make z an integer we have (m,n) = (4,8), (5,7). This gives (x,y,z) =
(17,65,442), (26,50,3250). Since for these values of x,y,z we have A, B,C < n/3, they satisfy
the assumption that s € [0, 7/2].

To verify that such x, y, z are indeed solutions, we expand sin’ (A + B+ C) as follows
sin*(A + B + C) = (sin(A + B) cos C + cos(A + B)sinC)? (10)
= ((sin A cos B + cos A sin B) cos C + (cosAcos B — sinAsin B)sinC)*  (11)
= (cos Bcos Csin A + cos A cos C sin B + cos A cos Bsin C — sin A sin Bsin C)?
(12)

:xiyz(\/y—lﬁ—u¢x—1¢z—1+¢x—1¢y—1—1)2 (13)




1
Plugging both pairs of (x, y, z) into the equation above we get sin*(A + B+ C) = 0% desired.

Also solved by David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA; and the proposer.

e 5662 Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania.

Q0
1
Calculate the integralf rnx dx.
o (x+ 1) (x2+1)

Solution 1 by Péter Fiilop, Gyomro6, Hungary.
1
Using the x = " substution:
1

B In(z)
_JU+IXﬂ+Udt

0
Let’s extend the integrand by (1 — ¢)

1 1

J Jl—tln
1—ﬂ 1—#

0 0
. _d(x) : A ket .
Applying fact In(x) = and performing the y = ¢* substitution we get:
a |a=0
d 1 1 a—3 1 1 a=2
y yE
I=— [—— dy + — d]
daja-o 4f<1—y> ’ 4f<1—y> ’

Introducing the g function:

d 1 a+1 1 a+?2
=< [—— ,0) 4 ~ ,0]
daeol ~ PP O F PO
o (1-b)
Beta function is also given by the series: B,(a,b) = E k!(k—+ak)Xk+a

k=0

After derivation:



PN

RSN 1 &1 1 1 1
= — - — _ Loy ol
1_16;;)(k+ )? 16,;)(k+ )2_16(¢' () —¥ (2)>

=

Where ¢! is the trigamma function. It is known that

WG =T W) =486

Where G is the Catalan’s constant. Now the value of the integral can be calculated.

[ xln(x)
lf CEEE 1)‘” -

2

D Q

ik

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

‘We claim that

f » xlnx J G N n?
x==+ =,
(D) (2+1) 2 32
where G is Catalan’s constant (see for instance https://en.wikipedia.org/wiki/Catalan%?27s_constant).
We perform the change of variables x—1/x and find

fo (x + f)hé; T Ll (x + ll)n(xx2 T Ll (2();2_:1) - 2(x1+ 1)) e

—§+f N SR S
2 \2(x2+1) 2(x+1) ’

1

1
taking into account that G = — J 2nj_c 1dx. Finally, using the expansions
X
X - 1O -
e (—1)*x*+! and pa Z (—1)*x*], we find by termwise integration
k=0 k=0
1 ©  pl
X 1 1 k
— Inx dx = = (—1) (x”‘“ — x]‘> Inx dx =
L(Z(x2+1) 2(x+1)) 2];)0
1 & L 1 1 3& (- 3 (&1 1
— 32 (1) - o -2 (X2 -
2;) Ak+1)° (k+1) 8; e 8 ,;kz ,;@k)z
3 i 1 3 ©
164K 16 6 32



Solution 3 by William Chang, University of Southern California, Los Angeles, CA.

o —1
We first do a u substitution u = 1/x, to get dx = —-du to get
u

foo xIn x fl Inu
x=— u
D (x+ D2+ 1) o (u+1)u?+1)
1 Ly 1 1
We now use the partial fraction decomposition — 2 2 _ 2 ourintegral
(w+1D)w>+1) w®+1 u+1
becomes
© xlnx 1 (" Inu 1 (" ulnu 1 (" Inu
dx = —= = du — = d
Jl (x+1)(x2+1)x 2L1+u2 u+2Ll+u2u ZLI—i—uu
1 1
1 1 |
Using u substitution u = x*, we get du = 2xdx so thatf oy dx = —J nu du
o 1+ x? 2o 1+u

1 3 (" Inx
=373 f e
1 3
=50~ zj—ﬁ
1 b
2716
where C = — Ll 1111;2 dx is catalan’s constant and [JOI llrjrxxdx = —g.

Solution 4 by Ajay Srinivasan, University of Southern California, Los Angeles, CA.

2

* 1 C
Cram: J ke dx = — — 2 where C is Catalan’s constant.
o (x+D(*2+1) 2 32

4
—1
al T so letting / be the given integral:

Proor: Notice that the denominator is just

/- JOO xInx J
= X
D (x+D(x2+1)

“x(x—1)Inx
—fl ey

Using the substitution x = ¢, with dx = €' dt:
*te(ef — 1)
— dt
0 e’ — 1

J«oo t(eit o eth) "

0 1 — ef4t

1

9



- 1s just the sum of an infinite geometric progression with ratio e ¥ forallte

Note that T

10, o[, so l—e —Z —ant,

[ (ge)a
f (i e ™) —4"’) dt

S
J (Z —(4n+1)t —(4n+2) )) dt
0 =0

Since both the integral of the sum, and the sum of the integral converge; as a consequence of Fu-
bini’s theorem, we may interchange the summation and the integral operators.

E(([ ) ([ )

0
Using the substitutions u = (4n + 1)t and v = (4n + 2)1:

1= 2 (e o)~ (s [
-5 (- w)

We can use I'(2) = 1 and

Also

(@)}

= 1 & )" 1 Cc
IrrrarREdY -3+ %6
4n 224 2n +1 (2n +1)2 2 1

where C is Catalan’s constant.
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Solution 5 by Sean M. Stewart, Physical Sciences and Engineering Division, King Abdul-
lah University of Science and Technology, Saudi Arabia.

Denote the value of the integral to be found by /. We show that

o (1)
Here G = E ——~— denotes Catalan’s constant.
= (2n+1)?

Enforcing a substitution of x — — gives
X

1
1
o f ogl¥)
o (x+1)(x?+1)
From the partial fraction decomposition of

1 1 1 X

= + — ,
(x+D(x*+1) 2(x+1) 2(x2+1) 2(x2+1)
the integral may be rewritten as

' xl ' '
1J xlog(x) , _1f og(x) lf og(x)
0 0 0

[ = —
2 ) 21 Y2 2+ 1

x+1 2

In the first of the integrals appearing to the right of the equality, if a substitution of x — +/x is

enforced we see that
3 (! log(x) 1 (! log(x) 3 |
I =—— dx — = dx = —=1, — =1,.
Lx+1x2Lx2+1x gl 2"

For the first of the integrals, /;, expanding the denominator in terms of an infinite geometric
series, we have

I = | ).(=1)x"log(x) dx. (14)
(U
As L 1
J Z ‘(—l)"x"log(x)‘dx = f log(x) < w,
0 n=0 0 I—x

by Fubini’s theorem the summation and integration signs appearing in (14) can be interchanged.
Doing so, followed by integrating by parts, we have

0 n

I = Z:(—l)”f0 X" log(x) dx = Z 511_—1#)’:;2 _ Z (_ni) ’

=1

after a reindexing of n — n — 1 in the sum is made. The value of the series is well known. Here

S = | 141 1 n? 2
I = — S N P N A L
! <2n2 22712 22112 2 6 12

n=1 n=

11



For the second of the integrals, I,, expanding the denominator in terms of an infinite geometric
series, we have

1 o
L= Y(=1)x"log(x)dx. (15)
0 »=0
As o 1
f 3 )( 1)1 1og(x))dx _ f log(xz < o0,
0 »=0 0 I—x

by Fubini’s theorem the summation and integration signs appearing in (15) can be interchanged.
Doing so, followed by integrating by parts, we have

o0 1 n

1222(—1)nf 2”10g ZW:_G

n=0 0

So for the value of the integral /, we have

as announced.

Solution 6 by Michel Bataille, Rouen, France.

G 2
Let I denote the integral to be calculated. We show that I = 0} + ;T—z where G is the Catalan
number.
: I . : Inu 1
The change of variables x = — gives [ = — du so that | = —(J — K — L) where
u o (w+1)(u?>+1) 2

J, K, L are the integrals

1 1 1
1 1 |
szu—nudu, K:J nu du, sz nu du.
o ur+1 o ut1 o ur+1
We calculate J, K, L in turn. Let € € (0, 1).
(a) Using an integration by parts, we easily obtain

Jl ulnu (—In€)(In(1 + €)) lf In(1 +v)
€ 1+ u? “= 2 4 &2 %

dv.

As e — 0", we have (In€)In(1 + €%) ~ €’ Ine, hence taking the limit as e — 0T, we obtain

"ulnu 1 ('In(1 +v) n?
sdu=——| ——dv=——
o 1 +u 4 Jo v 48
the last equality because




0

dv = Z — < 0, so we can interchange sum and integral.)
n
n=1

(_1)n71vn71
n

(b) In a similar way, we have

Jl Inu du = (In€)(In(e + 1)) — fl Mdu,

u+1 u
2
b8
h K=——.
ence B
(c) Lastly,
1 1
| t
L 1 ib;z du = (In€)(arctan €) — L arc;mu du,
hence

I Jarctanu JZ (=Dm® i G G
R A 2+l 2n+1)2

n=0

1 o G
W ludelI==-| ——+—4+G| ==+ —.
e conclude 2( + + ) 2+32

Solution 7 by Moti Levy, Rehovot, Israel.

Begin with substitution x = —

. @ xIn (x) - ! In (u)
I'_ﬁ (x+1)(x2+1)dx_ L(l u (1+u2)d”'

1 1
Partial fractions expansion of = =
P A+u)(1+u) 21+u

1 ("In(u) 1 (" uln (u) 1 (" In(u)
I=—= du + - du — - d
2J0 1+ u ”+2L Tt 2L I+
By substitution # = w?, the second integral becomes,

1 " uln(u) 1 (" In(w)
= du=—- | ——=dw
2, Ty 8, T+w

3 (1 1 (1
I:——J Mdu——f n(u)du
8Jo 1 +u 2 Jo 14+u?

Using the integral representations of the { function and the Catalan’s constant G,

Jl D = 22 02),

Thus,

1+u 2
1

In
f (u)d _ ¢
o 1+ u?

13



Solution 8 by Narendra Bhandari, Bajura district, Nepal.

7.[2 o (_1)k—1
The answer is £} + — where G is Catalan’s constant,

o 2, m In the original integral,

. 1 :
we substitute x = — resulting

« xIn(x) - ! In(y) _ 1 ln 1 -y
fl<1+x><1+x2>dx‘ L<1+y><1+y2>"y zL””(uﬁuﬁ)"y

1 (1 1 (' 1 'yl
_ 1 n(y)dy__f n(y) __f yIn®)
2o I+y 2 Jo 1+y? 2Jo 1+)H?
_7T2+G+7T2_G+7T2
2 2 6 2 3

Since

+y - A k1?12
) G [ g (1
dy = (—U"f Y¥In(y)dy = — =G
J, 15 20| PN o
1 ® 1 © k 2
yIn(y) kf 2k+1 (=1) T
dy =) (=1)"| y""In(y)dy = - T
Jo 1152 ,;) ) . ) ,;)(2“2)2 48
1 m!
In the above solution we used the elementary integral result, J X" In"(x)dx = <_1>m(+—w
n m

for all n,m > —1 and dominating convergence theorem allows us to interchange the limit of sum
and integral.

Also solved by Ankush Kumar Parcha (Student) Indira Gandhi National Open University,
New Delhi, India; Brian Bradie, Department of Mathematics, Christopher Newport Univer-
sity, Newport News, VA; Bruno Salgueiro Fanego, Viveiro, Lugo, Spain; Vasile Mircea Popa,
Lucian Blaga University, Sibiu, Romania; and the proposer.

e 5663 Proposed by Angel Plaza, Universidad de las Palmas de Gran Canaria, Spain.
0 0 n

0
Let n € N and suppose |r| < 1. Evaluate the sum Z . Z Z Z i p(Zeris),
=0 =0i1=0 \ j=1

14



Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

For |r| < 1, we obtain

nr
S,(r)= . 1
(r) G (1)
First proof
We have
UL WESEE ,
r = , ir=r—>» r' =
;) L—r i=0 drz:o (1_’”)2
Then
e L r
Sl(r)=Zzlr1= >
i1=0 —7)
and
0 0 0 0 n—1 _
Sn(r)zz Z ZZ ij+ i, r<zf':1 ’> rn =
=0 \ in_1=0  r=0i=0 \ j=1
= 1 = 1 r
=S, (r rr 4 — i = S r)+ ——.
O+ T B TS, O e
So (1) follows by induction.
Second proof

S,,(r)=2k Z 1 rk=2k< ne 1 )rk
k=0 i1>0,i,>0,...,0i,>0 k=0
Wi+ +i, =

15



-tk ( - ) A =ny ( o ) (V=

k=0

which is (1). Here we have used three facts:
(1) The integer solutions of i} + i, + --- + i, = kwithi; > 0,1, > 0,...,i, = 0 map bijectively to
the permutations of k ones and n-1 separators. Therefore

3 | :<k+n—1).
n—1
i1=>20,ib=0,...,i, =0
i]+i2+"'+in=k

no (155) o (2) (1) (1) (1) (1)
(k+n>
n =

n

(k +n)! (k+n)(k~|—n—1)---(n+1):n<—n—1>(_1)k.

=n =n

k!n! k!

Solution 3 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Working from the innermost sum outward,
0 n

Z Zij r(z’;:li,) _ r(Z'}-:zij) i iri‘+2i1”il
i1=0 1=

=0 \Jj=1 j=2

() (22l +——,
l—r (1—r)?

3

16
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ey
Il
o
S
Il
<}
Il
=}
~
Il
-
ooy
Il
o

") - " i Z?:.’: ij 2r
) .Zr(Z/ ) ((1 — r)3>

oy [ el & " 2 &
= A(Zi) i r 4+ Zi3r’3+ r

|
~
—~
]
<3
Il
~
=~
~
N
=1
LT e
~
~
\_3 &N
—~
p—
| (O8]
N
~
~—
~
SN—

and so on, until

o0 ee} a0 n ., ) o0 . ln (n o 1)7"
NS5 (S - S (e )
=0  0=0i1=0 \ j=1 in—0 (I=r) (1—r)
_ nr
(1=
Solution 4 by Michel Bataille, Rouen, France.
Let S, be the sum to be evaluated. We show that §,, = #
—r n

The proof is by induction. First, we have

X = d 1 r
S — il R L _ ’
1 ilzzlollr rilzzllllr rdr <1—r) (1—}/’)2

hence the formula holds forn = 1.

(n—1)r
—. We calculate S, as follows:

(1—r)

Second, assume that for some integer n > 2, we have §,_; =

17



) o0 ®
S, = Z Z pattin Z(ll +ip+ - +in>ril

i,=0 =0 i1=0

00] a0 09] a0
= Z e Z it Z i 4 (4 e+ iy) Z ri

=0 =0 i1=0 i1=0

r = - 1
B TP MG i
=0 =0
_ r S in S in Sni
(1 —r)2 Zr Zr +1—r
i,=0 ir=0

o ( 1 )"_1+Sn1 B r (n—1r nr

s I+ (- a-nl-rp (A_rpt

This completes the induction step and the proof.

Solution 5 by Moti Levy, Rehovot, Israel.

n

Zif
s 33 (3

ir=0i1=0 \ j=1

k—1
The number of ways to put k£ unlabeled balls in 7 distinct bins is <n * ) , hence

k
En+k—1
S=Z( ) >krf<.

k=1

0
+k—1 ) ) )
Let F (z) := Z (n )kzk. By changing the order of summation and integration,

k=1 k
k— = k—1\ [?
(n + >ktk_1dt - 2 (n + ) f ki dr
k=1 k=1 k 0
k

[
]i<n+k—1)zk= (1_1Z),,,

d 1 nz

F (2) :Zd_Z(I*Z)" = (l—z)"H.
S=F()=—2
(> (l_r_)n-i-l



Solution 6 by Sean M. Stewart, Physical Sciences and Engineering Division, King Abdul-
lah University of Science and Technology, Saudi Arabia.

S,.(r). We have

Salr) = 25+ 2,

=

in=0

l1 +ip 4+ in) pirtiztth

f';
(=]
MS

i1=0

{llr . r12+13+“'+1n + (l2 + i3 NS ln) PR rlz+l3+-~.+1n} )

||M8

Noting that, for |r| < 1, we have

09]

n 1 - n
Zr =1 and ’;)nr = (1jr)2.

n=0

Using these two results the inner most i;-sum can be found. Thus

o0 o}
r i izt i 1. . C N D) 2ineti
Sn(r)=Z---Z{(1_r>2-r2+~+ +"+l_r(lz+l3+-~+zn)r)2+3+ +n}

i,=0 =0
r = &
= Z rin . Z rlz
(1 o r)z in=0 i2=0
(n—l}rsums
1 @ A s s o
+ 1 Z s Z {igrlz CpBhet (13 4+ ln) 2 rt3+---+zn}
-r in=0 ir=0
r 1 n—1 1 0 0 ;
= + . rh-i- +i,
(1 —r)? <l—r> l_ri,,Z=o l_;o(l_r)z
+ 1 i .. i 1 (l3 + 4 )rl'g+ +i,
l-ri= l-r
r r & %
= rln . rl3
(L—r)*t (1 —7r) i;) l_;)
%/—/
(n—2) sums
1 0 a0
+(1—r)22”'2(i3+ T gy) Pt
ln:O i3:0
B r r 1 \"?
= (1 I")"+1 (1_,,)3 1—r
oe) 0
(1=r) Z Z {iar™ - P iy e ) D
=0 i3=0
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Continuing the process (n — 2) more times, we find

0
r

r 1
T R RS e R s

- In

Su(r) =

L,r"
)

(n—1) terms

(n—1)r 1 o
- (1 _ r)n—H - (1 _ r)n—l (1 _ r)2
- m

the desired value for the sum.

Solution 7 by Ajay Srinivasan, University of Southern California, Los Angeles, CA.

0 0
Cramm: Z;)- = Z:OZ:() Z; i (i) = # foralln e Nand |r| < 1.
= n=v1n= J=

" forall |r| < 1. The
n+1

(1—=r)

forall n € Nand |r| < 1. Let P(n) be the proposition that S (n, r) =
base step is atn = 1.

0

0¢]
Base Step (N=1): Since S (1,r) = Ziri =r 5 when [r| < 1, P(1) holds.
i=1 i

il = _r
4 (1—r)

kr

InpuctioN STEP (K — k + 1): As the induction hypothesis, we assume that S (k,r) = —(l Jor
—r

when |r| < 1. Now working with S (k + 1, r):

Sk+1,r) = .i i i i Zk:ij r(Z,g:y) i ik+1r(§lj:1ij>

ix+1=0ix=0 ir=0i;=0 j=1
B i kr - pie+ Ip P
= (1— )kl T (1 =)k
B (k+ 1)r
- (1 — r)k+2

20



So for all natural k, P(k + 1) holds if P(k) is true. The induction step is done.
Since P(1) holds, and P(k) implies P(k + 1) for all natural k; by the principle of mathematical

induction, P(n) is true for all n € N. We are done. |

Solution 8 by William Chang, University of Southern California, Los Angeles, CA.

nr

Letting S, denote the given sum, we prove by induction that S, = W We can com-
—r
- - r r
pute the base case S| = Z i;r"" by noticing S| — rS; = Z r = . Thus, §; = ,
= = 1—r (1—r)?
completing our base case. For the induction step, we relate S, and §,,_; as follows.
0 0 n
DR SIS ol B yTA I
=0 i1=0 \ j=1
0 0 0 n—1 .
- Z o Z Z i, + Z ij pin T 2521
in_1=0  i1=0 | i,=0 j=1
o0 ['e) l n—1 i
= Z A Z Z 1 ’"+21 1o Z Z ij r’”+zj:1 Lj
ip—1=0 i1=0 | i,=0 i,= j=1
0 0 0 n—1 . 0
= 2 . Z ij Z l,,r’” + lj ijzl Lj 2 pin
i—1=0 i1=0 i,=0 ]=1 in=0
0 0 . r n—1 1 1
— Z Z rZ_H Lj > + i rZ, 1l
in1=0  i1=0 (I=r) j=1 L=r
0 0 L 0 0 n—1 .
— DI B Iy
DI LR e o] bt ek
in_1=0 i1=0 in_1=0 i1=0 \ j=1
0 n—1 1
r i
= r + —3S,.-
(1—1’)2<_Z > 1—r !
i=0
_ r + Snfl
(IL—=ry*t 1 —r
r Sn—l

It is now trivial to verify that our formula for §, satisfies the recursion S, = = + 1 ,
—r —r
which completes our inductive step as desired.

Also solved by the proposer.
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e 5664 Proposed by Daniel Sitaru, National Economic College, “Theodor Costescu" Drobeta
Turnu-Severin, Mehedinti, Romania.

12 -
Prove that Vx,y € (O, 7r/2) : logsinx<%) + logcosx<%> > 2.
sin x + cos x sin x + cos x

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We have

2sinx cos 2sinx _cos.
sin2x sin2x log <Sinxx+cos/§c ) lOg <sinxx+cos))cc )
logsinx + lOgcosx =

sinx + cosx sinx + cosx logsinx logcosx

2cosx 2sinx
lOg <sinx +cosx ) log <sinx +cosx >
+ .

=2+ -
logsinx logcosx

We need to prove that
2cosx 2sinx
lOg (sinx +cosx ) lOg (sinx +cosx )
logsinx logcosx

which is equivalent to

Dcosx 2sinx
I 1 _«cosx logsi 1 — ] =0
(logeosx ) log (sinx + cosx ) + (logsinx ) log <sinx +cosx )

and to

sinx + cosx
2

(logcosx )* + (logsinx )* > log (sinx cosx ) log (
Clearly, by the AM-GM inequality,

. 2
sinx -+ cosx )

sinx cosx < < >

So it is sufficient to prove that

2
(logcosx )* + (logsinx )° _ <10g (sinx + cosx ) )
2 ~ 2

However this inequality is true by Jensen’s inequality, since the function x—(log x)* is convex in
the interval (0, e].

22



Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Let x € (0,7/2), and rewrite

1 sin 2x i sin 2x
0L - ) —_
Esinx sin x + cos x Ecosx sin x + cos x
sin 2x 1 1
= In{ - — +
Sin x -+ CoS x Insinx Incosx

= In 2 ! + !
- L 4+ L J \Insinx Incosx/’

sin x COS X

Because In sin x and In cos x are both negative, the desired inequality is equivalent to

1 2 - 2
n Loy =1 + :
sin x cos x In sin x Incos x

Now, In x is an harmonically convex function, so

2 1
In (ﬁ) < 5 (1nsinx+ lnCOSX) .

sin x COS X

Next, by the arithmetic mean - harmonic mean inequality applied to the positive numbers — In sin x
and — In cos x,

—lnsinxflncosx> 2
2 - 1 1 >
In sin x Incos x

SO )

In sin x + Incos x 2

<
2 1 + 1
In sin x Incos x

Thus,

1 2 _ 2

N o) s — 1

sin x coS X In sin x Incos x

as desired.

Solution 3 by Florica Anastase, ''Alexandru Odobescu'' High School, Lehliu-Gara, Calarasi,
Romania.

sin 2x 2 sin xcos x 2 HM—-GM ;
= = < Wsinxcosx

sinx +cosx sinx+cosx L 1

sin x Cos x

t — logg, . t;t — log. . t-decreasing, because sin x,cos x € (0,1), Vx € (0,7/2)

1 sin 2x 1 sin 2x -
og.; - (6] - =
Esin x sin x + cos x Ecosx sin x + cos x

23



logg, . Vsinxcosx + log, ., Vsinxcosx =
1

5 (10ggy (sin x cos x) + log,,, (sinxcos x)) =

. AM—GM
(2 + logg, , cos x + log, , sin x) >

| =

1
3 (2 +logg, cos x - log. . sin x) =2

Solution 4 by Michel Bataille, Rouen, France.

1
Let f (1) = e The function f is twice differentiable on (1, c0) with

f(t)=—t"ne)™%,  f'(t) =t *(Int) (2 + Int).

Since f”(t) > 0, the function f is convex on the interval (1, c0). It follows that for a, b > 1 we have

1 1 2
— t— =,
Ina  Inb ~ In((a+b)/2)
that is,
a+b 1 1
1 —+—] =2
(n( 2 )) (lna - lnb)
b 1 1
(since ar > 1). Takinga = —— and b = , we obtain
sin x COS X
Iy SO x.+ COS X _ 1 B 1 _—
sin 2x In(sinx)  In(cos x)
or

sin 2x 1 1
In{ —— . + =2,
sinx + cos x In(sinx)  In(cos x)

which is the required result.

Solution 5 by Moti Levy, Rehovot, Israel.

2 1 In (b
)g n(a) +In(b) a,b> 0.

1 b
+3 2

Q=

Lemma 1: In (

24



Proof of lemma 1:

) concavity

2
%ln(a)Jr%ln(b)<1n(a+b)—ln(2)
ln(a)—i—ln(b)<%ln(a)+%ln(b)+ln(a+b)—ln(2)
ln(a)+ln(b)—ln(a+b)+ln(2)<%ln(a)+%ln(b)
2ab In(a) + In (b) 2 In (a) + In (b)
ln(a+b) 2 (E)ln<5 %)g 2
Lemma 2: In (@) + In (5) < 2 , 0<ab<l.
2 1 + 1

Proof of lemma 2:
In (a) + 1In (D) _ 2

Since In(a) < 0 and In(a) < 0, the inequality > D ——

follows from

AM/HM inequality,

By lemma 1 and Lemma 2,

or

>1, O<ab<l. (16)

logn, < _ (ii)n fcxgs <x>> +10g o5 (sin (ii)“ffgs (x))

In (—1 2 ) In (—1 2 )
sin(x) + cos(x) sin(x) + cos(x) 2 1 1
_ : 4 = 1ln : ; - +
In (sin (x)) In (cos (x) w0 T = In (sin (x))  In(cos (x))
In ( 4i+ )
sin(x) ' cos(x)
=2 5 .

1 1
ln(sin(x)) + ln(cos(.\'))
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Since x € <O, g) 0 < sin (x),cos (x) < 1, then by (16)

In| —2—
sin(x) + cos(x)

P >2
JED U T
]n(sin(x)) + ln(cns(x))

and the inequality is proved.

Solution 6 by Toyesh Prakash Sharma (Student), Agra College, India.

in 2
As s1n—x looks as a constant let it be a and suppose some function f () = then,
sSin x + COS x log,t
" loga(logt+ 2 . . . .
f ()= g 2(1 £ 3 ) > (0 so now applying Jensen’s inequality for convex function we have
2log’t

FOESO) | (e L L 2
2 2 log,x ~ log,y = 1, <m>
&\ 2

Suppose x and y to be sin x and cos x then,
1 1 2
>

10 sin X 10 COS X - i
+
ga ga loga <smxzcosx>

Using basic property of logarithms

1 sin 2x 1 sin 2x >l 2 sin x cos x
0g. . P (0] N - —— = (0] sin x4cos x -
Esinx sin x + cos x Ecosx sin x + cos x g(it ) \sinx + cos x

1 sin 2x i sin 2x _
0g.; ErTEEE— (o) _— | = 4.
Esinx sin x + cos x Ecosx sinx + cos x

Solution 7 by William Chang, University of Southern California, Los Angeles, CA.
Letting u = sinx, v = cos x, with u, v € (0, 1), then

sin 2x sin 2x 2uy 2uy
logsinx -~ + logCOSx . = 1Ogu . + logu
SIn x + CoS x Sin x + COS x u-+v u-+v

) ln< 2uv ) In(uv)

u—+v 'lnu-lnv
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2uy

By AM-GM, we have u +v > 2 +/uv, we have that In (

In(uv)
Inu-Inv

in2 in2 1
log,. . (sm_X) tlog,.. . (Sm_x> > n( v/ap) )

sin x + cos x sin x + cos x Inu-Inv

- > < In(v/uv). We now multiply both
u+v

sides of this inequality by < 0 to obtain

(Inu + Inv)?

Inu-Inv
(| Inu| + | Inv|)?
|Inu|-|1Inv|

=2

1
2
1
2
where in the last line we applied AM-GM to | Inu| and |Inv|.

Also solved by the proposer.

® 5665 Proposed by Toyesh Prakash Sharma (Student) St. C.F Andrews School, Agra, India.

Prove that if a, b > 0, then
2 2
12 172 1 1 \V9a + v/9b
J J alin (=) | wn|m( —2) | dxay < Y2 V2
o Jo I+ xy I+ xy 64

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We prove more precisely that

b | ’ 1 ’ 1
J J alln X +b|In * dxdy < —+Va+b.
o Jo I+ xy I+ xy 22

1 3
(Notethatﬁ\/aeré a <\/5+ \/l;> )

By the inequality of Cauchy-Schwarz,
11 . 2 . 2
2 2
JJ aln( —|—x> +b ln( +y> dxdy <
o Jo I + xy 1+ xy
(2 g 1+ ’ 1+ ’ 1
X
< f J dxdy J J alin +5|n Y dxdy | = ~Cva+b,
o Jo o Jo 1+ xy 1+ xy 2
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where

1

D=

- ff [1“<11f;y)]d’“dy JJ [ln(lljxyy)rmy

1
C evaluates numerically to 0.0909060678120890295051151598171 < - 0.09.

Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

With 0 < x,y < 1/2,

1+x/1 and I+y 1
1+ xy 1+ xy
SO | |
m(—2)>0 m(—2L)=>o0
I+ xy I+ xy
and
1 : 1 : 1+
+x +y
| bl < 1 1
a[n<1+xy)] " [n<1+xy)] \/an<1 )+[n( xy)
Moreover,

1
ln< +x) = In(1 + x) —In(1 + xy)
e i x2n _ x2ny2n B x2n+l _ x2n+1y2n+1
Y ~ 2n 2n + 1 ’

For each integer n > 1,

x2n . x2ny2n o (x2n+1 _ x2n+1y2n+l)

= xz”(l—y) <1+y+y2+---+)72"_1

—x(1+y+y2+---+y2”)).
With 0 < x,y < 1/2,

L+y+y* 4+ +y" =1 and x(1+y+y* + - +y") <2(1/2) =1,
50 X2 — X2y (2L 2mlntly S () Thys,

x2 2ny2n 2n+1 _ x2n+1y2n+1 x2n _ x2ny2n _ (x2n+l _ x2n+1y2n+l)

> =0,
2n 2n+ 1

2n+1
(1+x>
In < X — Xy.
I + xy

28
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Similarly,

1+y
| <y— xy.
n<1+xy> Yo

12,12 12 £1)2 3
f f @—WMHW=J J (y —xy)dxdy = —.
0 0 0 0 64

oo <1iz)]lb[ln(;:;y)rm
Lt of [

Next,

Finally,

I

< ff )dxdy
< VEL 0 @—mﬂdw@+v@£ Lm@—xwmdy
= éﬂvﬁ+v@%=X§%%ﬁ&.

Solution 3 by Michel Bataille, Rouen, France.

1+ 1 —
For x,y € [0, 1/2], we have A (1= y) > 0, hence
I+ xy I+ xy

PR )

T l4xy 1+xy

Recalling that 0 < In(1 + u) < u for u > 0, we deduce that
0<in (12 ) <))
I+ xy 1+ xy

2 2
1 1

It follows that the integrand f(x,y) = ,|a |In X +b|In b satisfies
I+ xy I+ xy

\/ax2 1 —y)2+ by*(1 — x)?
1 +xy

flx,y < afax?(1 —y)? + by*(1 — x)2.

But for u,v > 0 we have \/u + v < /u + /v, therefore f(x,y) < vax(1 —y) + vVby(l — x) and

1/2p1/2 1/201/2 1/201/2
f f(x,y)dxdy < \/EJ J x(1 —y)dxdy + \/l;f J x(1 —y) dxdy.
0 Jo o Jo 0 Jo
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Now, we calculate

1/2p1/2 1/2p1/2 12 [ r1)2
f f (1 — x)dxdy = J f x(1 —y)dxdy = J <f (x — xy) dy) dx
0 Jo o Jo 0 0
_f/z Xy 1/2d —JI/Z X de— >
1Y 2 =), 2 8 YT 4

0

and finally

v9a + \/9b

1/201/2 3 Y
<= b) =
L  f(ny)dsdy < Z(va+ Vb =

Solution 4 by Moti Levy, Rehovot, Israel.

Using the inequality va + b < +/a + Vb, fora,b >0,
ff ( a1n<11:;y)>2+(x@ln(fij))zdxdy
[ ﬁ(ln(;;;y)) o (2
(\f+\f f J ln( X

Using the inequality, In (1 + x) < x, for x>0,

1 [ 1 -
ffm( +x)dxdy=fzjzln(l+x y)dxdy
I+ xy
JJ dxd JJ (1 —y)dxd 3
Y < YT

) dxdy

> dxdy

Also solved by the proposer.

® 5666 Proposed by Ovidiu Furdui and Alina Sintdmdrian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

LetH, = Z 1/k, which is known as the nth harmonic number. Calculate
k=1

>,

Hn n+1 1
“n+l ({( ];W)

30



Editor’s note: Here ¢ denotes the Euler-Riemann zeta function, defined as ¢ (s) = » —.

Solution 1 by Moti Levy, Rehovot, Israel.

oSt (o $A) -5 5
ot k) Hntl K2
1
—J *n (x) dx
0
1

1 1
ﬁ = EJ;) xk_llnz(x)dx.

Plugging (18) into (17) and changing the order of summation and integration, we get

The integral representation of 1/k” is

and for 1/k3,

0 H Q0 1
S:—Z g Z *n (x) dx
T 1 k=n+2+0
[ © S
H
= 2 “—xIn (x) Z X 2dx
L iU 1 k=n+2
B f i H,x"*'In (x)d
R —n+ll-x
o0
annJrl
To find Z , we define
n
n=1
ann-i-l
F =
(%) n+1

then

ZH " In(1-x)

1—x

F(x)z—fo %dr:%lnzu—@.

Now we substitute (21) in (20) and get the required sum as a logarithmic integral:

1 ("1n® (1 — x)In(x)
== d
S 2L 1—x x
Jl lnz(l—x)ln(x)dx:fl lnz(x)ln(l—x)dx:_Jl lnz(x)ix_”dx
0 1 —x 0 X 0 X —n
001 1 00 71_4
= — "n? (x)dx = — Y —==-2/(4) = ——.
nZl” (x) dx Z:]l {(4) 15
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(17)

(18)

(19)

(20)

2y

(22)



We conclude that

Solution 2 by Sean M. Stewart, Physical Sciences and Engineering Division, King Abdul-
lah University of Science and Technology, Saudi Arabia.

4
Denote the value of the sum by S. We show that S = T

90’
= H
-3 (o).

1 . .
Here H,(lz) = Z 2 denotes the nth generalised harmonic number of order two. Let
k=1

Write the sum as

Hn 2)
a, = and bn = é 2)— H .
n 1 ( ) n+1

To find the sum, summation by parts will be used. In view of this, we shall have a need for the

following sum

An _Zak k+1

To find this sum, summation by parts will be used. Let

= — d b,=H,
A
Now
i il nJrl1 n+l1
Av=Ya =Y —=N =N 1=H,, 1
k=1 k=1 k+1 k=2 k k=1 k
And

1 1
byoy—br=Hy..—H.=|H +— | —H, = ——,
k+1 k k+1 k (k+ ) k r+1

where the recurrence relation for the harmonic numbers has been used. Applying summation by
parts, namely

Z arby = Apybyy — Z Ay (byr — by),
=1 =1

to the sum, we have
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n

H “H.,—1
: =(H,1+1—1)Hn+1—2L

k:1k+1 = k+1

"H+ 2 -1

= (Hps1 — 1) H, =

(Hrot = ) o = Y, =28
n n n 1

= (H,,, — 1) H, -

(Huir = 1) Hog = Zk+1 Zk+ Zlkﬂ
n n+1 n+1

= (H,., —1)H,

= (Hyp1 — 1)Hyyy — H,(,+)1 + Hypy

k+1

n

H, 1/ 5 2)
— - (w -H )
:];k‘i‘l 2( n+1 n+1

Returning to our sum, we have

2 (2)
<Hn+1 - Hn+ 1>
and

b — by = £2) — HY, — (22) — 15),) = 1Y), — B,

n+2 n+1 n+1

g _ (g, 1 _
n+1 n+1 (n + 2)2 (l’l + 2)2’

where the recurrence relation for the nth generalised harmonic numbers of order two has been used.
Applying summation by parts, namely

0

o0
D nby = M Aubyir = DA, (b — by,

n=1 n=1

as lim A,b,; = 0 (see the Appendix for a proof of this), we have
n—o0

1 n+1 n+1 1 < rzz
_ N T 23
S 22 (n+2)? 2’; (n+1)2"° 23)

after a reindexing of n — n — 1 has been made. Now, it is known that [?, p. 355], [?, Eq. (2.11), p.
62]

& log?(1 —
Z( H(2> p_ log(1-x) x| < 1.
1 —x

n=1
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Replacing x with ¢ in this identity before integrating both sides with respect to ¢ from 0O to x, we
have

2 x
Z —H ) o f log*(1 — x) .
= n+1 0 1_X
or
i HY 0 1log’(1 — x)
- X'=——
n+1 3 X

=1
Integrating both sides of this equation with respect to x from 0 to 1 we obtain

i H? — H,SZ) 1 Jl log’(1 — x) J 24)
L - | —=——dx
(f’l+ 1)2 3 0

n=1 X

For the integral on the right that has appeared, substituting x = 1 — e " we have

1103 1 — e'e) 3 —u [e9) 0
Jde=—f uei duz—ZJ we™ DU gy,
0 X o 1—e™ = Jo

Here the interchange made between the summation and the integration is permissible due to Tonelli’s
theorem since all terms involved are positive. Reindexing the sum by n — n — 1 gives

1 1 3 1 — 0 0
J Tl (1=x) dx = — Z f we ™ du.
0 X 1 J0

Enforcing a substitution of u — — produces
n

Ll bg%% 2 % f we ' du = —{(4)0(4)

= — | = ——,

9() ' 15

ng—H,S”_ 1 =\ =
“o(n+1)2 0 3\ 15) 45

and from (23) we have for our desired sum

So (24) becomes

as claimed.

Appendix

In this appendix we show

lim A,b,.1 = hm (H,%H — H,(li)1> <§(2) - Hf;?z) = 0.

n—o0
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The asymptotic expansions for H, and H,(lz) are [?, Eq. (5.11.2), p. 140; Eq. (5.15.8), p. 144]
H, =log(n) +vy+ ! +0 1

n = ogin A~ e 5

£ 14 2n n?

and

H,52>=g<2)—1+i+0<1>,

n 2n? n3

respectively. Here y is the Euler—Mascheroni constant. Squaring the result for H,, gives

1 1 2
H, = log’(n) + 2ylog(n) +v* + -Oi(—n) +X4i0 ( K (”)> :

n n?
Asymptotically for large n we have

(1o = 20) - (6 = 1) ~ (1 1) () = 07)
_ log?(n) + 2ylog(n) — £(2) + ¥*

thus

lim A,b,,, = lim
n—aoo n—aoo n

as desired.

Solution 3 by Péter Fiilop, Gyomro, Hungary.

0

1
Recalling £(2) = Z 2 and separate the n + 1 term we get the following:

k=1

Y- Y E )

n=1 k=1 k=1

The sum is equal to:

The following equivalences will be used for the determination of §'; and S;:

35



0 o0 o0
1 1 ) 2 )
- = Je”dx, - = Jxe”dx in S, then = = fxze”dx inS,.
Z Z

0 0 0

Applying them:

a0 0 X
S, = Z nJe (n+1) yd ZJX (k+n)xdx
n=1 0

0 k=1

o0]
o0
S, = 2 JH,,xze_(”H)xdx
n=1 0

1. Integral form of S

The order of summations and integrations can be exchanged then the sums can be evaluated:

o0 O © © o0
JJZ Hne—y(n+l) Z xe—(k+n)xdydx _ J
00 0

n=1 k=1

iHne (x4y)(n) Z —kx dydx

=1 k=1
——

In(1 — e ) e*

] —e Gty 1 —e

0%8
S

{

) dydx

< x+y 1 —e (x+y))
[ =
0

—X

Performing the following substitutions: e~ * = tand e = u we get:

In(¢) In(1 — ut)
= dudt
(1—1) 1—ut

Using the ut = z substitution:

() [In(l—2) 1 [ In() (1 — )
e e

0 0

0
| S —
1

—Elnz(l—t)

After partial fraction decomposition:

1fmmmm—0 IJM”W“_”m

S, = ——
! 2 1 —¢ 2
0 0
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and exchange r — (1 — 1) we get:

1 1

1 (In(1—1)In*(z) 1 (In*(t)In(1 —1)

Sl__iff‘”_EJTdt
0 0

2. Integral form of S,

S, can be calculated similar way as was used in section 1.

oo 100
522—2 3=—§2f X H,e % x

Swap the order of the sumation and integration we get:

o0
JZ_)‘ ZHe_’”‘ dx
0

n=1

S —
—1In(1 —e™)

1] —e>*

l\JI'—‘

Sy =—

Performing the following substitution: e * = t:

3. Determination of S

Based on the results of the section 1-2, S can be calculated:

1
1 (In(1—7)In’(¢
S :51+52:__det
2 t
0

d(x* -
Applying the facts: () = In(x) and In(1 — x) x)k !
a |a=0 k=0
1
1 & O (=1 (—0)*
_ f Z (=D(=1) ) dt
2da b = k+1 la=b=0

0

Performing the integration, then the derivations according to a and b:

1 & & |
" 2da, b<2kk+a+b >|a . 0:;

k=1
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.~ H, &l
The result is ,,Z_:l p— (((2) — ]; ﬁ) = /(4)

Solution 4 by Albert Stadler, Herrliberg, Switzerland.

We claim that

0 n+1 4
H, 1 n
S = E 2) — — | =014) =—.
n:1n+1 <( ) k—1k2> ) 90
It is well known that

1 —
H, = al dx
0 — X

and

iil 1 i 1 i lxk | 1 xn-H

2)— > == = =— J “logx dx = —f logx dx.

k=1 k2 k=n+2 k2 k=n+2 70 o I—x

Hence

o0 n 1 n+1
1 1 —u Vins
S =— d 1 dv =
Zn—i—l,[)l—u ufol_vogvv

1l
1 1 1

sz logv <log(1—v) ——log(l—uv))dudv.
oJo l—ul—v u

We first integrate with respect to u and find

Llliu (log(l_v) _ilog(l_w))duzf( 1 +£> (udog (1 —v) —log (1 —uv) ) du =

1—u

u

_ Lli <_1og(1 —w) —log (#__V”)V) ) du = Liy (v)+Li) (—1 ZV) - —M,

according a classical dilogarithm identity (e.g., https://en.wikipedia.org/wiki/Spence%?27s_function).
Therefore

:JO l(y]og(l—v) —log (1 —uv) + (1 —u)log (1 —v) —log(l—(l—M)V))du:

1o
S = —EL 1—_‘}(10gV)<10g(1—V) )de.
We perform the variable change v—1-v and then integrate by parts. We obtain

5 =3 | 3 loe(=v)) tog Yav = 5 |

1%

(logv )dv.

1

0
Finally, we use the expansion T = Z vk and integrate termwise to get
k=0

1, 3 S| s
S=—EZJ v(logv)dv:2<k+1)4=(4):%.

k=00 k=0
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Solution 5 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

With

g}l 1 i 1 i fl - 1 xn-H
_ — - — = — X lnxdxz—f In xdx,
k=1 k2 k=n+2 k2 I—X

k=n+2 0 0

H (A Y& H, L) Inx
_ et ) X g
1<§< ;118) L(Zlnﬂx —x

it follows that

00]
n=1 n

The generating function for the harmonic numbers is

- In(1 — x)
P

n

upon integration, this yields

o0
H 1
n_oon+l _ 7142 o
E 1 —21n(1 X).

n=1

H, ey 1 ("% (1 —x)Inx 1 (" 1n?xIn(1 — x)
- | ———dx=—< | ——ax
1 (“ ZW) 2L —x 2L X o

Thus,

0
n:1n+ k=1

With integration by parts, this becomes

>

H,
St (s

i M+

1 1
k-) = —gln3xln(1 — X)

Finally,

0
H,

n+11 100 1 o 0 1
1(42)_2@) Z—EZJ x"In xdxzzm:§(4)_

k=1

Solution 6 by Michel Bataille, Rouen, France.

Let S denote the sum to be evaluated. We show that § = %
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1
The following known result will be needed: if r, s are nonnegative integers, then J X' (Inx)* =

(=1)'s! 0

(r+ 1)s+1
We have

(this is readily proved by induction on s with the help of an integration by parts).

x|
s
i
i

Il

0 o
—ZJ X" (In x) dx
=170

! S Uyt in x
| ildx = — d
Jo( nx) Zx x J T &

= 0

(we can interchange sum and integral since x"*/(In x) has a constant sign on (0, 1]).

We deduce that
X" nx "nx & H x'H!
dx = — dx.
ZJ o e e L(l—x; nrl |

=1

0
xﬁ+1
But, for |x| < 1, it is readily checked that (1 — x) Z H,x" = —In(1 — x) so that Z =

n+1
(In(1 — x))?
2

1 ' (Inx)(In(1 — x))? 1 (' (In(1 — x))(Inx)? 1 (' (Inx)? [&x"
S:—afo - dx:—zfo P dx:afo P '(Zz)‘“

I &1 2(-1)2 &G 4
:‘Z [ 33 0y L 8

n=1 n=1
. This leads to

Solution 7 by Narendra Bhandari, Bajura district, Nepal.

4
The answer is £(4) = T We note that

90
0 1 n+1 0 1
e+ e (25)
k=1 k=1 k=n+2

Using the result from (1),the original sum can be written as

}fﬁ n+1 1 0 }iﬁ 0 1 0 }iﬁ 0 1
Zn+1<§<2)_2ﬁ>:;n+1;ﬁzzn 14 (k+n+1)2




Since

I log?(1 — Mog? (1 — Mog?(1 — x)1
f og(x)log’(1 —x) | e f ogf(l-x) f og’(1 — x) log(x)
0 0 0

X =
1—x X I=x
Uog(x) log*(1 — 1 (" log’ S
f og(x) log( x)dx:_J 0g <X>dx:_22_:_zg<4)
0 1—x 3 0 l—x m:1m4

The dominating convergence theorem allows us to interchange the limit of the sums and integral
wherever needed and we utilize the following results in the above solution.

oe]

H, log*(1 — x) ! m!
_"anrl _ S5\ d f nl m d _ _1 m____ "t
,;1”“ 7 and | y"log"(y)dy = (=1)

forxe[—1,1)and n,m > —1.

Also solved by the proposer.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated! . . . And don’t worry about making a mistake. All is well!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).
#ProblemNumber_FirstName LastName_Solution_ SSMJ

e FirstName stands for YOUR first name.
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e [astName stands for YOUR last name.

Examples:
#1234 _Max_Planck_Solution_SSMJ

#9876 Charles_Darwin_Solution_ SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:
“Proposed Solution to ##*** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write
“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Gottingen, Lower Saxony, Ger-
many.
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Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute Z (Z)xky"_k.

k=0

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:
Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:
“Problem proposed to SSMJ”
2. On the second line, write
“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.
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3. On a new line state the title of the problem, if any.
4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ
Problem proposed by Isaac Newton, Trinity College, Cambridge, England.
Principia Mathematica (<— You may choose to not include a title.)

Statement of the problem:

Compute Z (Z) Ky,

k=0

+ » « Thank You! & « «
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