
Problems and Solutions Albert Natian, Section Editor

***************************************************************

This section of the SSMA Journal offers readers an opportunity to exchange interesting mathemat-
ical problems and solutions. Please send them to Prof. Albert Natian, Department of Mathematics,
Los Angeles Valley College, 5800 Fulton Avenue, Valley Glen, CA, 91401, USA. It’s highly prefer-
able that you send your contributions via email.

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before July 15, 2022.

‚ 5685 Proposed by D.M. Bătineţu-Giurgiu, Bucharest, Romania and Neculai Stanciu, Buzău,
Romania.

Prove: If x P
`

0, π{2
˘

, then for any triangle 4ABC with side lengths a, b, c and area F, the
following inequality holds:

a2
` b2

` c2
ě 4

?
3F sin p2xq `

ÿ

cyc

pa sin x´ b cos xq2 .

‚ 5686 Proposed by Albert Stadler, Herrliberg, Switzerland.

Let n be a natural number. Prove that the following three statements are equivalent:

1. The n-th central trinomial coefficient is divisible by 3.

2. The n-th central binomial coefficient is divisible by 3.

3. The base 3 representation of n has at least one digit “2”.

Note: the n-th central trinomial coefficient is the coefficient of xn in the expansion of
´

1` x` x2
¯n

,

while the n-th central binomial coefficient is the coefficient of xn in the expansion of p1` xq2n and

equals
ˆ

2n
n

˙

.
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‚ 5687 Proposed by Daniel Sitaru, National Economic College “Theodor Costescu” Drobeta
Turnu - Severin, Romania.

Find complex numbers u, v such that:
$

’

’

&

’

’

%

|u|2

3
`
|v|2

4
“
|u` v|2

7

8u` v “ 7` 7i

,

/

/

.

/

/

-

.

‚ 5688 Proposed by Kenneth Korbin, New York, NY.

Three convex hexagons with integer side lengths are all inscribed in the same circle. The hexagons
have perimeters p, p` 1 and p` 2. Find the lengths of the sides of each hexagon.

‚ 5689 Proposed by Rafael Jakimczuk, Universidad National de Lujá, Buenos Aires, Argentina.

Let pFnqně1 denote the Fibonacci sequence defined by the recursion Fn “ Fn´1 ` Fn´2 with
F1 “ F2 “ 1. Find lim

nÑ8
Pn where the sequence pPnqně1 is defined by

Pn :“
n
ź

k“1

ˆ

1`
1

nFk

˙Fk`1

.

‚ 5690 Proposed by Toyesh Prakash Sharma (Student) St. C.F. Andrews School, Agra, India.

Find the value of
ż 1{

?
2

0
sin´1

ˆ

cos
´

sin´1x
¯

˙

dx´
ż π{2

π{4
sin

´

cos´1 psinxq
¯

dx.

Solutions
to Formerly Published Problems

‚ 5667 Proposed by Albert Stadler, Herrilberg, Switzerland.

Prove with at most 10 function evaluations that

4 ¨ 10´89
ă

89
ź

k“1

tan2

ˆ

kπ
360

˙

ă 5 ¨ 10´89.
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Solution by the proposer.

We will prove that

n
ź

k“1

tan
ˆ

kπ
4n

˙

“ 2e´
4G
π n
?

2ne
π

24n`θ
ζp3q

32πn2 p1q

where G is Catalan’s constant and θ is a real number satisfying |θ|ď1. We square (1) and set n “ 90.
We get

89
ź

k“1

tan2

ˆ

kπ
360

˙

“

90
ź

k“1

tan2

ˆ

kπ
360

˙

“ 720e´
720G
π ` π

1080`θ
ζp3q

129600π .

This approximation shows that
89
ź

k“1

tan2

ˆ

kπ
360

˙

lies in the interval

”

4.895808916773337ˆ 10´89, 4.89583782529551ˆ 10´89
ı

.

Let’s turn to the proof of (1). Let ně2 be an integer. Then

n´1
ź

k“1

˜

2sin
ˆ

x`
kπ
n

˙

¸

“

n´1
ź

k“1

ˆ

p´iq
´

eix` πik
n ´ e´ix´ πik

n

¯

˙

“

“ p´iqn´1eipn´1qx`
řn´1

k“1
πik
n

n´1
ź

k“1

´

1´ e´2ix´ 2πik
n

¯

“

“ p´iqn´1e
πipn´1q

2
1´ e´2inx

1´ e´2ix “
sin pnxq

sinx
.

In particular, letting x tend to 0,
n´1
ź

k“1

sin
ˆ

kπ
n

˙

“
n

2n´1 .

Clearly, sinpxq “ sinpπ´ xq. So

n´1
ź

k“1

sin
ˆ

kπ
n

˙

“

r n´1
2 s
ź

k“1

sin2
ˆ

kπ
n

˙

“
n

2n´1

which implies
r n´1

2 s
ź

k“1

sin
ˆ

kπ
n

˙

“

c

n
2n´1 .
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Hence, using the identity 2 sinpxq cospxq “ sinp2xq,

n
ź

k“1

tan
ˆ

kπ
4n

˙

“

n
ź

k“1

sin
ˆ

kπ
4n

˙

cos
ˆ

kπ
4n

˙ n
ź

k“1

1

cos2
´

kπ
4n

¯

“
1
2n

n
ź

k“1

sin
ˆ

kπ
2n

˙ n
ź

k“1

1

cos2
´

kπ
4n

¯

“
1
2n

c

2n
22n´1

n
ź

k“1

1

cos2
´

kπ
4n

¯

“
2
?

n
4n

n
ź

k“1

1

cos2
´

kπ
4n

¯ .

Clearly,
n
ź

k“1

1

cos2
´

kπ
4n

¯ “ exp

˜

´2
n
ÿ

k“1

logcos
ˆ

kπ
4n

˙

¸

.

We estimate
n
ÿ

k“1

log

˜

cos
ˆ

kπ
4n

˙

¸

by means of the Euler-Maclaurin summation formula. Put

f pxq “ logcos
ˆ

πx
4n

˙

and note that f(0)=0. Then (e.g., see https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula)

n
ÿ

j“0

f p jq “
ż n

0
f pxq dx`

1
2

f pnq `
1

12

`

f 1 pnq ´ f 1 p0q
˘

` R3,

where

|R3| ď
ζ p3q
4π3

ż n

0

ˇ

ˇ

ˇ
f p3q pxq

ˇ

ˇ

ˇ
dx

and ζ p3q “
8
ÿ

n“1

1
n3 is Riemann’s zeta function evaluated at 3.

We have

f 1 pxq “ ´
π

4n
tan

ˆ

πx
4n

˙

, f 2 pxq “ ´
π2

16n2 ¨
1

cos2
´

πx
4n

¯ , f3 pxq “ ´
π3

32n3 ¨
1

cos2
´

πx
4n

¯ ¨ tan
ˆ

πx
4n

˙

.

Let G be Catalan’s constant. It is known (e.g., see https://en.wikipedia.org/wiki/Catalan%27s_constant)
that

G “ ´

ż π
4

0
log ptanyqdy “ ´

ż π
4

0
log psinyqdy`

ż π
4

0
log pcosyqdy “
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“ ´

ż π
2

0
log psinyqdy

looooooooomooooooooon

“ π
2 log2

`

ż π
2

π
4

log psinyqdy`
ż π

4

0
log pcosyqdy “

π

2
log2 ` 2

ż π
4

0
log pcosyqdy.

Hence
ż n

0
log

˜

cos
ˆ

πx
4n

˙

¸

dx
y“ πx

4n
hkkikkj

“
4n
π

ż π
4

0
log

`

cos pyq
˘

dy “
2Gn
π
´ nlog2 .

We conclude that there is a constant θ, |θ|ď1, such that

n
ÿ

j“0

log

˜

cos
ˆ

π j
4n

˙

¸

“
2Gn
π
´ nlog2 `

1
2

log

˜

cos
ˆ

πn
4n

˙

¸

`
1

12

˜

´
π

4n
tan

ˆ

πn
4n

˙

¸

` θR3 “

“
2Gn
π
´ nlog2 ´

1
4

log2 ´
π

48n
` θ

ζ p3q
4π3

¨

˚

˝

π2

16n2

1

cos2
´

πn
4n

¯ ´
π2

16n2

˛

‹

‚
“

“
2Gn
π
´

ˆ

n`
1
4

˙

log2 ´
π

48n
` θ

ζ p3q
64πn2 .

Hence

n
ź

k“1

1

cos2
´

kπ
4n

¯ “ exp

¨

˝´2
n
ÿ

k“1

log

˜

cos
ˆ

kπ
4n

˙

¸

˛

‚

“ exp

¨

˝´2

˜

2Gn
π
´

ˆ

n`
1
4

˙

log2 ´
π

48n
` θ

ζ p3q
64πn2

¸

˛

‚

and
n
ź

k“1

tan
ˆ

kπ
4n

˙

“
2
?

n
4n

n
ź

k“1

1

cos2
´

kπ
4n

¯ “ 2e´
4G
π n
?

2ne
π

24n`θ
ζp3q

32πn2

which is (1).

‚ 5668 Proposed by Ovidiu-Gabriel Dinu, Technological High School, Petrache Poenaru, Bǎlceşti,
Vâlcea , România.

Prove that for x and t in r0, 1s and for any integer k ě 2:∣∣∣∣∣∣∣e´x2k
´

ż 1

0
e´t2k

dt

∣∣∣∣∣∣∣ ď 2k

˜

2k

c

2k ´ 1
2k

¸2k´1

e´
2k´1

2k .
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Solution 1 by Michel Bataille, Rouen, France.

Let x P r0, 1s and for t P r0, 1s, let f ptq “ e´t2k
. First, we have

ˇ

ˇ

ˇ

ˇ

ˇ

e´x2k
´

ż 1

0
e´t2k

dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

0
p f pxq ´ f ptqq dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0

ˇ

ˇ f pxq ´ f ptq
ˇ

ˇ dt (1)

and, second, from the Mean Value Theorem, f pxq ´ f ptq “ px´ tq f 1pθq for some θ between x and
t so that

ˇ

ˇ f pxq ´ f ptq
ˇ

ˇ ď |x´ t|| f 1pθq| ď | f 1pθq|. (2)

A simple calculation gives | f 1pθq| “ 2kgpθq where g is the function defined by gptq “ t2k´1e´t2k
.

We readily obtain
g1ptq “ t2k´2e´t2k

p2k ´ 1´ 2kt2k
q

and deduce that for t P r0, 1s,

0 ď gptq ď g

˜

2k

c

2k ´ 1
2k

¸

“

˜

2k

c

2k ´ 1
2k

¸2k´1

e´
2k´1

2k .

Thus

| f 1pθq| ď 2k

˜

2k

c

2k ´ 1
2k

¸2k´1

e´
2k´1

2k (3)

and combining p1q, p2q and p3q, the required inequality immediately follows.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

We note that for any (real) kě1

1 ě
ż 1

0
e´t2k

dt “
8
ÿ

j“0

p´1q j

j!

ż 1

0
t2 jkdt “

8
ÿ

j“0

p´1q j

j! p2 jk ` 1q
ě 1´

1
2k ` 1

ě
1
e
.

Clearly, if kě1, xP[0,1], aP[1/e,1] then
ˇ

ˇ

ˇ
e´x2k

´ a
ˇ

ˇ

ˇ
ď max

ˆ

1´ a, a´
1
e

˙

ď 1´
1
e
« 0.6321205588285577,

since e´x2k
assumes only values in the interval [1/e,1]. It is therefore sufficient to prove that

2k

˜

2k

c

2k ´ 1
2k

¸2k´1

e´
2k´1

2k ě
?

2e´
1
2 « 0.8577638849607069 p1q

for kě1. Indeed, if

f pxq :“ 2x

˜

2x

c

2x´ 1
2x

¸2x´1

e´
2x´1

2x “ exp

¨

˝ln p2xq `
ˆ

1´
1
2x

˙

˜

ln
ˆ

1´
1
2x

˙

´ 1

¸

˛

‚
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then

f p1q “
?

2e´
1
2 and

f 1 pxq
f pxq

“
1
x
`

1
2x2 ln

ˆ

1´
1
2x

˙

ě 0

for xě1. This proves (1).

Note that the last inequality is equivalent to -y ln(1-y)ď1 for 0ďyď½ which is true, since

´yln p1´ yq “
8
ÿ

k“1

yk`1

k
ď

8
ÿ

k“1

ˆ

1
2

˙k`1

“
1
2
.

Also solved by the proposer.

‚ 5669 Proposed by Raluca Maria Caraion, Călăraşi, Romania and Florică Anastase, Lehliu-
Gară, Romania.

Suppose a is a real number. Find:

Ω “ lim
pÑ8

1
pa ¨

p
ÿ

m“1

m
ÿ

n“1

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 .

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA.

With
n
ÿ

k“1

k2

2k2 ´ 2kn` n2 “

n
ÿ

k“0

k2

k2 ` pn´ kq2
“

n
ÿ

k“0

pn´ kq2

k2 ` pn´ kq2
,

it follows that
n
ÿ

k“1

k2

2k2 ´ 2kn` n2 “
1
2

n
ÿ

k“0

k2 ` pn´ kq2

k2 ` pn´ kq2
“

n` 1
2

.

Then
m
ÿ

n“1

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “
1
2

m
ÿ

n“1

pn` 1q “
1
2

ˆ

mpm` 1q
2

` m
˙

“
mpm` 3q

4
,

and
p
ÿ

m“1

m
ÿ

n“1

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “
1
4

p
ÿ

m“1

pm2
` 3mq

“
1
4

ˆ

ppp` 1qp2p` 1q
6

`
3ppp` 1q

2

˙

“
ppp` 1qpp` 5q

12
.
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Finally,

Ω “ lim
pÑ8

1
pa ¨

p
ÿ

m“1

m
ÿ

n“1

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “

$

’

&

’

%

0 if a ą 3
1{12 if a “ 3
8 if a ă 3

,

/

.

/

-

.

Solution 2 by Moti Levy, Rehovot, Israel.

k2

2k2 ´ 2nk ` n2 “
1
2

˜

1`
2kn´ n2

2k2 ´ 2kn` n2

¸

Let

ak :“
2kn´ n2

2k2 ´ 2kn` n2 .

One can check that
an´k “ ´ak,

hence
n´1
ÿ

k“1

ak “ 0.

n
ÿ

k“1

ak “ an `

n´1
ÿ

k“1

ak “ 1`
n´1
ÿ

k“1

ak “ 1.

If follows that
n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “
1
2

n
ÿ

k“1

p1` akq “
n` 1

2
.

p
ÿ

m“1

m
ÿ

n“1

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “

p
ÿ

m“1

m
ÿ

n“1

n` 1
2

“
1
4

p
ÿ

m“1

m pm` 3q

“
1

12
p pp` 1q pp` 5q .

Ω “
1

12
lim
pÑ8

p pp` 1q pp` 5q
pa “

$

’

&

’

%

0 if a ą 3
1{12 if a “ 3
8 if a ă 3

,

/

.

/

-

.

Solution 3 by Péter Fülöp, Gyömrő, Hungary.

1. Let’s start with the inside sum: S n “

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2

We can realize that S n “ 1`
n´1
ÿ

k“1

k2

pn´ kq2 ` k2
looooooooomooooooooon

S n´1
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and that
1
ÿ

k“n´1

pn´ kq2

pn´ kq2 ` k2 sum equals to S n´1

So 2S n´1 “

1
ÿ

k“n´1

pn´ kq2

pn´ kq2 ` k2 `

n´1
ÿ

k“1

k2

pn´ kq2 ` k2 “

n´1
ÿ

k“1

1 “ n´ 1

S n can be calculated: S n “ 1`
n´ 1

2
“

n` 1
2

2. Sum of the first n integer numbers equals to
npn` 1q

2
. Using this fact we get the followings:

Ω “ lim
pÑ8

1
pa .

p
ÿ

m“1

m
ÿ

n“1

n` 1
2

looomooon

mpm` 3q
4

3. At the calculation of the last sum, we can use the expression of the sum of the first n integers

again. The sum of the squares of the first m integer equals to
1
6

ppp` 1qp2p` 1q is also applying.

Ω “ lim
pÑ8

ppp` 1qpp` 5q
12pa

Ω “ lim
pÑ8

1
12

´

p3´a
` 6p2´a

` 5p
1´a

¯

Taking the limits we have the result for Ω:

Ω “

$

’

&

’

%

0 if a ą 3
1{12 if a “ 3
8 if a ă 3

,

/

.

/

-

.

Solution 4 by Michel Bataille, Rouen, France.

Let S n “

n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 . We observe that
k2

2k2 ´ 2nk ` n2 “
k2

k2 ` pn´ kq2
and, by change

of index, that

S n “

n
ÿ

k“0

k2

k2 ` pn´ kq2
“

n
ÿ

k“0

pn´ kq2

pn´ kq2 ` k2 .

It follows that

2S n “

n
ÿ

k“0

k2 ` pn´ kq2

pn´ kq2 ` k2 “ n` 1,

9



that is, S n “
n` 1

2
.

As a result, we obtain

m
ÿ

n“1

S n “
1
2

m
ÿ

n“1

pn` 1q “
1
2

˜

´1`
m`1
ÿ

n“1

n

¸

“
1
2

ˆ

´1`
pm` 1qpm` 2q

2

˙

“
m2 ` 3m

4

and then
p
ÿ

m“1

m
ÿ

n“1

S n “
1
4

˜

p
ÿ

m“1

m2
` 3

p
ÿ

m“1

m

¸

“
ppp` 1qp2p` 1q

24
`

3ppp` 1q
8

“
ppp` 1qpp` 5q

12
.

Thus,
1
pa

p
ÿ

m“1

m
ÿ

n“1

S n “
ppp` 1qpp` 5q

12pa „
1

12pa´3 as p Ñ 8.

We conclude that the required limit is8 if a ă 3,
1
12

if a “ 3 and 0 if a ą 3.

Solution 5 by Albert Stadler, Herrliberg, Switzerland.

We note that
n
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “ 1`
n´1
ÿ

k“1

k2

2k2 ´ 2nk ` n2 “

“ 1`
1
2

n´1
ÿ

k“1

˜

k2

2k2 ´ 2nk ` n2 `
pn´ kq2

2pn´ kq2 ´ 2n pn´ kq ` n2

¸

“ 1`
1
2

n´1
ÿ

k“1

1 “
n` 1

2
.

Then
m
ÿ

n“1

n` 1
2

“
1
4

m pm` 1q `
m
2
“

m2 ` 3m
4

,

p
ÿ

m“1

m2 ` 3m
4

“
1

24
p pp` 1q p2p` 1q `

3
8

p pp` 1q “
p pp` 1q pp` 5q

12
,

and finally

Ω “

$

’

&

’

%

0 if a ą 3
1{12 if a “ 3
8 if a ă 3

,

/

.

/

-

.

Also solved by the proposer.

‚ 5670 Proposed by Kenneth Korbin, New York, NY.

Find a positive real number x such that

4
?
π` x “ 1` 4

?
π´ x .
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Solution 1 by Hossaena Tedla, ADA University, Baku, Azerbaijan.

4
?
π` x “ 1` 4

?
π´ x

Let u “ 4
?
π` x then x “ u4

´ π

u “ 1` 4
b

π´ pu4 ´ πq

pu´ 1q4 “ 2π´ u4

u4
´ 4u3

` 6u2
´ 4u` 1 “ 2π´ u4

2u4
´ 4u3

` 6u2
´ 4u´ 2 π` 1 “ 0

Let y “ u´
1
2

2
ˆ

y`
1
2

˙4

´ 4
ˆ

y`
1
2

˙3

` 6
ˆ

y`
1
2

˙2

´ 4
ˆ

y`
1
2

˙

´ 2 π` 1 “ 0

By simplifying the above equation, we will get

2y4
`3y2

´ 2 π`
1
8
“ 0

Let y2
“ v

2v2
` 3v´ 2 π`

1
8
“ 0

Divide both sides by 2 we will get,

1
2

ˆ

´2 π`
1
8

˙

`
3v
2
` v2

“ 0

Adding
1
2

ˆ

´2 π`
1
8

˙

to both sides we will get

v2
`

3v
2
“

1
2

ˆ

2 π´
1
8

˙

Adding
9

16
to both sides,

v2
`

3
2

v`
9

16
“

1
2

ˆ

2 π´
1
8

˙

+
9

16

pv`
3
4
q

2

“
1
2

ˆ

2 π´
1
8

˙

+
9

16

v`
3
4
“

d

1
2

ˆ

2 π´
1
8

˙

`
9
16

or v`
3
4
“ ´

d

1
2

ˆ

2 π´
1
8

˙

`
9

16
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v “ ´
3
4
`

d

1
2

ˆ

2 π´
1
8

˙

`
9

16
or v “ ´

3
4
´

d

1
2

ˆ

2 π´
1
8

˙

`
9

16
From above we substitute y2 = v

y “

g

f

f

e

´
3
4
`

d

1
2

ˆ

2 π´
1
8

˙

`
9

16
or y “

g

f

f

e

´
3
4
´

d

1
2

ˆ

2 π´
1
8

˙

`
9

16

From above we substitute y = u -
1
2

therefore u = y +
1
2

u “
1
2
`

g

f

f

e

´
3
4
`

d

1
2

ˆ

2 π´
1
8

˙

`
9
16

or u “
1
2
`

g

f

f

e

´
3
4
´

d

1
2

ˆ

2 π´
1
8

˙

`
9

16

Here the expression
1
2

ˆ

2 π´
1
8

˙

`
9

16
“ π`

1
2

,

u “
1
2
`

d

´
3
4
`

c

π`
1
2

or u “
1
2
`

d

´
3
4
´

c

π`
1
2

From above we substitute x “ u4
´ π therefore

x “

¨

˚

˝

1
2
`

d

´
3
4
`

c

π`
1
2

˛

‹

‚

4

´ π, x=3.0313

Or

x “

¨

˚

˝

1
2
`

d

´
3
4
´

c

π`
1
2

˛

‹

‚

4

´ π the value of x is complex number. We are asked to find

only positive real number.

The answer is x=3.0313.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We show that the unique positive real solution is

x “
1
16

ˆ

1`
b

?
16π` 8´ 3

˙4

´ π « 3.03133.

For ´π ď x ď π, we define f pxq “ 4
?
π` x ´ 1 ´ 4

?
π´ x. Since f 1pxq “ p1{4qpπ ` xq´3{4

`

p1{4qpπ´ xq´3{4
ą 0 for´π ă x ă π, f pxq is increasing on r´π, πs. Using f p0q ă 0 and f pπq ą 0,

we conclude that f pxq has a unique real zero in p0, πq.

Next, let w “ x ` π, so that the original equation becomes 4
?

w “ 1 ` 4
?

2π´ w. Then 2π ´ w “
w´ 4w3{4

` 6w1{2
´ 4w1{4

` 1. Substituting v “ w1{4 yields 2v4
´ 4v3

` 6v2
´ 4v` 1´ 2π “ 0, or

pv2
´v`1q2 “ π`1{2. Since v2

´v`1 ą 0 for all real numbers v, we obtain v2
´v`1 “

b

π` 1{2.
Thus

12



v “
1
2

ˆ

1˘
b

?
16π` 8´ 3

˙

,

which implies

x “ v4
´ π “

1
16

ˆ

1˘
b

?
16π` 8´ 3

˙4

´ π « ˘3.03133.

The positive choice for x gives f pxq “ 0 as required, while the negative choice (an extraneous
solution) produces f pxq “ ´2 instead.

Solution 3 by Brian Bradie, Christopher Newport University, Newport News, VA.

Let y “ 4
?
π` x, so that x “ y4

´ π and π´ x “ 2π´ y4. The equation

4
?
π` x “ 1` 4

?
π´ x

then becomes

py´ 1q4 “ 2π´ y4, or y4
´ 2y3

` 3y2
´ 2y`

ˆ

1
2
´ π

˙

“ 0.

Now,

y4
´ 2y3

` 3y2
´ 2y`

ˆ

1
2
´ π

˙

“

˜

y2
´ y` 1´

c

π`
1
2

¸˜

y2
´ y` 1`

c

π`
1
2

¸

.

The roots of the quadratic

y2
´ y` 1`

c

π`
1
2

are complex with real part 1{2 and imaginary not equal to either ˘1{2, so y4 would be complex.
On the other hand, the roots of the quadratic

y2
´ y` 1´

c

π`
1
2

are

y1 “
1
2
´

1
2

b

?
16π` 8´ 3 and y2 “

1
2
`

1
2

b

?
16π` 8´ 3.

Because 7 ă
?

16π` 8 ă 8, it follows that

1´
?

5
2

ă y1 ă ´
1
2
, and y4

1 ă
7´ 3

?
5

2
ă π,

so y4
1 ´ π ă 0. However,

y2 ą
3
2
, so y4

2 ą
81
16
ą π.
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Thus,

x “ y4
2 ´ π “

˜

1`
a?

16π` 8´ 3
2

¸4

´ π

is a positive solution of the equation
4
?
π` x “ 1` 4

?
π´ x.

Solution 4 by David A. Huckaby, Angelo State University, San Angelo, TX.

We have
4
?
π` x´ 4

?
π´ x “ 1

?
π` x´ 2

4
a

π2 ´ x2 `
?
π´ x “ 1

?
π` x`

?
π´ x “ 1` 2

4
a

π2 ´ x2

π` x` 2
a

π2 ´ x2 ` π´ x “ 1` 4
4
a

π2 ´ x2 ` 4
a

π2 ´ x2

2π´ 1´ 2
a

π2 ´ x2 “ 4
4
a

π2 ´ x2

4π2
´ 4π` 1´ 4p2π´ 1q

a

π2 ´ x2 ` 4pπ2
´ x2

q “ 16
a

π2 ´ x2

8π2
´ 4π` 1´ 4x2

“ p8π` 12q
a

π2 ´ x2

16x4
´ 64π2x2

` 32πx2
´ 8x2

` 64π4
´ 64π3

` 32π2
´ 8π` 1

“ p64π2
` 192π` 144qpπ2

´ x2
q

16x4
´ 64π2x2

` 32πx2
´ 8x2

` 64π4
´ 64π3

` 32π2
´ 8π` 1

“ 64π4
` 192π3

` 144π2
´ 64π2x2

´ 192πx2
´ 144x2

16x4
` p224π` 136qx2

` p´256π3
´ 112π2

´ 8π` 1q “ 0.

This is a quadratic equation in x2 whose possible solutions are

x2
“

1
32

„

´p224π` 136q ˘
b

p224π` 136q2 ´ 4p16qp´256π3 ´ 112π2 ´ 8π` 1q


“
1

32

„

´p224π` 136q ˘
b

64p28π` 17q2 ´ 64p´256π3 ´ 112π2 ´ 8π` 1q


“
1

32

”

´p224π` 136q ˘ 8
a

784π2 ` 952π` 289` 256π3 ` 112π2 ` 8π´ 1
ı

“
1

32

”

´p224π` 136q ˘ 8
a

256π3 ` 896π2 ` 960π` 288
ı

“
1

32

„

´p224π` 136q ˘ 8
b

32p8π3 ` 28π2 ` 30π` 9q


“
1

32

„

´p224π` 136q ˘ 32
b

2p2π` 1qp2π` 3q2


“´ 7π´
17
4
˘ p2π` 3q

b

2p2π` 1q.
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Since x is real, we reject the solution with the minus sign. Since´7π´
17
4
`p2π`3q

b

2p2π` 1q «

9.19 ą 0, the positive real solution to the original equation is x “

c

´7π´
17
4
` p2π` 3q

b

2p2π` 1q.

Solution 5 by David E. Manes, Oneonta, NY.

If 4
?
π` x “ 1` 4

?
π´ x and 0 ă x ă π, then

x “ π´

ˆ

1
16

˙ˆ
b

?
8` 16π´ 3´ 1

˙4

« 3.031 332 625 09.

Let y “ 4
?
π´ x. Then y4

“ π´ x so that x “ π´ y4. Writing the given equation in terms of y, one
obtains 4

a

2π´ y4 “ y` 1. Eliminating the fractional power, we get

2π´ y4
“

´

4
a

2π´ y4
¯4
“ py` 1q4 “ y4

` 4y3
` 6y2

` 4y` 1

or 2y4
` 4y3

` 6y2
` 4y ` p1 ´ 2πq “ 0. Dividing each term by 2 yields the monic polynomial

equation

Ppyq “ y4
` 2y3

` 3y2
` 2y`

ˆ

1´ 2π
2

˙

“ 0.

One now writes the polynomial equation Ppyq “ 0 as the difference of two quadratic squares; that
is,

Ppyq “ y4
` 2y3

` 3y2
` 2y`

ˆ

1´ 2π
2

˙

“ py2
` hy` kq2 ´ puy` vq2 “ 0,

for some real numbers h, k, u, v. To find the values of h, k, u and v, we expand the two squares
and equate like coefficients of powers with Ppyq. In doing so, we get the following simultaneous
conditions,

2 “ 2h, 3 “ h2
` 2k ´ u2, 2 “ 2hk ´ 2uv,

1´ 2π
2

“ k2
´ v2.

From the identity 4u2v2
“ p2uvq2 “ 0, one finds that that k has to satisfy the cubic equation

2k3
´ 3k2

` p1 ` 2πqk ´ 2π “ 0, an equation that has the immediate and the only real solution,

k “ 1. Then h “ k “ 1, u “ 0, and v “ ˘
b

p1` 2πq{2. WLOG, we use the positive radical for v.
Then

Ppyq “
´

y2
` y` 1

¯2
´

˜

c

1` 2π
2

¸2

“ 0.

Therefore, either py2
` y` 1`p

b

p1` 2πq{2q “ 0 or py2
` y` 1´p

b

p1` 2πq{2q “ 0. The first
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quadratic equation has only complex solutions and the second equation has real solutions given by

y “

´1˘

g

f

f

e1´ 4

˜

1´

c

1` 2π
2

¸

2

“

´1˘

g

f

f

e1´ 4` 4

˜ ?
2` 4π

2

¸

2

“
´1˘

a

´3` 2
?

2` 4π
2

“
´1˘

a?
8` 16π´ 3
2

.

The negative radical yields a value of y4
ą π, thereby giving a value of x ă 0, a contradiction.

Hence,

y “
´1`

a?
8` 16π´ 3
2

« 0.576 241 490 484

so that

x “ π´ y4
“ π´

ˆ

1
16

˙ˆ
b

?
8` 16π´ 3´ 1

˙4

« 3.031 332 625 09.

This completes the solution.

Solution 6 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

A positive real solution is

x “
b

p2π` 3q
?

4π` 2´ 7π´ 17{4 « 3.03133.

We repeatedly manipulate and square both sides.
´

4
?
π` x´ 4

?
π´ x

¯2
“ 12

?
π` x´ 2

4
a

π2 ´ x2 `
?
π´ x “ 1

´?
π` x`

?
π´ x

¯2
“

´

2
4
a

π2 ´ x2 ` 1
¯2

2π´ 1´ 2
a

π2 ´ x2 “ 4
4
a

π2 ´ x2

p2π´ 1q2 ´ 4p2π´ 1q
a

π2 ´ x2 ` 4pπ2
´ x2

q “ 16
a

π2 ´ x2

p2π´ 1q2 ` 4pπ2
´ x2

q “ 4p2π` 3q
a

π2 ´ x2

p2π´ 1q4 ` 8p2π´ 1q2pπ2
´ x2

q ` 16pπ2
´ x2

q
2
“ 16p2π` 3q2pπ2

´ x2
q

16pπ2
´ x2

q
2
´ 8p4π2

` 28π` 17qpπ2
´ x2

q ` p2π´ 1q4 “ 0.
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As a quadratic expression of π2
´ x2, the determinant is

∆ “ 64p4π2
` 28π` 17q2 ´ 64p2π´ 1q4

“ 64
”

p4π2
` 28π` 17q2 ´ p2π´ 1q4

ı

“ 64p4π2
` 28π` 17` 4π2

` 4π` 1qp4π2
` 28π` 17´ 4π2

` 4π´ 1q

“ 64p8π2
` 24π` 18qp32π` 16q

“ 211
p2π` 3q2p2π` 1q.

Using the quadratic formula gives

π2
´ x2

“
8p4π2 ` 28π` 17q ˘ 32p2π` 3q

?
4π` 2

32
´x2

“ 7π` 17{4˘ p2π` 3q
?

4π` 2

x2
“ p2π` 3q

?
4π` 2´ 7π´ 17{4

x “
b

p2π` 3q
?

4π` 2´ 7π´ 17{4 « 3.03133

as the only positive real solution.

Solution 7 by G. C. Greubel, Newport News, VA.

Consider the equation

4
?

a` x “ 1` 4
?

a´ x

for which 4
?

a` x´ 4
?

a´ x “ 1 and the square of both sides leads to

2
?

a` x´ 2
4
a

a2 ´ x2 `
2
?

a´ x “ 1
?

a` x`
?

a´ x “ 1´ 2
4
a

a2 ´ x2.

Square both sides to obtain

a

a2 ´ x2 ` 2
4
a

a2 ´ x2 ´
2a´ 1

2
“ 0.

Let t “
4
a

a2 ´ x2 to obtain the quadratic equation

t2
` 2 t ´

2a´ 1
2

“ 0.

This equation yields the solution

t “ ´1˘
?

4a` 2
2

.
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Another component required is t4, as will be seen later. In this view then:

t4
“

ˆ

´2 t `
2a´ 1

2

˙2

“ 4t2
´ 2p2a´ 1q t `

p2a´ 1q2

4

“ ´2p2a` 3q t `
p2a´ 1qp2a` 7q

4

“ a2
`

28a` 17
4

´˘p2a` 3q
?

4a` 2.

Now, returning to t “
4
a

a2 ´ x2 then it is seen that x2
“ a2

´ t4 and yields

x2
“ ˘p2a` 3q

?
4a` 2´

28a` 17
4

.

The real solution then can be considered to be

x “ ˘
1
2

b

4p2a` 3q
?

4a` 2´ p28a` 17q.

For the case of a “ π then the real solution is:

x “
1
2

b

4p2π` 3q
?

4π` 2´ p28π` 17q.

Solution 8 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

We note that the solution must lie in the closed interval r0, πs. Noting that the sum of the radi-
cands is a constant, 2π, we introduce two new variables: u “ 4

?
π` x ě 0 and v “ 4

?
π´ x ě 0.

Thus we have the system of equations

u´ v “ 1 (1)

u4
` v4

“ 2π. (2)

Equation p1q gives us v “ u ´ 1 and p2q yields u4
` pu ´ 1q4 “ 2π. Making the substitution

u “ y` 1{2, we have py` 1{2q4 ` py´ 1{2q4 “ 2π. Expanding and simplifying, this last equation
becomes 16y4

`24y2
`1 “ 16π, and the substitution z “ y2

ě 0 gives us 16z2
`24z`p1´16πq “ 0.

The quadratic formula provides the solutions

z “
´24˘

?
512` 1024π
32

“
´3˘ 2

?
2` 4π

4
.

We reject the negative solution since z ě 0. Therefore we have z “
´

´3` 2
?

2` 4π
¯

{4. Re-
versing our substitutions, we find that

y “
?

z “

a

´3` 2
?

2` 4π
2

, u “ y`
1
2
“

a

´3` 2
?

2` 4π` 1
2

,

x “ u4
´ π “

p
?

2` 4π´ 1q
a

´3` 2
?

2` 4π
2

« 3.0313.
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Solution 9 by Michel Bataille, Rouen, France.

The number x must satisfy x ď π, hence all amounts to seeking u P r0, 1q such that x “ π ¨
1´ u4

1` u4 .

Since 2x “ p 4
?
π` xq4´p 4

?
π´ xq4 and a4

´b4
“ pa´bqpa3

`a2b`ab2
`b3

q, the given equation
is equivalent to

2x “ p 4
?
π` xq3 `

?
π` x 4

?
π´ x` 4

?
π` x

?
π´ x` p 4

?
π´ xq3.

Since π` x “
2π

1` u4 and 4

c

π´ x
π` x

“ u, we obtain the equation for u:

2πp1´ u4q

1` u4 “
p2πq3{4

p1` u4q3{4
¨ p1` u` u2

` u3
q.

Since 1 ` u ` u2
` u3

“
1´ u4

1´ u
, the latter easily becomes 2πp1 ´ uq4 “ 1 ` u4, which, expanded

and arranged, yields

u4
p2π´ 1q ´ 8πu3

` 12πu2
´ 8πu` p2π´ 1q “ 0.

We solve this palindromic equation in a classical way: we set X “ u `
1
u

and we are led to

p2π´1qX2
´8πX`8π`2 “ 0. Since X ą 2, we have X “ X0 where X0 “

4π`
?

4π` 2
2π´ 1

. Then,

we get u from ppuq “ 0 where ppuq “ u2
´ uX0 ` 1. Since pp0q ą 0 and pp1q “ 2 ´ X0 ă 0, the

desired u is the least root, that is, u “
X0 ´

b

X2
0 ´ 4

2
.

Finally,

x “ π ¨
16´ pX0 ´

b

X2
0 ´ 4q4

16` pX0 ´

b

X2
0 ´ 4q4

where X0 “
4π`

?
4π` 2

2π´ 1
.

Solution 10 by Péter Fülöp, Gyömrő, Hungary.

We are looking for the solution among real numbers, so it must be stated that there cannot be a
negative number under the root:

So pπ´ xq ě 0 and pπ` xq ě 0 that is |x| ď π

4
?
π` x´ 4

?
π´ x “ 1
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Multiply both sides by p 4
?
π` x` 4

?
π´ xq and add the eqution to the previous one, we get:

2 4
?
π` x “ 1`

?
π` x´

?
π` x

Squaring the equation and performing the possible cancellations we get:

2π` 1
2

“
?
π` x`

?
π´ x`

?
π` x

?
π´ x

Let’s introduce two new variables:

a “
?
π` x and b “

?
π´ x

We got a simple two variables equation system:

I. a` b` ab “
2π` 1

2
II.
?

a´
?

b “ 1

Squaring the equation II. we get: a` b´ 2
?

ab “ 1 then put the value of pa` bq to the equation
I., we will have a second order equation in

?
ab

2π` 1
2

“ p
?

ab` 1q2

?
ab “

a

π2 ´ x2

We get the roots:

xi “ ˘

d

π2 ´

”

´ 1˘

c

1` 2π
2

ı4
, where i “ 1, 2, 3, 4

After checking the roots in the original equation, remains only one valid root:

x0 “

d

π2 ´

”

´ 1`

c

1` 2π
2

ı4
« 3.0313326251

whitch is less then π.

Solution 11 by Seán M. Stewart, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia.

We show a positive real number x that satisfies the equation is

x “
1
2

b

4p3` 2πq
?

4π` 2´ 28π´ 17.
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Write the equation as
?

a´
?

b “ 1, where

a “
?
π` x ą 0 and b “

?
π´ x ą 0.

So
a2
` b2

“ pπ` xq ` pπ´ xq “ 2π. (3)

And since
?

a “ 1`
?

b, on squaring and rearranging we have

a´ b´ 1 “ 2
?

b.

Squaring and rearranging again we find

2a` 2ab` 2b “ a2
` b2

` 1 “ 2π` 1, (4)

where the result in (3) has been used. Adding (3) and (4) produces

pa` bq2 ` 2pa` bq ´ 4π´ 1 “ 0.

On solving this quadratic equation for a` b we find

a` b “ ´1`
?

4π` 2.

Note here the positive case is taken since a, b ą 0. Substituting this result into (4) yields

ab “
2π` 3´ 2

?
4π` 2

2
“ α.

Since
ab “

?
π` x

?
π´ x “

a

π2 ´ x2 “ α,

on solving for x we find

x “
a

π2 ´ α2 “

c

π2 ´
1
4

´

2π` 3´ 2
?

4π` 2
¯2

“
1
2

b

4p3` 2πq
?

4π` 2´ 28π´ 17,

as announced. Note the positive value for the square root has been taken since for a solution to the
original equation we require x ą 0.

Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA; Albert Stadler, Herrliberg, Switzerland and
the proposer.

‚ 5671 Proposed by Michael Brozinsky, Central Islip, New York.

Isosceles triangle 4RS T with RS “ S T has the following property:
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There are only three points such that the distances from each of these points to the lines ÐÑRT ,
ÐÑRS andÐÑS T have, respectively, the same ratios as 1 : 2 : 3.

Determine the angles of triangle 4RS T .

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We may assume that the triangle is given by the following coordinates:
R(-1,0), S(0,h), T(1,0), hą0. Let P(u,v) be a point whose distances from the lines RT , RS , S T

have ratios as 1:2:3, respectively. The point of intersection of the two lines y “
1
h
px´ uq ` v and

y “ h ´ hx equals px, yq “

˜

h2 ` u´ hv
1` h2 ,

hp1´ u` hvq
1` h2

¸

. The distance from (u,v) to the line

S T is equal to the distance from (u,v) to (x,y) and equals

|hu` v´ h|
?

1` h2
.

Similarly, the distance from (u,v) to the line RS equals
|´hu` v´ h|
?

1` h2
and the distance from (u,v)

to the line RT equals |v| . By assumption,

|v| :
|´hu` v´ h|
?

1` h2
:
|hu` v´ h|
?

1` h2
“ 1 : 2 : 3

implying the two equations

4v2
“
p´hu` v´ hq2

1` h2 and 9
p´hu` v´ hq2

1` h2 “ 4
phu` v´ hq2

1` h2 .

We solve for u and v and find the four solutions pu, vq:
˜ ?

1` h2

2´ 5
?

1` h2
,

2h

2´ 5
?

1` h2

¸

,

˜

´
?

1` h2

2` 5
?

1` h2
,

2h

2` 5
?

1` h2

¸

,

˜

5
?

1` h2

2´
?

1` h2
,

2h

2´
?

1` h2

¸

,

˜

´
5
?

1` h2

2`
?

1` h2
,

2h

2`
?

1` h2

¸

.

These four solutions collapse to three solutions exactly if h “
?

3 which means that the triangle
RST is equilateral with three equal angles of π/3.

Solution 2 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

The angles of ∆RS T all have measure
π

3
; the triangle is equilateral.

Notice that there are two points X on the line pRT q satisfying 3XR “ 2XT . Let S 1 be the point
between R and T satisfying this property (so S 1 is 2{5 of the way from R to T ), and let S 2 be the
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point on the opposite side of R from T satisfying this property (so R is one third of the way from
T to S 2). If P is any point on the line S 1S or S 2S , then draw the line through P parallel to pRT q,
intersecting pRS q and pS T q at R1 and T 1, respectively. Let Y and Z be the feet of P on pRS q and
pS T q, respectively. Then the right triangles PR1Y and PT 1Z are similar, so

PY
PZ

“
PR1

PT 1
“

S iR
S iT

“
2
3
,

and the distances from P to the lines pRS q and pS T q have the ratio 2 : 3.

We claim that the points X on the line pS T q whose distances to pRT q and pRS q have the ratio 1 : 2
are the points that satisfy XT{XS “ cos ∠TRS . If X is a point on pS T q with XT{XS “ cos ∠TRS ,
then let X1 be the intersection of pRS q with the line through X parallel to pRT q, and let Y and Z be
the feet of X on pRT q and pRS q, respectively. Then

XT
XS

“ cos ∠TRS “ cos ∠X1XS “
XX1{2

XS
,

so
XT
XX1

“
1
2

. Since ∠XX1Z � ∠TRS � ∠YT X, then ∆XYT „ ∆XZX1 and

XY
XZ

“
XT
XX1

“
1
2
.

Let R1 be the point between S and T satisfying
R1T
R1S

“ cos ∠TRS , and let R2 be the point on the

opposite side of T from S satisfying
R2T
R2S

“ cos ∠TRS . As before, if P is any point on the lines

pRR1q or pRR2q, then by a similar argument, the distances from P to the lines pRT q and pRS q have
the ratio 1 : 2. Thus, a point has distances to the lines pRT q, pRS q, and pS T q in the ratio 1 : 2 : 3 if
and only if

P P
`

pS S 1q Y pS S 2q
˘

X
`

pRR1q Y pRR2q
˘

.

If we orient ∆RS T with S above the horizontal line pRT q, then pS S 1q, pS S 2q and pRR1q have pos-
itive slope, while pRR2q has negative slope. Thus, pRR2q always intersects pS S 1q and pS S 2q. By
construction, pS S 1q and pRR1q must intersect in the interior of ∆RS T . In most cases there would
be a fourth point of intersection, but if there are only three such points, then the lines pS S 2q and
pRR1q must be parallel.

In this case ∆RR1T „ ∆S 2S T , so that

R1T
S T

“
RT
S 2T

“
1
3
,

and
cos ∠TRS “

R1T
R1S

“
1
2
.

Thus, all three angles of ∆RS T have measure
π

3
.
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If the equilateral triangle ∆RS T has coordinates Rp´1, 0q, S p0,
?

3q, and T p1, 0q, then S 1 “

p´
1
5
, 0q, S 2 “ p´5, 0q, R1 “ p

2
3
,

?
3

3
q, R2 “ p2,´

?
3q, and the three points with the desired

distances are

pS S 1q X pRR1q “ p´
1
6
,

?
3

6
q,

pS S 1q X pRR2q “ p´
1
4
,´

?
3

4
q,

and

pS S 2q X pRR2q “ p´
5
2
,

?
3

2
q.

Also solved by the proposer.

‚ 5672 Proposed by Nikos Ntorvas, Athens, Greece.

Given
F px, yq “ py´ xq

“

y
´

3y2
´ 28y` 3xy´ 14x` 84

¯

`x
´

3x2
´ 28x` 3xy´ 14y` 84

¯

´ 96
‰

,

where x, y P R, with 0 ď x ă y, find A “ min F px, yq and the corresponding minimizing values
for x and y.

Solution 1 by Péter Fülöp, Gyömrő, Hungary.

A necessary and sufficient condition for the existence of an minimum value are the followings:

Necessary conditions:
dF
dx
“ 0 and

dF
dy
“ 0. Solution of the equation system results the

stacionary points.

Sufficient conditions: D “
d2F
dx2

d2F
dy2 ´ p

d2F
dxdy

q
2
ą 0 and

d2F
dx2 ą 0 in the stacioner points.

First order partial derivatives

After performing the derivations:

dF
dx
“ ´12px3

´ 7x2
` 14x´ 8q “ 0

and

dF
dy
“ 12py3

´ 7y2
` 14y´ 8q “ 0
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From the necessery conditions we get the stacionary points:

x1 “ 1, y1 “ 1
x2 “ 2, y2 “ 2
x3 “ 4, y3 “ 4

Second order partial derivatives

d2F
dx2 “ ´36x2

` 168x´ 168

d2F
dy2 “ `36y2

´ 168y` 168

d2F
dxdy

“
d2F
dydx

“ 0

Determination of the minimum location and value

Nine possible pairs can be made from the stationary points:

Extreme value determination
Stationery points Determinant d2F{dx2 Type Value

F(1,1) -1296 na na na
F(1,2) +864 -36 max +5
F(1,4) -2592 na na na
F(2,1) +864 24 min -5
F(2,2) -576 na na na
F(2,4) +1728 +24 min -32
F(4,1) -2592 na na na
F(4,2) +1728 -72 max +32
F(4,4) -5184 na na na

We have two points where F(x,y) has local minimums and one where the x ă y condition is
completely:

Fp2, 4q “ ´32

Solution 2 by Michel Bataille, Rouen, France.

Let Ω be the open subset of R2 defined by Ω “ tpx, yq : x ă yu. We show that F has a unique local
minimum on Ω, namely at p2, 4q with Fp2, 4q “ ´32, but no absolute minimum on Ω.

Expanding and arranging readily shows that Fpx, yq “ ppyq ´ ppxq where p is the polynomial
pptq “ 3t4

´ 28t3
` 84t2

´ 96t. Since p1ptq “ 12pt ´ 1qpt ´ 2qpt ´ 4q, the study of the variations
of the function p is easy. Note in particular that lim

tÑ´8
pptq “ lim

tÑ8
pptq “ 8, pp1q “ ´37, pp2q “

25



´32, pp4q “ ´64 and that pptq ě ´64 for all real t.

Clearly, F is a C8 function on Ω and
BF
Bx
px, yq “ ´p1pxq,

BF
By
px, yq “ p1pyq so that Ω contains

three critical points: p1, 2q, p1, 4q, p2, 4q. We have
B2F
Bx2 px, yq “ ´p2pxq,

B2F
By2 px, yq “ p2pyq

and
B2F
BxBy

px, yq “ 0 with p2ptq “ 12p3t2
´ 14t ` 14q. We readily obtain p2p1q “ 36, p2p2q “

´24, p2p4q “ 72 and we deduce that

‚
B2F
Bx2 p1, 2q “ ´36,

B2F
By2 p1, 2q “ ´24 and therefore Fp1, 2q “ 5 is a local maximum of F on Ω.

‚
B2F
Bx2 p1, 4q “ ´36,

B2F
By2 p1, 4q “ 72 and therefore p1, 4q is a saddle point of F in Ω.

‚
B2F
Bx2 p2, 4q “ 24,

B2F
By2 p2, 4q “ 72 and therefore Fp2, 4q “ ´32 is a local minimum of F on Ω.

In addition, Fp0, 4q “ pp4q “ ´64 ă ´32, hence Fp2, 4q is not the (absolute) minimum of F on
Ω. Thus, F has no absolute minimum on Ω. (This also follows from lim

xÑ´8
Fpx, 0q “ ´8.)

Note. Let Ω1 “ tpx, yq :
8´ 2

?
10

3
ď x ă yu. Then, Fp2, 4q is the absolute minimum of F on Ω1.

Since

pptq ` 32 “ 3pt ´ 2q2
˜

t ´
8´ 2

?
10

3

¸˜

t ´
8` 2

?
10

3

¸

,

we have

p

˜

8´ 2
?

10
3

¸

“ p

˜

8` 2
?

10
3

¸

“ ´32

and from the variations of p we see that pptq ď ´32 when t P

«

8´ 2
?

10
3

,
8` 2

?
10

3

ff

. There-

fore, Fpx, yq “ ppyq ´ ppxq ě ´64` 32 “ ´32 when
8´ 2

?
10

3
ď x ď

8` 2
?

10
3

and y ą x. In

addition Fpx, yq ą 0 if
8` 2

?
10

3
ă x ă y since p is increasing on p4,8q. Thus, Fpx, yq ě ´32

if px, yq P Ω1.

Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX.

From the expanded form Fpx, yq “ ´3x4
`28x3

´84x2
`96x`3y4

´28y3
`84y2

´96y, it is clear that
as x Ñ ´8, Fpx, y0q Ñ ´8 for any y0 P R, and hence the function F has no absolute minimum on

the domain x ă y. We can consider relative minima. Note that
BF
Bx
“ ´12x3

` 84x2
´ 168x` 96,

so that
BF
Bx

“ 0 for x “ 1, x “ 2, and x “ 4. Similarly,
BF
By

“ 12y3
´ 84y2

` 168y ´ 96 “ 0
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for y “ 1, y “ 2, and y “ 4. So on the domain x ă y, the three points p1, 2q, p1, 4q, and

p2, 4q are candidates for yielding relative minima. Now
B2F
Bx2 “ ´36x2

` 168x´ 168, and similarly

B2F
By2 “ 36y2

´168y`168. Note that
B2F
ByBx

“ 0. To perform a second partial derivative test, consider

Dpx, yq “
B2Fpx, yq
Bx2 ¨

B2Fpx, yq
By2 ´

B2Fpx, yq
ByBx

“
B2Fpx, yq
Bx2 ¨

B2Fpx, yq
By2 “ p´36x2

`168x´168qp36y2
´

168y ` 168q. Since Dp1, 2q “ 864 ą 0, Dp1, 4q “ ´2592 ă 0, and Dp2, 4q “ 1728 ą 0, the
function F on the domain x ă y has relative minima for the points p1, 2q and p2, 4q. These minima
are Fp1, 2q “ 5 and Fp2, 4q “ ´32.

Solution 4 by Brian Bradie, Christopher Newport University, Newport News, VA.

After simplification, Fpx, yq “ gpyq ´ gpxq, where gpxq “ 3x4
´ 28x3

` 84x2
´ 96x. Note

g1pxq “ 12x3
´ 84x2

` 168x´ 96 “ 12px´ 1qpx´ 2qpx´ 4q;

thus, g1pxq ą 0 and g is increasing for x ą 4. Let

R “ tpx, yq P R : 0 ď x ă yu.

Along the boundary x “ 0, Fp0, yq “ gpyq ´ gp0q “ gpyq, so there are critical points at p0, 1q,
p0, 2q, and p0, 4q. In the interior of R, critical points are the simultaneous solutions of

BF
Bx
“ ´g1pxq “ 0 and

BF
By
“ g1pyq “ 0;

accordingly, there are critical points at p1, 2q, p1, 4q and p2, 4q. Now,

Fp0, 1q “ ´37, Fp0, 2q “ ´32, and Fp0, 4q “ ´64,

and
Fp1, 2q “ 5, Fp1, 4q “ ´27, and Fp2, 4q “ ´32.

For fixed x with 0 ď x ď 4 and y ą 4, Fpx, yq is increasing, and for fixed x with x ą 4 and y ą x,
gpyq ą gpxq so Fpx, yq ą 0. Moreover, as x Ñ y, Fpx, yq Ñ 0. Thus, A “ min Fpx, yq “ ´64, and
this minimum is achieved for x “ 0 and y “ 4.

Solution 5 by Albert Stadler, Herrliberg, Switzerland.

It is easily verified that

F px, yq “ 12
ż y

x
pt ´ 1q pt ´ 2q pt ´ 4q dt.

This representation shows that if x is not bounded from below Fpx, yq has no minimum, for

12
ż x`1

x
pt ´ 1q pt ´ 2q pt ´ 4q dt Ñ ´8
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as x tends to´8. Instead we determine the minimum of Fpx, yq subject to the constraint 0 ď x ă y.
Clearly, pt ´ 1q pt ´ 2q pt ´ 4q ď 0 for t P r0, 1s Y r2, 4s. We note that

12
ż 1

0
pt ´ 1q pt ´ 2q pt ´ 4q dt “ ´37,

12
ż 2

1
pt ´ 1q pt ´ 2q pt ´ 4q dt “ 5,

12
ż 4

2
pt ´ 1q pt ´ 2q pt ´ 4q dt “ ´32.

Therefore A “ ´64 and the minimum is assumed for x “ 0 and y “ 4.

Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo and the proposer.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated! . . . And don’t worry about making a mistake. All is well!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.
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Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.
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Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.
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4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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