
Problems and Solutions Albert Natian, Section Editor

***************************************************************

This section of the SSMA Journal offers readers an opportunity to exchange interesting mathemat-
ical problems and solutions. Please send them to Prof. Albert Natian, Department of Mathematics,
Los Angeles Valley College, 5800 Fulton Avenue, Valley Glen, CA, 91401, USA. It’s highly prefer-
able that you send your contributions via email.

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before March 1, 2023.

‚ 5703 Proposed by Mihaly Bencze, Braşov, Romania and Neculai Stanciu, “George Emil Palade”
School, Buzău, Romania.

Solve for real x:
x2
` px´ 6q

?
x´ 7 ` 12 “ 13x.

‚ 5704 Proposed by Albert Stadler, Herrliberg, Switzerland.

Let a and k be positive integers that are relatively prime and of different parity. Further assume
that k is not a perfect square. Let un and vn be integers such that

´

a`
?

k
¯n
“ un ` vn

?
k, n “ 1, 2, . . .

Prove that un and vn are relatively prime for all natural numbers n.

‚ 5705 Proposed by Rafael Jakimczuk, División Matemática, Universidad Nacional de Luján,
Buenos Aires, Argentina.

Prove the series
8
ÿ

n“1

an converges where the the sequence panqně1 is recursively defined as follows:

a1 “ 1 and an`1 “
an

3!
`

an´1

5!
`

an´2

7!
` ¨ ¨ ¨ `

a1

p2n` 1q!
pn ě 1q.
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‚ 5706 Proposed by Raluca Maria Caraion, Călăraşi, Romania and Florică Anastase, Lehliu-
Gară, Romania.

Suppose a, b, c ą 0. Prove

ź

cyc

p1` abqp1` acq

1` a
?

bc
ě
`

1`
3?

a2b2c2
˘3
.

‚ 5707 Proposed by Narendra Bhandari, Bajura District, Nepal.

Prove that
ż π

2

0

´

sin x ¨ arctanh2
psin xq ´ 2 sin x ¨ arctanhpsin xq

¯

dx “ 4G ´ π

where G :“
8
ÿ

k“1

p´1qk`1
{p2k ´ 1q2 is Catalan’s constant.

‚ 5708 Proposed by Toyesh Prakash Sharma, Agra College, Agra, India.

Solve the differential equation

y
a

y2 ` z2 dz` z
a

y2 ` z2 dy “
y px dy´ y dxq ` z px dz´ z dxq

x2 ` y2 ` z2 .

Solutions
To Formerly Published Problems

‚ 5685 Proposed by D.M. Bătineţu-Giurgiu, Bucharest, Romania and Neculai Stanciu, Buzău, Ro-
mania.

Prove: If x P
`

0, π{2
˘

, then for any triangle 4ABC with side lengths a, b, c and area F, the
following inequality holds:

a2
` b2

` c2
ě 4

?
3F sin p2xq `

ÿ

cyc

pa sin x´ b cos xq2 .

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

The maximum of 4
?

3Fsin p2xq `
ÿ

cycl

pasinx ´ bcosx q2 considered as a periodic function of x

is assumed at a stationary point of x. We find

d
dx

¨

˝4
?

3Fsin p2xq `
ÿ

cycl

pasinx ´ bcosx q2

˛

‚“
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“ 8
?

3Fcos p2xq `
ÿ

cycl

´

´2abcos p2xq ` a2sin p2xq ´ b2sin p2xq
¯

“

“

´

8
?

3F ´ 2ab´ 2bc´ 2ca
¯

cos p2xq ,

and see that the maximum is assumed at x=π/4. It remains to prove that

a2
` b2

` c2
ě 4

?
3F `

1
2

ÿ

cycl

pa´ bq2

which is equivalent to
ab` bc` ca ě 4

?
3F.

However the last inequality is well-known. See for instance

https://en.wikipedia.org/wiki/List_of_triangle_inequalities.

Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Because
ÿ

cyc

pa sin x´ b cos xq2 “ a2
` b2

` c2
´ pab` bc` caq sinp2xq

and sinp2xq , 0 for x P p0, π{2q, the inequality

a2
` b2

` c2
ě 4

?
3F sinp2xq `

ÿ

cyc

pa sin x´ b cos xq2

is equivalent to
ab` bc` ca ě 4

?
3F.

Now,

F “
1
2

ab sin C “
1
2

bc sin A “
1
2

ca sin B,

so
ab “

2F
sin C

, bc “
2F

sin A
, and ca “

2F
sin B

.

Thus, ab`bc`ca ě 4
?

3F becomes csc A`csc B`csc C ě 2
?

3. Finally, by Jensen’s inequality,

csc A` csc B` csc C ě 3 csc
ˆ

A` B`C
3

˙

“ 3 csc
π

3
“ 3 ¨

2
?

3
“ 2

?
3.

Solution 3 by Daniel Văcaru, Pites, ti, Romania.

We have
a2
` b2

` c2
ě 4

?
3F sin p2xq `

ÿ

cyc

pa sin x´ b cos xq2
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ô

a2
` b2

` c2
ě 4

?
3F sin p2xq ` a2

` b2
` c2

´
ÿ

ab sin 2x

ô
ÿ

ab sin p2xq ě 4
?

3F sin p2xq

The last relationship is equivalent to
ÿ

ab ě 4
?

3F,

which is well known. See

https://en.wikipedia.org/wiki/List_of_triangle_inequalities#:~

:text=The%20parameters%20in%20a%20triangle,to%20the%20opposite%20side%2C%20the

Solution 4 by Michel Bataille, Rouen, France.

Since sin 2x “ 2 sin x cos x ą 0 and
ÿ

cyc

pa sin x´ b cos xq2 “ a2
` b2

` c2
´ pab` bc` caq sin 2x

the required inequality is equivalent to

ab` bc` ca ě 4
?

3F. (1)

Let α, β, γ be the angles opposite to the sides a, b, c, respectively. Then, 2F “ bc sinα “ ca sin β “
ab sin γ so that

ab` bc` ca “ 2F
ˆ

1
sinα

`
1

sin β
`

1
sin γ

˙

. (2)

Now, the function f : x ÞÑ f pxq “
1

sin x
being convex on p0, πq (its second derivative f 2pxq “

sin2 x` 2 cos2 x
sin3 x

is positive), Jensen’s inequality yields

1
sinα

`
1

sin β
`

1
sin γ

ě
3

sinppα` β` γq{3q
“

3
?

3{2
“ 2

?
3,

from which, using p2q, we deduce p1q.

Solution 5 by Moti Levy, Rehovot, Israel.

4
?

3F sin p2xq `
ÿ

cyc

`

a sin pxq ´ b cos pxq
˘2

“ 4
?

3F sin p2xq ` a2
` b2

` c2
´ 2 sin pxq cos pxq pab` bc` caq

“ sin p2xq
´

4
?

3F ´ pab` bc` caq
¯

` a2
` b2

` c2.
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Plugging this in the original inequality, we get

a2
` b2

` c2
ě sin p2xq

´

4
?

3F ´ pab` bc` caq
¯

` a2
` b2

` c2,

or
sin p2xq

´

4
?

3F ´ pab` bc` caq
¯

ď 0.

Since sin p2xq ě 0 for x P
ˆ

0,
π

2

˙

, it follows that the original inequality is equivalent to the

following inequality:
ab` bc` ca ě 4

?
3F.

This inequality is well known. A proof can be found in the classic book by Bottemi et al., "Geo-
metric inequalities", Wolters-Noordhoff Publishing, Gronigen 1969, entry 4.5, on page 43.

Solution 6 by Péter Fülöp, Gyömrő, Hungary.

It is known that
ÿ

cyc

pa sinpxq ´ b cospxqq2 “ pa sinpxq ´ b cospxqq2 ` pb sinpxq ´ c cospxqq2 ` pc sinpxq ´ a cospxqq2

After performing cancellations, we get:
ÿ

cyc

pa sinpxq ´ b cospxqq2 “ a2
` b2

` c2
´ sinp2xqrab` bc` acs

Put this result into the statement we have:

a2
` b2

` c2
ě 4

?
3F sinp2xq ` a2

` b2
` c2

´ sinp2xqrab` bc` acs

0 ě sinp2xq
”

4
?

3F ´ rab` bc` acs
ı

As x P p0, π{2q follows that 2x P p0, πq where sinp2xq ą 0, we can do further simplification in the
inequality:

0 ě 4
?

3F ´ rab` bc` acs

On the other hand the area (F) can be expressed by the sides and with the angles subtended by
their sides (α, β and γ):

F “
1
2

ab sinpγq

F “
1
2

bc sinpαq

F “
1
2

ac sinpβq
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Let’s express ab, bc, ac and put them back to the inequality:

0 ě 4
?

3F ´ r
2F

sinpαq
`

2F
sinpβq

`
2F

sinpγq
s

1
sinpαq

`
1

sinpβq
`

1
sinpγq

ě 2
?

3

The left hand side of the inequality can be considered as a bivariete function: G(α, β, π´ α´ β)

Performing examination of the extreme value of G, we get that it has a minimum value at:

α “ β “ γ “
π

3

Substitute back to the last inequality we get that LHS equals to 3
2
?

3
“ 2

?
3. It means that the

statement is proved. The equality occurs when the triangle is equilateral.

Also solved by the problem proposer.

‚ 5686 Proposed by Albert Stadler, Herrliberg, Switzerland.

Let n be a natural number. Prove that the following three statements are equivalent:

1. The n-th central trinomial coefficient is divisible by 3.

2. The n-th central binomial coefficient is divisible by 3.

3. The base 3 representation of n has at least one digit “2”.

Note: the n-th central trinomial coefficient is the coefficient of xn in the expansion of
´

1` x` x2
¯n

,

while the n-th central binomial coefficient is the coefficient of xn in the expansion of p1` xq2n and

equals
ˆ

2n
n

˙

.

Solution 1 by Moti Levy, Rehovot, Israel.

Let us denote the central trinomial coefficient by Tn
,
. We begin by showing that (1) is equivalent to

(2).
The ordinary generating function (OGF) of the sequence pTnqně0 is

1
a

p1` xq
?

1´ 3x
“

8
ÿ

k“0

Tkxk. (1)
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There are several proofs for (1). The first one is due to Euler.

By binomial expansion and the identity
ˆ

´1
2

k

˙

“

ˆ

´1
4

˙k ˆ2k
k

˙

, we get

1
a

1´ f x
“ p1´ f xq´

1
2 “

8
ÿ

k“0

p´1qk
ˆ

´1
2

k

˙

f kxk
“

8
ÿ

k“0

1
4k

ˆ

2k
k

˙

f kxk (2)

Setting f “ ´1 in (2), we get the OGF of the sequence

˜

1
4n

ˆ

2n
n

˙

p´1qn
¸

ně0

,

1
?

1` x
“

8
ÿ

k“0

p´1qk

4k

ˆ

2k
k

˙

xk. (3)

Setting f “ 3 in (2) we get the OGF of the sequence

˜

3n

4n

ˆ

2n
n

˙

¸

ně0

,

1
?

1´ 3x
“

8
ÿ

k“0

1
4k

ˆ

2k
k

˙

3kxk. (4)

By (1), (3) and (4), the sequence pTnqně0 is the convolution of the sequence

˜

p´1qn

4n

ˆ

2n
n

˙

¸

ně0

with the sequence

˜

ˆ

3
4

˙n ˆ2n
n

˙

¸

ně0

,

Tn “

n
ÿ

m“0

ˆ

3
4

˙m ˆ2m
m

˙

p´1qn´m

4n´m

ˆ

2n´ 2m
n´ m

˙

“
p´1qn

4n

n
ÿ

m“0

p´3qm
ˆ

2m
m

˙ˆ

2n´ 2m
n´ m

˙

or,

p´1qn 4nTn “

ˆ

2n
n

˙

´ 3
n
ÿ

m“1

p´3qm´1
ˆ

2m
m

˙ˆ

2n´ 2m
n´ m

˙

(5)

Equation (5) implies that 4nTn is divisible by 3 if and only if
ˆ

2n
n

˙

is divisible by 3, hence Tn is

divisible by 3 if and only if
ˆ

2n
n

˙

is divisible by 3.

Now we show that (1) is equivalent to (3).

Lucas’s Theorem: Let p be a prime number, and let r, c integers which can be written in p-ary
notation as:

r “ r0 ` r1 p` r2 p2
` ¨ ¨ ¨ ` rk pk, 0 ď ri ă p,

c “ c0 ` c1 p` c2 p2
` ¨ ¨ ¨ ` ck pk, 0 ď ci ă p.

7



Then
ˆ

r
c

˙

“

ˆ

r0

c0

˙ˆ

r1

c1

˙ˆ

r2

c2

˙

¨ ¨ ¨

ˆ

rk

ck

˙

pmod pq .

The convention here is
ˆ

r
c

˙

“ 0 if c ą r. �

Proof of Lucas’s theorem can be found in Wikipedia at the entry "Lucas’s theorem".

Let p “ 3, and let the representation of n in base 3 be

n “ n0 ` 3n1 ` 32n2 ` ¨ ¨ ¨ ` 3knk.

Suppose that
ni P t0, 1u

Then the representation of 2n in base 3 is

2n “ n
1

0 ` 3n
1

1 ` 32n
1

2 ` ¨ ¨ ¨ ` 3kn
1

k,

where
n
1

i “ 2ni P t0, 2u .

By Lucas’s theorem,
ˆ

2n
n

˙

“

ˆ

n
1

0

n0

˙ˆ

n
1

1

n1

˙ˆ

n
1

2

n2

˙

¨ ¨ ¨

ˆ

n
1

k

nk

˙

pmod 3q .

ˆ

n
1

i

ni

˙

“

$

’

’

&

’

’

%

ˆ

0
0

˙

“ 1 i f ni “ 0
ˆ

2
1

˙

“ 2 i f ni “ 1
.

It follows that
ˆ

2n
n

˙

“ 1 pmod 3q , or
ˆ

2n
n

˙

“ 2 pmod 3q ; hence
ˆ

2n
n

˙

is not divisible by 3.

Now suppose that at least one the digits ni “ 2. Then the corresponding n
1

i in the representa-

tion of 2n in base 3 is equal to 1. Hence
ˆ

n
1

i

ni

˙

“

ˆ

1
2

˙

“ 0, which implies (by Lucas’s theorem)

that
ˆ

2n
n

˙

is divisible by 3.

Also solved by the problem proposer .

‚ 5687 Proposed by Daniel Sitaru, National Economic College “Theodor Costescu” Drobeta
Turnu - Severin, Romania.
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Find complex numbers u, v such that:
$

’

’

&

’

’

%

|u|2

3
`
|v|2

4
“
|u` v|2

7

8u` v “ 7` 7i

,

/

/

.

/

/

-

.

Solution 1 by Hyunbin Yoo, South Korea.

Let u “ a` bi and v “ c` di where c and d are real numbers. Substitution gives

a2 ` b2

3
`

c2 ` d2

4
“
pa` cq2 ` pb` dq2

7

8a` c “ 7, 8b` d “ 7

We substitute c “ 7´ 8a and d “ 7´ 8b to get:

a2 ` b2

3
`
p7´ 8aq2 ` p7´ 8bq2

4
“
p7´ 7aq2 ` p7´ 7bq2

7

ô
a2 ` b2

3
`
p64a2 ´ 112a` 49q ` p64b2 ´ 112b` 49q

4
“ 7ppa´ 1q2 ` pb´ 1q2q

ô
49
3

a2
´ 28a`

49
3

b2
´ 28b`

49
2
“ 7pa2

´ 2` b2
´ 2b` 2q

ô
7
3
a2
´ 4a`

7
3
b2
´ 4b`

7
2
“ a2

´ 2a` b2
´ 2b` 2

ô
4
3
a2
´ 2a`

4
3
b2
´ 2b`

3
2
“ 0

ô 8a2
´ 12a` 8b2

´ 12b` 9 “ 0

ô 2
ˆ

2a´
3
2

˙2

` 2
ˆ

2b´
3
2

˙2

“ 0

In conclusion, a “
3
4
, b “

3
4
, c “ 1, d “ 1.

Solution 2 by Andrew Siefker, Angelo State University, San Angelo, TX.

Let u “ a` ib and v “ c` id where a, b, c, d P R. Then the given equations become

a2 ` b2

3
`

c2 ` d2

4
“
pa` cq2 ` pb` dq2

7
(1)

and
˜

8a` c “ 7
8b` d “ 7

¸

(2)

9



respectively. Expanding the right hand side of equation (1), clearing the denominators, and moving
everything to one side yields

p16a2
´ 24ac` 9c2

q ` p16b2
´ 24bd ` 9d2

q “ 0.

Factoring the grouped terms yields

p4a´ 3cq2 ` p4b´ 3dq2 “ 0.

This equation is true iff 4a´3c “ 0 and 4b´3d “ 0. Solving for c in terms of a and for d in terms
of b in equations (2) and substituting into 4a´ 3c “ 0 and 4b´ 3d “ 0 respectively results in

4a “ 3p7´ 8aq ùñ a “
3
4
ùñ c “ 1 and

4b “ 3p7´ 8bq ùñ b “
3
4
ùñ d “ 1

∴ u “
3
4
` i

3
4

and v “ 1` i �

Solution 3 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

The unique solution is u “
3
4
p1` iq and v “ 1` i.

Let u “ a ` bi and v “ c ` di, where a, b, c, and d are real numbers. Multiplying each side
of the first equation by 84 gives

28pa2
` b2

q ` 21pc2
` d2

q “ 12
´

pa` cq2 ` pb` dq2
¯

16pa2
` b2

q ` 9pc2
` d2

q “ 24pac` bdq

p16a2
´ 24ac` 9c2

q ` p16b2
´ 24bd ` 9d2

q “ 0

p4a´ 3cq2 ` p4b´ 3dq2 “ 0,

from which we see that 4a “ 3c and 4b “ 3d.

From the second equation, 8a ` c “ 7 “ 8b ` d, so that 8a ` c “ 7c “ 7 and 8b ` d “ 7d “ 7.

Consequently, c “ d “ 1 and a “ b “
3
4

; thus u “
3
4
p1` iq and v “ 1` i.

Solution 4 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State Univer-
sity, San Angelo, TX.
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Let u “ a` bi and v “ c` di with a, b, c, d P R. Then, the equation

8u` v “ 7` 7i

becomes
p8a` cq ` p8b` dq i “ 7` 7i

and hence,
8a` c “ 7 (1)

and
8b` d “ 7. (2)

Further,
|u|2 “ a2

` b2, |v|2 “ c2
` d2, and |u` v|2 “ pa` cq2 ` pb` dq2 .

Therefore, the equation
|u|2

3
`
|v|2

4
“
|u` v|2

7
becomes

a2 ` b2

3
`

c2 ` d2

4
“
pa` cq2 ` pb` dq2

7
.

If we clear the denominators, we obtain

28
´

a2
` b2

¯

` 21
´

c2
` d2

¯

“ 12 pa` cq2 ` 12 pb` dq2

which reduces to
´

16a2
´ 24ac` 9c2

¯

`

´

16b2
´ 24bd ` 9d2

¯

“ 0,

or
p4a´ 3cq2 ` p4b´ 3dq2 “ 0. (3)

Equation (3) yields
4a´ 3c “ 0 (4)

and
4b´ 3d “ 0. (5)

By combining p1q and p4q, we get
4a´ 3 p7´ 8aq “ 0

which reduces to
a “

21
28
“

3
4
.

Then,
c “ 7´ 8a “ 7´ 6 “ 1.

Similar steps using (2) and (5) lead to

b “
3
4

and d “ 1.
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Therefore, our result is u “ a ` bi “
3
4
`

3
4

i “
3
4
p1` iq and v “ c ` di “ 1 ` i. It is easily seen

that these numbers satisfy

8u` v “ 8
„

3
4
p1` iq



` p1` iq “ 7 p1` iq .

Further, since |u|2 “
9

16
|1` i|2 “

9
16
p2q “

9
8

, |v|2 “ |1` i|2 “ 2, and |u` v|2 “
ˇ

ˇ

ˇ

ˇ

7
4
p1` iq

ˇ

ˇ

ˇ

ˇ

2

“

49
16
p2q “

49
8

, we have

|u|2

3
`
|v|2

4
“

3
8
`

1
2
“

7
8
“

1
7

ˆ

49
8

˙

“
|u` v|2

7

as well. �

Solution 5 by Seán M. Stewart, Physical Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia.

We shall show that
u “

3
4
p1` iq and v “ 1` i.

Since
|u` v|2 “ pu` vqpu` vq “ pu` vqpu` vq “ |u|2 ` |v|2 ` uv` vu,

the first of the given equations
|u|2

3
`
|v|2

4
“
|u` v|2

7
,

becomes
4

21
|u|2 `

3
28
|v|2 “

1
7

uv`
1
7

vu. (6)

From the second of the given equations, we have

v “ 7` 7i´ 8u and v “ 7´ 7i´ 8u.

So we see that
uv` vu “ 7pu` uq ´ 7ipu´ uq ´ 16|u|2. (7)

Recalling that if z is a complex number, then

Repzq “
z` z

2
and Impzq “

z´ z
2i

.

So one can rewrite the expression in (7) as

uv` vu “ 14 Repuq ` 14 Impuq ´ 16|u|2. (8)
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Combining (6) with (8), after simplifying we arrive at

2
3
|u|2 `

3
4
“ Repuq ` Impuq.

If we now let u “ x` iy where x, y P R, then

2
3
px2
` y2

q `
3
4
“ x` y,

or after rearranging
ˆ

x´
3
4

˙2

`

ˆ

y´
3
4

˙2

“ 0.

This equation can only be true provided x “ y “
3
4

. So

u “ x` iy “
3
4
p1` iq,

and
v “ 7` 7i´ 8u “ 7` 7i´ 8 ¨

3
4
p1` iq “ 1` i,

as announced.

Solution 6 by Albert Stadler, Herrliberg, Switzerland.

We write u=a+ib, v=c+id with a, b, c, d real. The system of equations is then equivalent to
$

’

’

&

’

’

%

1
3

´

a2
` b2

¯

`
1
4

´

c2
` d2

¯

“
1
7

´

pa` cq2 ` pb` dq2
¯

8a` c “ 7
8b` d “ 7

,

/

/

.

/

/

-

.

The first equation is a quadratic equation with respect to the variable a with discriminant´
4

441
p4b´ 3dq2

and at the same time a quadratic equation with respect to the variable b with discriminant´
4

441
p4a´ 3cq2.

However the two discriminants must be ě0, since a and b are both real. So 4b=3d and 4a=3c, giv-
ing the solution (a,b,c,d)=(¾,¾,1,1) or equivalently

u “
3
4
p1` iq , v “ 1` i.

Solution 7 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We write u “ a ` bi and v “ c ` di for real numbers a, b, c, and d. Then the given system
of equations becomes

13



$

’

’

&

’

’

%

a2 ` b2

3
`

c2 ` d2

4
“
pa` cq2 ` pb` dq2

7

p8a` cq ` p8b` dqi “ 7` 7i

,

/

/

.

/

/

-

.

This implies c “ 7´ 8a and d “ 7´ 8b, so we have

a2 ` b2

3
`
p7´ 8aq2 ` p7´ 8bq2

4
“
p7´ 7aq2 ` p7´ 7bq2

7

and thus

28
3

ˆ

a´
3
4

˙2

`
28
3

ˆ

b´
3
4

˙2

“ 0.

Since a and b are real, we conclude that a “ b “ 3{4. Hence c “ d “ 1, so

u “
3
4
`

3
4

i “
3
4
p1` iq and v “ 1` i.

Solution 8 by David A. Huckaby, Angelo State University, San Angelo, TX.

Let u “ a ` bi and v “ c ` di, with a, b, c, and d real numbers. Then the second equation
above becomes 8pa ` biq ` c ` di “ 7 ` 7i, which gives 8a ` c “ 7 and 8b ` d “ 7, so that
c “ 7´ 8a and d “ 7´ 8b. The first equation above becomes

|a` bi|2

3
`
|c` di|2

4
“
|pa` cq ` pb` dqi|2

7
a2 ` b2

3
`

c2 ` d2

4
“
pa` cq2 ` pb` dq2

7
a2 ` b2

3
`
p7´ 8aq2 ` p7´ 8bq2

4
“
pa` 7´ 8aq2 ` pb` 7´ 8bq2

7
.

Simplifying gives the equation 112a2
` 112b2

´ 168a´ 168b` 126 “ 0. Solving for a yields

a “
3˘

a

´p4b´ 3q2

4
.

Since a is real, 4b´ 3 “ 0, so that b “
3
4

and a “
3
4

. Then c “ 7´ 8a “ 7´ 8
ˆ

3
4

˙

“ 1; likewise

d “ 7´ 8b “ 7´ 8
ˆ

3
4

˙

“ 1. So u “
3
4
`

3
4

i and v “ 1` i.

Solution 9 by Michel Bataille, Rouen, France.

Let u, v satisfying the equations. Note that u , 0 and v , 0 (if, say, u “ 0, then the first equation
implies that v “ 0 as well, contradicting the second equation).

14



Since |u ` v|2 “ pu ` vqpu ` vq “ |u|2 ` |v|2 ` puv ` uvq, the first equation shows that the real

number uv` uv is equal to
4
3
|u|2 `

3
4
|v|2. It follows that

uv` uv ě 2
ˆ

4
3
|u|2 ¨

3
4
|v|2

˙1{2

“ 2|u||v|

so that
2|u||v| ď uv` uv ď |uv` uv| ď |uv| ` |uv| “ 2|u||v|.

Thus, |uv` uv| “ |uv| ` |uv|, which implies that uv “ λuv for some positive real umber λ. Taking
conjugates, we also have uv “ λuv “ λ2uv, hence λ “ 1, that is, uv “ uv is a nonzero real number.

Since uv ` uv “ 2|u||v|, we have

˜

2
?

3
|u| ´

?
3

2
|v|

¸2

“
4
3
|u|2 `

3
4
|v|2 ´ puv ` uvq “ 0, hence

|u| “
3
4
|v|.

Now, the second equation gives p8u`vqp8u`vq “ 98 and it follows that 64|u|2`|v|2`16|u||v| “ 98.

With |u| “
3
4
|v|, this leads to |v|2 “ 2, so that |v| “

?
2, |u| “

3
?

2
4

. Let us set u “
3
?

2
4

eiα, v “
?

2eiβ where α, β P R. Since uv “ |u||v| is a positive real number, we must have α ” β pmod 2πq
and therefore 7` 7i “ 8u` v “ 7

?
2eiα. Thus α “

π

4
and

u “
3
?

2
4

¨
1` i
?

2
“

3
4
p1` iq, v “

?
2 ¨

1` i
?

2
“ 1` i.

Conversely, it is easily checked that these complex numbers satisfy the two equations.
We conclude that the system has a unique solution

pu, vq “
ˆ

3
4
p1` iq, 1` i

˙

.

Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo, Spain; Daniel Văcaru, Pites, ti, Roma-
nia; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA and the
problem proposer.

‚ 5688 Proposed by Kenneth Korbin, New York, NY.

Three convex hexagons with integer side lengths are all inscribed in the same circle. The hexagons
have perimeters p, p` 1 and p` 2. Find the lengths of the sides of each hexagon.

Solution by the problem proposer.

Answers:
p2, 2, 2, 2, 7, 7q

p2, 2, 4, 4, 4, 7q
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p4, 4, 4, 4, 4, 4q

with diameter equal to 8.

‚ 5689 Proposed by Rafael Jakimczuk, Universidad National de Lujá, Buenos Aires, Argentina.

Let pFnqně1 denote the Fibonacci sequence defined by the recursion Fn “ Fn´1 ` Fn´2 with
F1 “ F2 “ 1. Find lim

nÑ8
Pn where the sequence pPnqně1 is defined by

Pn :“
n
ź

k“1

ˆ

1`
1

nFk

˙Fk`1

.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

In the following solution, we shall apply three well-known results: (a) x{p1 ` xq ď lnp1 ` xq ď x
for x ą ´1; (b) If an Ñ L as n Ñ 8, then pa1 ` a2 ` ¨ ¨ ¨ ` anq{n Ñ L as n Ñ 8; (c)
lim
nÑ8

Fk`1{Fk Ñ p1`
?

5q{2 as n Ñ 8.

Taking the natural logarithm of Pn, we have
n
ÿ

k“1

Fk`1

nFk ` 1
(a)
ď

n
ÿ

k“1

Fk`1 ln
ˆ

1`
1

nFk

˙

(a)
ď

1
n

n
ÿ

k“1

Fk`1

Fk
. (9)

Since p1{nqFk`1{pFk ` 1q “ Fk`1{pnFk ` nq ď Fk`1{pnFk ` 1q, we can rewrite p9q as

1
n

n
ÿ

k“1

Fk`1

Fk ` 1
ď ln Pn ď

1
n

n
ÿ

k“1

Fk`1

Fk
.

But Fk`1{pFk ` 1q “ pFk`1{Fkq ¨ p1 ` 1{Fkq Ñ p1 `
?

5q{2 as n Ñ 8 by (c). Finally, result (b)
and the squeeze principle imply that ln Pn Ñ p1`

?
5q{2 “ ϕ, so that lim

nÑ8
Pn “ eϕ « 5.04317.

Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA. Let pFnqně1 be the Fibonacci sequence, and let

Pn “

n
ź

k“1

ˆ

1`
1

nFk

˙Fk`1

.

Then,

ln Pn “

n
ÿ

k“1

Fk`1 ln
ˆ

1`
1

nFk

˙

“

n
ÿ

k“1

Fk`1

˜

1
nFk

´
1

2n2F2
k

`
1

3n3F3
k

´` ¨ ¨ ¨

¸

“
1
n

n
ÿ

k“1

Fk`1

Fk
´

1
2n2

n
ÿ

k“1

Fk`1

F2
k

`
1

3n3

n
ÿ

k“1

Fk`1

F3
k

´` ¨ ¨ ¨ .
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Now, for large k,

Fk „
1
?

5
ϕk, where ϕ “

1`
?

5
2

.

It follows that

lim
kÑ8

Fk`1

Fk
“ ϕ, so lim

nÑ8

1
n

n
ÿ

k“1

Fk`1

Fk
“ ϕ.

Additionally, for j ě 2,

lim
kÑ8

Fk`1

F j
k

“ 0, so lim
nÑ8

1
n

n
ÿ

k“1

Fk`1

F j
k

“ 0.

Finally,
lim
nÑ8

ln Pn “ ϕ, and lim
nÑ8

Pn “ eϕ.

Solution 3 by Moti Levy, Rehovot, Israel.

ln pPnq “

n
ÿ

k“1

Fk`1 ln
ˆ

1`
1

nFk

˙

. (10)

Taylor series of ln p1` xq is

ln p1` xq “
8
ÿ

m“1

p´1qm´1 xm

m
. (11)

Plugging (11) in (10) gives

ln pPnq “

8
ÿ

k“1

8
ÿ

m“1

p´1qm´1 Fk`1

mnmFm
k

“

8
ÿ

m“1

p´1qm´1

mnm

˜

n
ÿ

k“1

Fk`1

Fm
k

¸

. (12)

We express the limit of (12) as sum of two limits,

lim
nÑ8

ln pPnq “ lim
nÑ8

˜

1
n

n
ÿ

k“1

Fk`1

Fk

¸

` lim
nÑ8

˜

8
ÿ

m“2

p´1qm´1

mnm

n
ÿ

k“1

Fk`1

Fm
k

¸

. (13)

Now we show that the second limit is zero:
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

m“2

p´1qm´1

m

n
ÿ

k“1

Fk`1

nmFm
k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

m“2

p´1qm´1

m

˜

1
n2

n
ÿ

k“1

Fk`1

F2
k

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
`

1´ ln p2q
˘

˜

1
n2

n
ÿ

k“1

Fk`1

F2
k

¸

(14)

lim
nÑ8

˜

1
n

n
ÿ

k“1

Fk`1

Fm
k

¸

“ lim
kÑ8

Fk`1

Fm
k

“

#

ϕ, m “ 1
0, m ě 2 (15)
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It follows from (14) and (15) that lim
nÑ8

˜

8
ÿ

m“2

p´1qm´1

mnm

n
ÿ

k“1

Fk`1

Fm
k

¸

“ 0.We are left with the first limit

which by (15) is

lim
nÑ8

ln pPnq “ lim
nÑ8

˜

1
n

n
ÿ

k“1

Fk`1

Fk

¸

“ ϕ.

We conclude that lim
nÑ8

Pn “ eϕ � 5.0432.

Solution 4 by Albert Stadler, Herrliberg, Switzerland.

Binet’s explicit formula for the Fibonacci numbers states that

Fk “
1
?

5

¨

˝

˜

1`
?

5
2

¸k

´

˜

1´
?

5
2

¸k
˛

‚.

Thus lim
kÑ8

Fk`1

Fk
“

1`
?

5
2

. We conclude that

logPn “

n
ÿ

k“1

Fk`1log
ˆ

1`
1

nFk

˙

“

n
ÿ

k“1

Fk`1

nFk
` O

˜

n
ÿ

k“1

Fk`1

pnFkq
2

¸

“

“
1
n

n
ÿ

k“1

˜

1`
?

5
2

` o p1q

¸

` O

˜

1
n2

n
ÿ

k“1

1

¸

“
1`

?
5

2
` o p1q

and
lim
nÑ8

Pn “ e
1`
?

5
2 .

Solution 5 by Michel Bataille, Rouen, France.

We have

lnpPnq “

n
ÿ

k“1

Fk`1 ln
ˆ

1`
1

nFk

˙

and for positive x,

x´
x2

2
ď lnp1` xq ď x.

We deduce that for k “ 1, 2, . . . , n,

1
n
¨

Fk`1

Fk
´

1
2n2 ¨

Fk`1

F2
k

ď Fk`1 ln
ˆ

1`
1

nFk

˙

ď
1
n
¨

Fk`1

Fk

so that
1
n

n
ÿ

k“1

Fk`1

Fk
´

1
2n
¨

1
n

n
ÿ

k“1

Fk`1

F2
k

ď lnpPnq ď
1
n

n
ÿ

k“1

Fk`1

Fk
. (1)
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We know that Fn “
αn ´ βn

?
5

where α “
1`

?
5

2
and β “

1´
?

5
2

. It follows that lim
nÑ8

Fn “ 8

and that lim
nÑ8

Fn`1

Fn
“ α (since

Fn`1

Fn
“
αn`1 ´ βn`1

αn ´ βn “ α ¨
1´ pβ{αqn`1

1´ pβ{αqn
.q

Therefore lim
nÑ8

Fn`1

F2
n
“ lim

nÑ8

Fn`1{Fn

Fn
“ 0 and, using Cesaro’s Theorem, we obtain

lim
nÑ8

˜

1
n

n
ÿ

k“1

Fk`1

Fk

¸

“ α, lim
nÑ8

˜

1
n

n
ÿ

k“1

Fk`1

F2
k

¸

“ 0.

Now, p1q and the Squeeze Theorem give lim
nÑ8

lnpPnq “ α.
We conclude

lim
nÑ8

Pn “ eα.

Solution 6 by Perfetti Paolo, dipartimento di matematica, Universit„a di “Tor Vergata", Roma,
Italy.

We use the following facts I and II

I. lim
nÑ8

Fk`1

Fk
“

1`
?

5
2

� α,

II. lnp1` xq “ x` Opx2
q for x Ñ 0.

Now

ln Pn “

n
ÿ

k“1

Fk`1 ln
ˆ

1`
1

nFk

˙

“

n
ÿ

k“1

Fk`1

nFk
`

n
ÿ

k“1

Fk`1O

˜

1
n2F2

k

¸

n
ÿ

k“1

Fk`1

nFk
“

1
n

n
ÿ

k“1

ˆ

Fk`1

Fk
´ α

˙

` α “
1
n

n0
ÿ

k“1

ˆ

Fk`1

Fk
´ α

˙

`
1
n

n
ÿ

k“n0`1

ˆ

Fk`1

Fk
´ α

˙

` α

We know that @ε ą 0 D n0 : k ą n0 ùñ

ˇ

ˇ

ˇ

ˇ

Fk`1

Fk
´ α

ˇ

ˇ

ˇ

ˇ

:

1
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“n0`1

ˆ

Fk`1

Fk
´ α

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
n

n
ÿ

k“n0`1

ε “ ε
n´ n0

n
ă ε

1
n

ˇ

ˇ

ˇ

ˇ

ˇ

n0
ÿ

k“1

ˆ

Fk`1

Fk
´ α

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
n

max
1ďnďn0

ˇ

ˇ

ˇ

ˇ

Fk`1

Fk
´ α

ˇ

ˇ

ˇ

ˇ

Ñ 0.

19



It follows that lim
nÑ8

n
ÿ

k“1

Fk`1

nFk
“ α

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Fk`1O

˜

1
n2F2

k

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

1
n2

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0.

It follows lim
nÑ8

ln Pn “ α and then Pn Ñ eα

Also solved by the problem proposer.

‚ 5690 Proposed by Toyesh Prakash Sharma (Student) St. C.F. Andrews School, Agra, India.

Find the value of
ż 1{

?
2

0
sin´1

ˆ

cos
´

sin´1x
¯

˙

dx´
ż π{2

π{4
sin

´

cos´1 psinxq
¯

dx.

Solution 1 by Mohammad Bakkar, Tishreen University, Latakia, Syria.

First let’s establish that

x P
“

0, π{2
‰

ùñ cos
´

sin´1
pxq

¯

“
a

1´ x2, sin
´

cos´1 pxq
¯

“
a

1´ x2.

Using the latter in the given expression, we get

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1x
¯

˙

dx´
ż π{2

π{4
sin

´

cos´1 psinxq
¯

dx

“

ż 1{
?

2

0
sin´1

´

a

1´ x2
¯

dx´
ż π{2

π{4
sin

´

a

1´ x2
¯

dx.

Implementing the substitution x “ cos puq, with dx “ ´ sin puq du, in the first integral of the
preceding expression, we get

ż π{2

π{4

“

´u sin puq
‰

du´
ż π{2

π{4
sin

´

a

1´ x2
¯

dx

ż π{2

π{4

“

´u cos puq
‰1

du “ ´u cos puq
ˇ

ˇ

ˇ

π{2

π{4
“

π

4
?

2
.
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Solution 2 by Charles Diminnie and Andrew Siefker, Angelo State University, San Angelo,
TX.

For 0 ď x ď
π

2
, we have 0 ď cos´1 psin xq ď

π

2
and hence,

sin
´

cos´1 psin xq
¯

“

b

1´ cos2
`

cos´1 psin xq
˘

“

a

1´ sin2 x
“ cos x. (1)

It follows that
ż π

2

π
4

sin
´

cos´1 psin xq
¯

dx “
ż π

2

π
4

cos xdx

“ sin x |
π
2
π
4

“ 1´

?
2

2
. (2)

Note that condition p1q implies that

sin´1
pcos xq “ cos´1 psin xq (3)

when 0 ď x ď
π

2
. When 0 ď x ď 1, it follows that 0 ď sin´1 x ď

π

2
and condition (3) yields

sin´1
ˆ

cos
´

sin´1 x
¯

˙

“ cos´1

ˆ

sin
´

sin´1 x
¯

˙

“ cos´1 x. (4)

This implies that
ż

?
2

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx “
ż

?
2

2

0
cos´1 xdx. (5)

As recommended in calculus textbooks,
ż

?
2

2

0
cos´1 xdx can be evaluated by using Integration by

Parts with u “ cos´1 x and dv “ dx. Then,

du “ ´
1

?
1´ x2

dx and v “ x and thus,

ż

?
2

2

0
cos´1 xdx “ x cos´1 x |

?
2

2
0 ´

ż

?
2

2

0
x

˜

´
1

?
1´ x2

¸

dx

“

?
2

2
¨
π

4
´

a

1´ x2 |

?
2

2
0

“

?
2π
8

´

?
2

2
` 1. (6)
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Conditions (5) and (6) imply that

ż

?
2

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx “

?
2π
8

´

?
2

2
` 1. (7)

Finally, by conditions (2) and (7), we obtain

ż 1?
2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx´
ż π

2

π
4

sin
´

cos´1 psin xq
¯

dx

“

?
2π
8

´

?
2

2
` 1´

˜

1´

?
2

2

¸

“

?
2π
8

. �

Solution 3 by Seán M. Stewart, Physical Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia.

Let

f pxq “ sin´1
ˆ

cos
´

sin´1 x
¯

˙

.

The function f is a strictly monotonically decreasing function on the interval r0, 1s with continuous

derivative on p0, 1q. So on the interval r0,
1
?

2
s, f has an inverse function f´1 given by

f´1
pxq “ sin

´

cos´1 psin xq
¯

.

In general, if f is a strictly monotonic function on the interval ra, bs (a ă b) with continuous
derivative on the interval pa, bq, then (see, for example, [?, Thm 17.1, p. 233])

ż b

a
f pxq dx`

ż f pbq

f paq
f´1
pxq dx “ b f pbq ´ a f paq. (16)

Here f´1 denotes the inverse of f . In our case a “ 0 and b “
1
?

2
. Thus

f paq “ f p0q “ sin´1
pcospsin´1

p0qqq “
π

2
,

and

f pbq “ f

˜

1
?

2

¸

“ sin´1

¨

˝cos

˜

sin´1 1
?

2

¸

˛

‚“
π

4
.
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On applying (16) to our function f we find

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx`
ż π{4

π{2
sin

´

cos´1 psin xq
¯

dx “
1
?

2
¨
π

4
´ 0 ¨

π

2

ñ

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx´
ż π{2

π{4
sin

´

cos´1 psin xq
¯

dx “
π

4
?

2
.

Solution 4 by Albert Stadler, Herrliberg, Switzerland.

Clearly,
cos parcsinx q “ sin parccosx q “

a

1´ x2, 0 ď x ď
π

2
.

So
ż 1?

2

0
arcsin

`

cos parcsinx q
˘

dx´
ż π

2

π
4

sin
`

arccos psinx q
˘

dx “

“

ż 1?
2

0
arcsin

´

a

1´ x2
¯

dx´
ż π

2

π
4

a

1´ sin2x dx “

x“cosy
hkkikkj

“

ż π
2

π
4

arcsin psiny q siny dy´
ż π

2

π
4

cosx dx “
ż π

2

π
4

xsinx dx´
ż π

2

π
4

cosx dx “

“ ´

ż π
2

π
4

d
dx
pxcosx q dx “ ´xcosx |x“

π
2

x“ π
4
“

π

4
?

2
.

Solution 5 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We let I “
ż 1{

?
2

0
sin´1

´

cospsin´1 xq
¯

dx and J “
ż π{2

π{4
sin

´

cos´1
psin xq

¯

dx, and we show that

I ´ J “
π
?

2
8

.

For I, since 0 ď x ď 1{
?

2, we have cospsin´1 xqq “
a

1´ x2 and thus

sin´1
´

cospsin´1 xq
¯

“ sin´1
p
a

1´ x2q “ cos´1 x.

This yields

I “
ż 1{

?
2

0
cos´1 x dx “

”

x cos´1 x´
a

1´ x2
ı1{

?
2

0
“
π
?

2
8

´

?
2

2
` 1.

For J, since π{4 ď x ď π{2, we have
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sin
´

cos´1
psin xq

¯

“

b

1´ psin xq2q “ cos x.

This yields

J “
ż π{2

π{4
cos x dx “ sin x

ˇ

ˇ

ˇ

π{2

π{4
“ 1´

?
2

2
.

Hence we conclude that

I ´ J “
π
?

2
8

.

Solution 6 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

For x P p0, 1{
?

2q,
cos

´

sin´1 x
¯

“
a

1´ x2,

so

sin´1
ˆ

cos
´

sin´1 x
¯

˙

“ sin´1
´

a

1´ x2
¯

“ cos´1 x.

Thus,

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx “

ż 1{
?

2

0
cos´1 x dx

“ x cos´1 x

ˇ

ˇ

ˇ

ˇ

ˇ

1{
?

2

0

`

ż 1{
?

2

0

x
?

1´ x2
dx

“
π

4
?

2
´

a

1´ x2

ˇ

ˇ

ˇ

ˇ

ˇ

1{
?

2

0

“
π

4
?

2
´

1
?

2
` 1.

Next, for x P pπ{4, π{2q,
cos´1 psin xq “

π

2
´ x,

so

sin
´

cos´1 psin xq
¯

“ sin
ˆ

π

2
´ x

˙

“ cos x.

Thus,
ż π{2

π{4
sin

´

cos´1 psin xq
¯

dx “
ż π{2

π{4
cos x dx “ sin x

ˇ

ˇ

ˇ

ˇ

ˇ

π{2

π{4

“ 1´
1
?

2
.

Hence,
ż 1{

?
2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx´
ż π{2

π{4
sin

´

cos´1 psin xq
¯

dx “
π

4
?

2
.
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Solution 7 by David A. Huckaby, Angelo State University, San Angelo, TX.

In the following we will use the facts that for acute angle θ, sin´1
pcos θq “ cos´1

psin θq “
π

2
´ θ,

and that
ż

sin´1 x dx “
a

1´ x2 ` x sin´1 x`C, where C is a constant.

The first integral is

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx

“

ż 1{
?

2

0

ˆ

π

2
´ sin´1 x

˙

dx

“

„

π

2
x´

´

a

1´ x2 ` x sin´1 x
¯

1{
?

2

0

“
π

2
¨

1
?

2
´

g

f

f

e1´

˜

1
?

2

¸2

´
1
?

2
sin´1

˜

1
?

2

¸

´
π

2
p0q `

a

1´ 02 ´ 0 ¨ sin´1 0

“
π

2
?

2
´

c

1´
1
2
´

1
?

2
¨
π

4
` 1

“
π

2
?

2
´

?
2

2
´

π

4
?

2
` 1.

The second integral is

ż π{2

π{4
sin

´

cos´1
psin xq

¯

dx

“

ż π{2

π{4
sin

ˆ

π

2
´ x

˙

dx

“

«

cos
ˆ

π

2
´ x

˙

ffπ{2

π{4

“ 1´

?
2

2
.

So
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ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx´
ż π{2

π{4
sin

´

cos´1
psin xq

¯

dx

“

˜

π

2
?

2
´

?
2

2
´

π

4
?

2
` 1

¸

´

˜

1´

?
2

2

¸

“
π

2
?

2
´

π

4
?

2

“
π

4
?

2
.

Solution 8 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Setting f pxq “ sinpcos´1
psin xqq, we see that f is monotonically decreasing since

f 1pxq “ ´ sin x cos x{
a

1´ sin2 x ă 0

for x P rπ{4, π{2s, which implies f has an inverse. Furthermore, since

pF ˝G ˝ Hq´1
“ H´1

˝G´1
˝ F´1,

we have

f´1
pxq “ sin´1

ˆ

cos
´

sin´1 x
¯

˙

.

Now we use a known formula for integrating inverse functions:
ż d

c
f´1
pxq dx `

ż b

a
f pxq dx “ bd ´ ac, where f paq “ c, f pbq “ d.

Noting that f pπ{4q “ 1{
?

2 and f pπ{2q “ 0, we apply this formula to f , with a “ π{2, b “
π{4, c “ 0, d “ 1{

?
2, to get

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx `
ż π{4

π{2
sin

´

cos´1
psin xq

¯

dx

“

ż 1{
?

2

0
sin´1

ˆ

cos
´

sin´1 x
¯

˙

dx ´
ż π{2

π{4
sin

´

cos´1
psin xq

¯

dx

“
π

4
¨

1
?

2
´

π

2
¨ 0 “

?
2 π
8

.

Comment: Although the formula cited above was published in 1905 by Charles-Ange Laisant, it
doesn’t seem to be well-known. See the Wikipedia article titled "Integral of inverse functions" for
some discussion and references.
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Solution 9 by Michel Bataille, Rouen, France.

Let ∆ be the difference to be evaluated. We show that ∆ “
π
?

2
8

.

For x P r0, 1{
?

2s, we have sin´1 x P r0, π{4s and

sin´1
´

cospsin´1 xq
¯

“ sin´1
psinpπ{2´ sin´1 xqq “ π{2´ sin´1 x “ cos´1 x.

For x P rπ{4, π{2s, we have

sin
´

cos´1
psin xq

¯

“ sinpπ{2´ sin´1
psin xqq “ sinpπ{2´ xq “ cos x.

It follows that

∆ “

ż 1{
?

2

0
cos´1 x dx´

ż π{2

π{4
cos x dx “ ´

˜

ż π{2

π{4
cos x dx`

ż cospπ{2q

cospπ{4q
cos´1 x dx

¸

,

hence

∆ “ ´

ˆ

π

2
cos

π

2
´
π

4
cos

π

4

˙

“
π
?

2
8

using the following general result: if f is a differentiable, strictly monotone function on ra, bs
(a ă b) and f´1 is its inverse, then

ż b

a
f ptq dt `

ż f pbq

f paq
f´1
ptq dt “ b f pbq ´ a f paq.

Proof. Let Fpxq “
ż x

a
f ptq dt `

ż f pxq

f paq
f´1
ptq dt ´ x f pxq for x P ra, bs. Then, F 1pxq “ f pxq `

f´1
p f pxqq f 1pxq´ f pxq´ x f 1pxq “ 0, hence Fpxq “ Fpaq “ ´a f paq for all x P ra, bs. In particular,

Fpbq “ ´a f paq.

Note. The result can also be reached via
ż 1{

?
2

0
cos´1 x dx “

”

x cos´1 x
ı1{

?
2

0
`

ż 1{
?

2

0

x
?

1´ x2
dx “

π

4
?

2
´

”

a

1´ x2
ı1{

?
2

0
“
π
?

2
8
´

1
?

2
`1

and
ż π{2

π{4
cos x dx “ 1´

1
?

2
.

Also solved by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA; Moti Levy, Rehovot, Israel and the problem proposer.
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Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”
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where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle
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If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)
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Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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