Problems and Solutions Albert Natian, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at the Department of Mathematics,
Los Angeles Valley College, CA. Please make sure every proposed problem or proposed solution
is provided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at <www.ssma.org/publications>.
Solutions to the problems published in this issue should be submitted before June 1, 2023.

e 5721 Proposed by Albert Stadler, Herrliberg, Switzerland.

Triangle AABC has angles a, B, y (expressed all in radians), inradius r and circumradius R. Prove

that \ \ \
sina \ 2 sing \ 2 siny \ 2 r
>2 4+ —.
(5) CF) () =2

e 5722 Proposed by Rafael Jakimczuk, Departamento de Ciencias Bdsicas, Division Matemdtica,
Universidad Nacional de Lujdn, Buenos Aires, Argentina.

Let p, be the n-th prime number. Prove the following inequality

Pnil <3p[ |+1 forn>1

n
2

where |.| denotes the integer part function.

1
Hint: Use the Rosser-Schoenfeld inequalities p, < nlogn + nloglogn — 7" for n > 20 and
pn > nlogn forn > 1 along with a small table of primes.

e 5723 Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, Buzdu, Romania.

5
For real x, solve the equation <\5/x +2—2x+1— Vax+ 7) = 3x + 8.

e 5724 Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania.



Calculate the integral:

dx.

f \/}ln X

Pt
e 5725 Proposed by Narendra Bhandari, Bajura District, Nepal.

Prove

i n- 4 ) | 1559v2 - 1216
(2n = 1)2(4n +35) | (i) | 58800 ‘

n:1 2n+2

e 5726 Proposed by Toyesh Prakash Sharma (Student) Agra College, Agra, India.

Calculate

P Jl f Jl \/ X3y*z dxdydz
' (VI + V) +y (Ve V) w2 (Ve V)

Solutions
To Formerly Published Problems

’»

® 5697 Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, “George Emil Palade
School, Buzdu, Romania.

Solve the following equation in real numbers:

5 5 5
(x2—6x+5> +<x2—9x+14> —<2x2—15x+19> _o.

Solution 1 by Yunyong Zhang, Chinaunicom, Yunnan, China.
@ — b =(a—Db)(a" +da’b+d’b* +ab’ + b*)
leta=2x"+5x+19, b=x"—-9x+ 14, c=x"—6x+5
then the equation can also be expressed by ¢® = c(a* + a’b + a’b* + ab’® + b*)
divided by ¢ (x#1, x#5)

t=d*+d’b+d*b* +ab® + b



ct —b* = (c* +b*)(c—b)(c+b) =a* + a’b+ a*b* + ab’
= (¢ +b*)(3x — 9)(2x* — 15x + 19) = a(a® + a*b + ab* + b*)

L5 i4ﬁ)
(*+b*)(Bx—9) = (a+b)(a* + b*) = (a® + b*)(3x* — 24x + 33)

divided by a (x

ie. (c*+b*)(x—3) = (a®+ b*)(x* — 8x + 11)

Ax—3)+b*(x—3) =a*(x* = 8x + 11) + b*(x* — 8x + 11)

ie. B (2—9x+14) = A(x—3)—a2(X*—8x+11) = (x*—9x+14) (—4x4 1+ 5700 — 271 + 483x — 289)
divided by b (x#2, x#7)

(x* —9x + 14)* +4x* — 57x° +271x* — 483x +289 =0

ie. 5x* —75x° + 380x% — 735x + 485 = 0 no real roots

15+ V73

~ 1,5 2.7,
o 1

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX.

Let A =A(x) = x> —6x+5, B=B(x)=x>-9+14,and C = C(x) = 2x* — 15x + 19.
Then A + B = C. So

(X* —6x+5)° 4+ (x* —9x+14)° — (26* —15x +19)° = 0
— A+ B =(A+B)’
— A’ + B> = A’ + 5A'B + 10A°B* + 10A’B® + 5AB* + B°
— 0 =5AB + 10A°B* + 10A’B® + 5AB*
— 0 =AB(A’ + 2A’B + 2AB* + BY)
— 0=AB(A+ B)(A* + AB+ B

= 0= ABC(A* + AB + B%).



The above equation is satisfied when A = 0, B=0, C = 0, or A% + AB + B?> = 0. Hence, six of
the ten possible roots are simply 1, 5, 2, 7, and (15 + +/73) /4.
If A> + AB + B> = 0, we have that

,_ Bt VB B
N 2
. A:B(—I—Z’\@).

If x = ris areal solution not given above, then A(r) # 0 is real. Also B(r) # 0 is real which means
that B(r)((—1 +i+/3)/2) is complex. Thus A(r) is complex. This is, of course, a contradiction. So
there are no additional real solutions.

Solution 3 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

Let P = x> —6x + 5and Q = x* — 9x + 14. Observe that we wish to solve the equation
P’ + @° — (P + Q) = 0. Right away, we can factor

P+Q —(P+0) = (P+ Q)P —PQ+PQ —PQ + 0" — (P+ Q)

= )

= (P+Q)(P' = P'Q+ P'Q"~ PO’ + 0" = (P+Q)")

= (P+Q)(P*=PQ+PQ*— PO’ + 0" — (P' +4P°Q + 6P*Q* + 4PQ’° + Q)
= (P+ Q)(—5P°Q — 5P°Q* — 5PQ’)

= —5PQ(P + Q)(P* + PQ + Q°).

(
(
(
(

We now find the roots of each factor:

P=x—6x+5=(x—1)(x-5)=0=x=1orx=>5,
Q=x*-9x+14=(x-2)(x-7)=0=x=2o0rx=17,

15+ /(=152 —4(2)(19) 15+ v/73
2(2) B 4

P+0Q=2x"-15419=0=x=
As for P> + PQ + Q?, completing the square reveals that
2 2 1\ 3 2
P +PO+0 = P+§Q +4_1Q >0

1
for real P and Q. Thus, this quadratic form has real roots only when P + EQ =0and QO =0

simultaneously. Of course, Q equalling O would then force P = 0. Since P and Q do not share any
roots, this last factor does not contribute any new real roots. It follows that the real solutions to the
original equation are

15 1 15 1
x=1,x=I—Z 73,x=2,x=5,x=7+zv73,x=7.



Solution 4 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

15+ /73
The real solutions are 1,2,5,7, and _T Ifwelet A = x> —6x+5 = (x—1)(x—5)

and B = x> — 9x + 14 = (x — 2)(x — 7), then the equation has the form A° + B’ — (A 4+ B)’ = 0;
the left side of which can be factored as —5AB(A + B)(A> + AB + B*) = 0. Thus, any solution
willhave A =0, B=0,A + B =0, or A> + AB + B*> = 0. From the factorizations above, A = 0 if
and only if x = 1 or x = 5; while B = 0 if and only if x = 2 or x = 7. From the quadratic formula,
15+ V73

2 .

Suppose x € R —{1,2,5,7}. ThenA = (x—1)(x—5) and B = (x — 2)(x — 7) are both nonzero. If
A and B have the same sign, then AB > 0 and A*> + AB + B> > 0. If A and B have opposite signs,
then 2AB < AB < 0, so that

A+ B =0ifand only if x =

A’ +AB+ B*> A+ 2AB+ B> = (A+B)* = 0.

Thus, A2 + AB+ B> > Oforall x € R — {1,2,5,7}, and the only real solutions to the original

15+ V73
—

Solution 5 by Albert Stadler, Herrliberg, Switzerland.

equation are 1,2, 5,7, and

We first check if the given equation has integer roots. Fermat’s last theorem (for the exponent
5) states that if a>+b’-¢c> = 0 in integers a, b, c¢ then either a=0 or b=0 or c=0. Hence either
¥ —6x +5=00rx> —9x + 14=00r2x*> — 15x + 19 = 0. The first equation has the

1
roots 1 and 5, the second the roots 2 and 7 and the third the roots 1 (15 + \/73>, and it is easily
verified that all 6 roots are roots of the given equation taking into account that

<x2 — 6x + 5>+<x2 —9x + 14>=2x2 — I5x + 19
and a>+b’ is divisible by a+b. Hence we have the factorization
5 5 5
(¢ —6x+5) + (& -0x+14) = (22— 155+ 19) =

15— 1) (x—2) (x—5) (x—7) <2x2 15k + 19) <x4 158 4 762% — 147x + 97) .

We note that

5\ 35\% 99 189\*> 1216
Y15 + 76X —147x+97 = [ x— = — — 0.
X X + X X+ X 3 X +324 X 99 + 391 >

1
So the only real roots of the given equation are {1, 2,5,7, 1 <15 + 73> } .



Solution 6 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

By doing a = x*—6x+5, and b = x*—9x+ 14, the proposed equation reads as @’ +b° — (a+b)®> = 0,
Since @’ + b° — (a + b)’ = —5ab(a + b)(a* + ab + b*), it follows thata = 0,b = Oanda + b = 0
are solutions, thatis x> — 6x+ 5 = 0, x> — 9x + 14 = 0, and 2x*> — 16x + 9 = 0, which imply x =

1
1,5,2,7,4— 4/23/2,4+ 4/23/2. Finally, notice that a* + ab + b* = 3 ((a +b)? +a+ b2> >0,

with value O if and only if @ = b = 0. This implies that the given equation does not have more real
solutions.

Solution 7 by Brian D. Beasley, Presbyterian College, Clinton, SC.

For each real number x, we let f = x> —6x+5and g = x> —9x+ 14. Then f + g = 2x* — 15x+ 19,
so the given equation becomes

P+&-(f+g’=0,
or equivalently
—5f'¢ —10f%g* — 10f%¢> —5fg* = 0.
Thus we obtain
=5fe(f+8)(f*+ fg+¢&) =0,

where f> + fg + g*> > Ounless f = g = 0. Hence the solutions of the equation occur when f = 0
or g = 0or f + g = 0. This yields the solution set

_.I_
{1,5,2,7,%}.

Solution 8 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Let
u=x>—6x+5 and v=x>—9x+ 14.
Then
u+v=2x>—15x+ 19,
and

(x* —6x+5)° + (& — 9x + 14)° — (2 — 15x + 19)°
= w+vV — (u+v)
= —Su'v — 10’V — 10V’ — Suwv*
—Suv(i® + 2uPv + 2uv? +17?)
= —Suv(u+v)(u? + uv +1?)

= —Suv(u+v) [(u + %v)z + %vzl :

6



This last expression is equal to zero when
e i = 0, which occurs when x = 1 or x = 5;

e v = (0, which occurs when x = 2 or x = 7;

15+ /73

e 1 + v = 0, which occurs when x = 7

The equation
(> —6x+5)° 4+ (x> —9x + 14)° — (2x* = 15x + 19)° = 0

therefore has six solutions:

15 — /73 15 + /73
x=1, —F— 2, 5, T’

Solution 9 by David A. Huckaby, Angelo State University, San Angelo, TX.
Letting @ = x* — 6x + 5 and b = x> — 9x + 14, the given equation is

@ +b —(a+b)=0.

Thata = 0, b = 0, and a = —b are solutions of this equation is clear by inspection. These three
solutions can also be obtained by expanding (a + b)’ and simplifying, which yields the equation
a*b + 2a°b? + 2a°b* + ab® = 0. Factoring out ab gives ab(a’® + 2a°b + 2ab* + b*) = 0. The third
factor has a familiar factorization, (a® + 2a’b + 2ab* + b*) = (a + b)(a* + ab + b*). So

ab(a + b)(a* + ab + b*) = 0, (1)

from which it is again easy to see thata = 0, b = 0, and a = —b are solutions.

Nowa =x*—6x+5=(x—1)(x—5),andb = x> —9x + 14 = (x — 2)(x — 7). Since we
seek only solutions for which x is real, a and » must both be real, since each is a product of real
numbers. So from equation (1), the only possibilities for real solutions x are whena = 0, b = 0, or
a+b=0.

The condition @ = 0 implies x = 1 or x = 5, whereas b = 0 implies x = 2 or x = 7.
Now a + b = 2x* — 15x + 19. An application of the quadratic formula yields the factorization
15+ \/73> ( 15— V73 15+ /73
— x _——_——— —

222 — 1 19=2x—
X S5x+ 19 (x ) ) 1

15— V73
—

>.Soa+b=Oimpliesx=
orx =

15+ /73

So the six real solutions to the original equationare x = 1, x =2, x =5, x =7, x = )

15— V73

d =
and x 4



Solution 10 by G. C. Greubel, Newport News, VA .

The equation can be seen in the form
(x=1Px =5+ (x—2)°(x—7) = (22> — 15x + 19)°.

Note that the factors on the left-hand side are {1,2,5,7}. Let f(x) = 2x* — 15x+ 19 then f(1) = 6,
f(2) = =3, f(5) = —6, f(7) = 12. It is quickly noticed that x = {1,2,5,7} are solutions. Now
factoring f(x) yields

It is noticed that when 4x = 15 + /73 the left-hand side results in a value of zero. It turns out that
the real valued roots of the equation are the factors of the equation. This gives

15+ /73 15— \/73}
4 b

1,2,5,7,
xe{ 1

are the real valued solutions.
Solution 11 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

We show that there are only six real solutions:
x =1,2,5 7, (15+ V73)/4, (15— v73)/4.

Leta = x> —6x+5and b = x* —9x+ 14, so that the given equation becomes @’ +b° —(a+b)° = 0.
Then the binomial expansion yields

S +b —(a+ b =d +b - <a5 +5a*b + 10a°b? + 10a%b° + Sab* + b5)
_ <5a4b +10a°5 + 1042 + 5ab4>
— —Sab (a3 +2a% + 2ab* + b3>
= —5ab(a + b)(a* + ab + b*)
= —15(x* — 6x + 5)(x* — 9x + 14)(2x* — 15x + 19) - P(x),

15 19)°
where P(x) = x* — 15x° + 76x* — 147x + 97 = | x* — Sxto )+ Z(x — 3)? does not vanish

for any real value of x. Solving each of the first three quadratic equations yields the six real roots
listed above.



Solution 12 by Michel Bataille, Rouen, France.

Let A = x> — 6x + 5and B = x* — 9x + 14. The equation is successively equivalent to
A+ B - (A+B°’=0

SAB(A® + B*) + 10A’B*(A+ B) =0
S5AB(A + B)(A*> + AB+ B*) = 0.
The latter is equivalent to A = Oor B =0orA+ B = 0or A = B = 0. The solutions of A = 0

15+ /73 15 — +/73
1 and 1

154+ /73 15— /73
4 4

are land 5,of B=0are2and 7,0of A + B = 0 are

solution.

;A =B =0hasno

In conclusion, the solutions of the proposed equation are 1, 5,2,7,
Solution 13 by Moti Levy, Rehovot, Israel.

Leta:= x> —6x+5, b:= x> — 9x + 14 then the equation can be rewritten as
@ +b —(a+b) =0,

or
ab (a + b) <ab+a2 +b2> - 0.

It follows that the roots of the original polynomial are the same as the roots of the following four
polynomials:

a=x"—6x+5=(x—1)(x—95),
b=x—-9x+14=(x-2)(x—7),

1 15 1 15
a+b=2x2—15x~|—19:2<x— (Z\/ﬁ—k?)) (x— (—Z\/ﬁ+1)>,

ab+d + b =3 <x4 15 + 764 — 147x+97> .

Now we show, by Sturm’s theorem, that the polynomial x* — 15x* 4+ 76x> — 147x + 97 has no real
roots:

Py = x* —15x° + 76x* — 147x + 97
P, = 4x> — 45x% + 152x — 147

67 , 129 653
P2=—rem(P0,P1)=——x + —Xx— —

16 608 38880

~ 4489 T 2489
1405 057

119716

P3 = —rem (P, Py) =

P4 = —rem(Pz,P3) =S



The difference in sign variations is
V(-0) =V (+x)=2-2=0,

hence the polynomial x* — 15x> +76x* — 147x+97 has no real roots. We conclude that the real roots

15— /73 15 + \/ﬁ}

5 5 5
of(x2—6x+5) +<x2—9x+14> —<2x2—15x+19) are{1,2,5,7, y ;

Solution 14 by Perfetti Paolo, dipartimento di matematica, Universita di “Tor Vergata',
Roma, Italy.

We observe that

@ +b = (a+b) —5ab(a’ +b*) — 10a*b*(a + b) =
= (a +b)’ — 5ab((a + b)* — 3ab(a + b)) — 10a*b*(a + b)

thus letting
X—6x+5=a, XX—9x+14=b, 2X>—15x+19=a+b

the equation @’ + b°> = (a + b)° hold true if and only if
—Sab((a+b)*—3ab(a+b))—10a*b*(a+b) = 0 < (a+b)ab(—5(a+b)*+15ab—10a’b*) = 0

a=0impliesx; =1x, =35
b =0 implies x3 =2, x4, =7

15+ V73 15— V73
T’ Xe = T

The equation —5(a + b)* + 15ab — 10a’h* = 0 does not have solutions.

a + b = 0 implies xs =

—5(a +b)* + 15ab — 10a*h* = 0 <« 5a* + 5b* — 5ab + 10a*b* = 0

5a% + 5b* — Sab + 10a°h* = 2+/50|ab| \/a® + b — 5ab
but \/a? + b? > 1 thus
5a* + 5b* — 5ab + 10a*b* = 2~/50|ab| — 5ab > 0

unless ab = 0 but the solutions of the equation ab = 0 have already been found. The last step is to
show a* + b* > 1.

@ +b* = 2x* —30x° + 155x% — 312x + 221 = f(x) f'(x) = 2(x — 4)(4x* —29x +39) = 0
29 — /217 29+ V217

hence f(x) ha two minima at x; = — 9 and x, 5

The absolute minimum is attained at x; and its value is circa 7.6 so concluding the proof.

10



Solution 15 by Péter Fiilop, Gyomrd, Hungary.

Ifa= (x*—6x+5)and b = (x* — 9x + 14) then the equation can be rewritten as follows:

@ +b —(a+b)’=0

from which the trivial solutions canberead: a = —banda =b =0
That is
X—6x+5=0,— X =5, x =1,
X —9x+14=0,— x; =17, Xy =2,

15 + /73 15 — V73
232 —15x+ 19 =0, — X5 = +T, X6Ta

We have to check whether the remaining four roots are reals or complexes.
Let’s calculate (a + b)° and put it back to the equation expressed by a, b.

@ +b — (@ + (?) ab* + (;) ab’ + + (2) a’b* + <i) a'b' +b°) =0

After further simplification of the last equality we get:
—5ab(b® + 2ab* + 2a°b + a*) = 0
—Sab(a + b) <a2 + b+ ab) =0

We can see the so called trivial roots again and the two (four regarding x) missing roots they are
complexes.

Using a and b expressions we have:
26 + x(—15+ V3i) + 19 F3V3i =0

As a result, we get four complex roots.
Summarize we have the following real roots:

_l’_ A/
1;2:5;7; —15 _4 3

11



Solution 16 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

Direct calculation confirms that the left-hand side of the equation can be represented in the form

“I5x-1D)x=2)(x=5)(x=-T7)px)q(x),

where

15— V73 15 73
p(x)=2x2—15x+19=2<x—T\/7> (x—#)

and
g (x) = x* — 15x° + 76x* — 147x + 97.

We are going to show, that g has no real zeros. We have

x+E —x4—6—7x2+2x+ﬁ— x2—6—7 2+2X+23—7>0
9 4 )" 8 8" 256 16 8" " ea

if (9/8) x > —237/64, i.e., if x > —79/24 =: xy ~ —3.29167. For x < xo, we obviously have
x < —3 and, therefore, x* — 67/16 > 9 — 5 = 4. Hence,

1 7
iq(x—k—S) =4x<x2—?—6>+§<4‘(—3)-4+2=—46<0,

15 15 15
such that g (x + Z) is strictly decreasing on (—o0, x|. Consequently, g (x + I) > q <x0 + Z) =

2=
16

axis. Therefore, the polynomial g has no real zeros. Summarizing, the equation has exactly 6 real

solutions:

67\
(x2 ) > 0, for x < xo. Combining both estimates we see that ¢ (x) > 0 on the whole real

xe {1,2,5,7, (15— \/ﬁ) /4, (15 + x@) /4}

Also solved by Zaur Rajabov, ADA University, Baku, Azerbaijan; Adil Allahveranov, ADA
University, Baku, Azerbaijan; Bruno Salgueiro Fanego, Viveiro, Spain; Ivan Hadinata, Se-
nior High School 1 Jember, Jember, Indonesia; and the proposer.

¢ 5698 Proposed by Floricd Anastase, “Alexandru Odobescu” high school, Lehliu-Gard, Cdldrasi,
Romania.

Prove

Le %d}c > log(1 + V2)log(eV2).

12



Solution 1 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

Make the trigonometric substitution x = etan@ so that dx = esec’0df, /x> + e> = elsect),
and 0 < x < e if 0 < 6 < /4. Since secant is positive over this interval,

“log(e + x) 4 J”/“ log(e + etan6)
—_——dadx =
0 Va2 +e?

Due to the harmonic addition formula

b
acos @ + bsinf = sgn(a) \/mcos (tan_1 (—) — 0> ,

a

-esec’0dl = f

0

/4 <e(c050 + sin )
log
cosf

> sec 0d0.

0 esect

the integral can be further transformed into

JRM sec flog (6 2cos(x/4 - 9)> do = J”/S sec(n/8 + 0) log (e 2cos(/8 — 9)> deo.

0 cos 6 /8 cos(n/8 + 6)

Note that

fo sec(m/8-+0) log<e 2cos(n/8 — 9)> o = — J”/S sec(nr/8—6) log <e 2cos(n/8 — 9)> de.
—r/8

cos(n/8 + 6) 0 cos(m/8 + 6)

Thus, the original integral can be written as

/8
f (sec(m/8 + 6) — sec(n/8 — 0)) 10g<

0

e+/2cos(n/8 — 6)
cos(m/8 + 0) ) 0.

Since cosine is a decreasing function over [0, /4], we see that cos(n/8 — 6) > cos(n/8 + ) for
0 < 6 < /8, and so the above integral can be bounded below by

fr/g (sec(m/8 + 6) — sec(m/8 — 6)) log(e V2)do

0

- 1og(tan(”/8 +0) + sec(n/8 + 0 )

/8
tan(r/8 — ) + sec(n/8 — 6) o ‘log(e2)

= log(1 + V2)log(eV2),

as desired.

13



Solution 2 by G. C. Greubel, Newport News, VA.

Consider the integral in the form
“In(x + a)

— L dx
0 Vx*+a?

I =

which leads to

“In(x +a)

0 Vx*+a?

= In(a f\/m J<—§)2dx
a1+ (3
J;du>

= In(a) coth™'(V/2) + f % xX=au

dx

= In(a) coth™'(+/2) + J.

The integral J is evaluated as follows:

;- "In(1 + u) du
_Jo 1 + u?
:Z:O: i (Znn) L u™ In(1
zi (i”) (2 —1,1, 2n+2)>

(2”> é(—1,1,2n + 2)
n

> 1n(2) sinh™'(1) —
> In(v/2) sinh~!(1),
where ¢(s, a, x) is the Hurwitz Zeta function. Now,
I > 1n(a) coth™'(v2) + In(v/2) sinh~'(1)
> (In(a) + In(V/2)) sinh~'(1)
> In(a v2) In(1 + V/2).

This gives the result

: %dx > In(a v2) In(1 + v2).

where a = e the desired result is obtained.
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Solution 3 by Moti Levy, Rehovot, Israel.

“In(e+x) "In(x+1) +1 ln(x—i—l)
————dx = x+lo (1—1—\/5).
\/x2—|—e2 0 xr+1 Vxr+1 s

It follows that the original inequality is equivalent to

h\l/(;Lle)d 110g<1+\f>1n()

We have the following inequality

In(x+1)>x—

hence

"In(x+1) - x-S +5-%
- x/
Va2 +1 0 VX2 +1

The following definite integrals are quite straightforward to evaluate:

dx=\f2—1,
JN/X2+
x2 1 1
Y ax :—\fz——ln(xfzﬂ),
0o Vx2+1 2 2
1 3
Jx—dng—l 2,
0o Vx2+1 3.3
JIX—4dx—§1n(\f2+1)—1\f2
o Vxr+1 8 8
Then
1 x? X X
A N
X
0 Vi +1
—iln<\/§+1> 13 5T 2030766 > Lo <1+\/§>ln(2)2030546
Ky 288 9~ 2 0% =Y ’

which completes the proof.

Solution 4 by Perfetti Paolo, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

I need the following result

2 3 4
f(x)iln(1+x)<x%+%xz> >0, 0<x<l



The proof is straightforward.

1 ) 3 —1 2
f/(X)Zr—l-FX +X, f”()C)=<1+—X)2+1—2X+3X,
i 24

2 . -6
" _ _ 6x, (iv) - 6, (v = >0
P = ¥ H 0 U0 =y e W =
and f'(0) = f"(0) = f”(0) = £™(0) = 0. It follows f(x) > 0 for any x > 0.
* In( "T+1n(1+1¢ In2
ne+x Medt}ln(l—l— \/§)+n—ln(1+ V2)
\/x2+e eV +1 2
\/1‘27 n(t+ Vi 1)|i=1 = In(1 + \f)
thus we are left with proving
"In(1 +1) In2
—dt > —ln + /2
o VAF1 ( )
"In(1 +1¢ | A S
Mclt>f (t— =+ = ——)dt (1)
VE+1 0o Ve +1 2 3 4
1
t L)1
dt=(1+7): =vV2-1
0o VE2+1 ( ) 0
(1+t)1 J(+t)dt V2 - f Lee
'sz 0 (1+17):
whence
boog dt_ﬁ lfl 1 dt_ﬁ In(1 + +/2)
0o VEE+1 2 2Jo (1+2): 2 2
1 3 1 1 I 3
t 1 1 "+t
dt = *(1 + )2 —2Jt1+t22dt=\f2—2j dt
L ?+1 ( ) 0 0 ( ) 0o V1+1
whence ) X N 3
r 2 2 2 2
j PR T SO SR
0o Vi2+1 33 33

|1 ! 1 1t4+t2
=£(1+1)2 3ft21+t22dt:\f23f dt
J V2 + ( ) 0 0 ( ) o VI+2£
whence
2  In(1 2 3
J dr:\f 3(v2 (it v2) =§1n(1+\/§)—£
4 4 2 2 8 8

16



and

193v2 7 L Sin(1+ V2)

It follows that the r.h.s. of (1) is equal to 783 D

Nell

193v2 7 Sin(1+v2) In2In(l + v?2)

> 0.002
288 0 3 2 0.00

so concluding the proof.

Solution 5 by Péter Fiilop, Gyomro, Hungary.

Perform the substitution in the integral of LHS: x = et we get:

LHS =

1 1
1 +In(l +1¢ In(r + 1
40, J ' g [mE£D,
0

X V2 +1 V2 +1 ) viE+1
[ | —
sinh~!(1)=In(14+/2) 111

Let’s denote the second integral by /;; and integrate it by parts.

1
u = andv = In(1 + 1),
1+ £
then

1
= sinh !(¢f) and v = —
u = sinh™ ' (r) and v 1

1

I = [sinh—l(t) In( + 1)]l — fwdt

Regarding LHS we get:

1
sinh ' ()

LHS =1In(1 + v2) +1In(1 + v2)21n \@—JH—ldtz
In(1 + v2)(1 +1n v2) + In(1 + v2)1n ﬁ—f%dt
l

Ir2
Let’s do the ¢t = sinh(z) substitution in the integral I;5:

In(1++2)

zcosh(z)
I = LY g
L2 J 1 +sinh(z)"*

0

17



Integration by parts of 1;, we get:

cosh(z)
1 + sinh(z)’
then
u' = 1andv = In(1 + sinh(z))

u=zandv =

In(1++/2)
In(1++/2)
I, = [zln(l + sinh(z))]O — J In(1 + sinh(z))dz =

0
In(1++/2)

In(1 + vV2)In2 — f In(1 + sinh(z))dz

Regarding the unequality we get:

In(1+ v2)(1+1nv2) +In(1 + vV2)In v2 — In(1 + v2)In2+

In(1++/2)

f In(1 + sinh(z))dz = In(1 + V2)(1 + In v/2)

0
After the cancellations:
In(1++/2)
f In(1 + sinh(z))dz > 0

0

Since In(1 + sinh(z)) function is positive in the range [0,In(1 + v/2)] then the integral of it will
also be positive. But it won’t be zero.

which completes the proof.
Solution 6 by Toyesh Prakash Sharma, Agra College, Agra, India.

As

1 2 1+ o2
og e+xd *J x-+e log(e—i—x)d

VX2 +e?
Using Weighted Chebyshev s Integral Inequality

dx
x% + e? X2 + e?

2. 2
o X°+e \/x2+e2

1 “1 “1
[— arctan x] °8 (e hl x)d > {log (x + VX2 + ez)] f de
0Jo

r 1 “log(e+x) e+x f\/x2+e2 flog e+x

e VX2 4 e x? 4 €2
‘1 + I +
oy (e x)dx = log< + f)J veeTy) (e x>dx

0 Vx*+e? x? + e?

18



‘1
Let] = f oy (e * x) dx. Then
o X+ é?

dx

_Jelog(e+x)dx_Jeloge+log(l+§>

0o x>+ é? 0 X2+ e?

e e log <l—|—5> e 1

1 1 e 1 1 [ log(1+¢

=f og¢ dx + - | ———dx =loge ~ arctan > +—f Mu’t
0o X2+ e? e ) 1+<)_C)2 e ely, elo 1+12

1 (7 1
= lloge+ —J log (1 + tan ) do = llogeJr —7—Tlog V2 = llog (eﬁ)
4e e Jo 4e ed 4e

Now, using this

n (¢log(e+ x) n
TR0 ) og (14 V) rog (o)
:>4€ ) T x = log +12 10 og eV?2

Oe %d}c > log <l + \f2> log (e \f2>

Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.

® 5699 Proposed by Narendra Bhandari, Bajura, Nepal.

i 2n\ (4n —4 n _sinh’l(l)
~\n)\2n—2)64"(2n—172 81

Prove

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We note that

sinh™' (1) = log (1 + \/E) :

We have

2n 4n — 4 n _ 2 (4n —4)! B 1 4n — 4 2n—2
n =2 | op—1? (a=D'n—=1)!2n—-1)! (2n—1)\ 2n-2 n—1 |~

By Stirling’s asymptotic formula,

(4n)! 0 (dn) "+ 24 0 ( 1 > |

n'n! (2n + 1)!64" nn-‘r%efnnn-‘r%efnn(2n>2”+%672n64"

19



So the given sum converges absolutely. We have

which implies

and

i 1 2n \ 5, 1 f | s arcsin (z) <1
— == = . |z :
= @2n+1)4n\ n 2Jo V1 =12 z

Therefore, by Parseval’s theorem (see for instance https://en.wikipedia.org/wiki/Parseval%27s_theorem),

[ 2n 4n — 4 n 1 & 1 4n 2n
S = B - _
;<n)<2n_2>64n(2n—1)2 32;64"(2n+1)<2n)(n>

1 &l 1 1 (" 1 1 arcsin (e
S RN ) iy DU (R " £
32416" \ 2n 2n+1)4 \ n 64r Jo \ V1 —e* 1 +e eix
1 arcsin (z) dz

- f L,
_647T C /1_1 /1+l Z iZ’
Z Z

where C denotes the halfcircle with center O and radius 1 that starts at z=1 and that is run through in
the positive direction. In this complex integral we take the main branch of the square root, defined

by
VRei' = \/Re?, —n<t<n.

We deform the halfcircle to the segment [-1,1]. Then, by Cauchy’s theorem and taking into account

that M is an analytic function in |z|<]1,
z
1 (! 1 1 arcsin (z) dz
~ T 6an - i
T J_q \/1 1 \/1 + 1 Z 1z
Z Zz
1 1 i arcsin (z) dz 1 (! —i 1 arcsin (z) dz
~ 6din i - 1 2z Gdin 1 " 1 Z z

1 arcsin (z) dz 1 arcsin (z) dz

B f L Jl -1
6dim Jo \/1+l \/—1+l @z bdimlo | el 14l S
Z Z Z Z
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1 (! 1 arcsin (z)
b

Tl i @ ¢
We note that
J;dz = —E + C.
2/2(1-2) vz
Integration by parts therefore gives
g 1 f 1 arcsin (z) iz J 21—z 1 1 Jl 1 dz =
Ry z(1-2) =z 32n Vz \/72 16 z(1+2z)

z=1

zgiﬂ]og(\/m—F \/2> =8iﬂlog<1+\f2>.

z=0

Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Starting from the generating function for the central binomial coefficients,

> () e

replace x by x/4, then replace x by x*, transpose the n = 0 term to the right side, and divide by x*

to obtain
i 2n B 1
= VT

Now, integrate both sides from O to

= [2n x>l B 1 — 1 —x*
4n(2n —1) X ’

hd

divide by x and again integrate from O to x:

i <2n> x2n-l V=Xt xsin'x—1
7

2n—1)2 X

n=1

multiply by x and differentiate:

i 2n 21 sin”~! X
4n( 2n —1)2 2

n=1

and replace x by sin’ @ and divide by sin” 6

i n 2\ g sin”! (sin? 0).
4"(211 — 1)2 n 2 sin2 0

n=1

21



Integration from 6 = 0 to = xr/2 and using Wallis’ formula,

/2 2n\ 1
2n
0do = —,
L sin 2(,1)4’1
i 2n\ w(4n—4\ 1 _J”/Z sin~! (sin” 6) 48
& n—l 2\2n—2) 472 |, 2sin’0

i 2n\ (4n — 4 n 1 J”/Zsin_l(sinze)de
n)\2n—2)64"2n—1)2  16r ), sin? 0 '

n=1

yields

or

Integration by parts applied to the integral on the right side followed by the substitution # = sin 6
yields

/2 sin~ ! (sin” @ 7/2 Z0
f # do = o _cos8
0 sin” 6 0 4/1—sin*6

_ 5 /2 cos b d9=2f1 du
0 A/1+sin’6 o VI1+u?
2sinh™'(1).

i ( )(32:4) 64"(2:1[— 1?2 Sin};nl(l)‘

n=1

Thus,

For more infinite series similar to this, see the article by the proposer of this problem: “Infinite
Series Associated with the Ratio and Product of Central Binomial Coeflicients," Journal of Integer
Sequences, volume 25 (2022), 22.6.5.

Solution 3 by Moti Levy, Rehovot, Israel.

o [ SEERR R 5 I

n=1

Evaluation of combinatorial sum by Egorychev’s method:

4n 1 [ (Q+2)*

lz]=1

Plugging (3) into (2) and changing the order of summation and integration, we get

(1+2)" 2y 1 1
64m§2< 2t (n)(2n—|—1)64n>dz- 4)

22




The Taylor series of arcsin (x) is

S
1 — _ \nJ  2n+l
arcsin (x) = ;_;)4” on T 1)x , (5)
hence ,
o ((0+2)
i (1+ Z>4n (Zn) 1 1 B 4arcsm (4_ZZ> ©
S\ 2t \n ) (2n+1)64 (1+2?

Plugging (6) into (4) , we obtain

it 2
. ((1+2)? arcsin (1::[,)
1 arcsm( e ) 1
- § J
0

= dz = it
16771" I (1+ Z)z T (1+ ei[)Z e
=
| [ arcsin <4—1u> 1 (™ arcsin% 1 (® 1
= du = dv = f dv
lor )i 1—4u 321 ) v—1 l6rr J; vi/v+1

1 (! 1 1 (! 1
f dw=_j 1
16m Jo \/w(w+1) 81 Jo V1 + X2

ginh! (1) In (1 + ﬁ)

= (0.0035069.
8 8

Solution 4 by Perfetti Paolo, Universitg di “Tor Vergata'', Roma, Italy.

7/2 2 * /2
f (sin x)*"dx = 227:“ (:) and Z (:) SL— - V/xarcsin(2 /)
n=1

: (2n— 17

dn —4\ 243 (72
(2n 2> = J (sin x)*"*dx
n— v/ 0

whence (use the positivity of each term to invert the integral with the series)

2| & (2n n 2% a4
Jo [Z (n)64”(2n— T2 g ST dx =

n=1

1 /2 .1 i 2n n (sinx)* ndx=
87 Jo (sinx)* =\ n/(2n—1) 4

1 (™ 1 (sinx)? 1 (™? arcsin((sin x)?
(sin x) arcsin((sin x)?)dx = — (( J)
167 J, (sin x)?

yields

~ 8 ) (sin x)*

23



x = arctant yields

1 (™1 P

o0
1
— —arcsin ——dt = — arcsin ——d
16n ), 7 [z RT/—/167rJO 1+
y=1/t

Now let’s integrate by parts

1 1 = 1 x 2y*d 1 x 2y*d
——yarcsin 2‘ + f y & = f y &
y (1 (1

16 1+ 167T 0 +y2)4/2+y2 167T 0 +y2)‘/2+y2
u = 4/y*+ 2 yields
1 _(* du 1 (*[ 1 L, L, V2 +1
RS —_— — = n
6n Jsur—1 16n)ys|lu—1 u+1]|"" " Tox  v2_1

In(1+ +/2)>  (sinh)~'(1)
B 167 - 8

Solution 5 by Yunyong Zhang, Chinaunicom, Yunnan, China.

Do @ (2n 4n— 4\ 243 fz’ e
fo sin™(¢)dt = Tt (n)’ (2n—2 - ) sin™*(¢)dt
< 4n — ) n © 16" (Zn) n f o
" = 21 en ——————— | sin""(f)dt
,;( )(2”— 64"(2n — 1)? r;)ST( n ) 64"(2n —2)% ),
1 1
— J ln( ) 2n—2dx
0

=12
s L[ (_%)(—1)”_1()(2)"_1ln(x)nJZ(sin4t)”_1dtdx

87 Ju—o \ 11 0

[SIE]

in which, let y = —x*sin*

,ﬁ;) (:ﬁ) (—xFsin* )" x n = nﬁ;} (_n%)y"_] X n = LO <_n%>yrl],
=[0e] - [wlTy] " T

1 (! —1 :
S=—1 Inx 5 J drdx
87 Jo 2(1 — x2sin*1)3

- 1
Now provef J drdx 1t — —2In(1 + V2), <sinh_1(1) =1In(1 + \6))
0o Jo

(1 — x2sin*7)2

24



— csc?(t) arcsin[x sin® 7]

3 X =
1 — x2sin*r)2 \/4x2 cos(2t) — x2cos(4t) — 3x2 + 8
= — csc?(1) arcsin(sin? 1)

Jl In x 24/2xInx
0 (

721'
Now prove J csc?(7) arcsin(sin? £)dr = 21In(1 + V/2)
0

1
Lety = sin’s, dy = 2sintcostds = (sin2¢)dt, csc’t = —
y

"arcsin(y) 1
LHSzj dy
0 y 2\/yq/l—y
1 —2arcsinyq/1—y|l+J12 11—y 1 q fl 2 d
=3 Y| = — W
2 Yy o VY 41— )2 0 YA/ 1+y

= 2sinh~'(1) = 2In(1 + V/2)

Q.E.D.

Also solved by Kaushik Mahanta, NIT Silchar, Assam, India; Péter Fiilop, Gyomro, Hun-
gary; and the proposer.

¢ 5700 Proposed by Paolo Perfetti, dipartimento di matematica Universitg di “Tor Vergata,” Rome,
Italy.

Evaluate

f”/z — cos? xIn(cos x)
dx.

—xpp 1+ sinxcosx

Solution 1 by G. C. Greubel, Newport News, VA.

This solution uses a derivative of the Beta function to obtain a result. Note that the denomina-
tor in the integral can be expanded into a series as seen by

1

72 _ cos? x In(cos
f x In(cos x) I

z2 1+ sinx cosx

I
RE

/2
(—1)"*! f sin”(x) cos"™*(x) In(cos x) dx
0 —nr/2

3
Il

[
M8

(_1)n+1 In,z

3
Il
=]

25



where [, is evaluated as follows. In general,

/2
Lim = J sin”(x) cos"™(x) In(cos x) dx
—n/2
/2
= Onm sin”(x) cos"*"(x) dx
—r/2

_ o, ( J f”ﬂ) sin” (x) cos™ " (x) dx

o1 +(_1))B<n42rl’n+1;+1>

:(1+(—1)")B(”;1,”+';+1) (w(%)—NH%H)).

When m = 2 this becomes

and leads to

(_1)l’l+1 In,2

T
18

0

S () (o(25) e02)
S ) () )

il ( )( (n+§)—¢(2n+2)>

3(%—2\/§ln(2+ V3))

= 17T2(2\f31n(2+ V3) — ).

This gives the result as

3
Il

n
4
n
4

2 V3 In(2+ V3) —n).

J”/z — cos? x In(cos x) n
v =
1

—xpp 1+ sinx cosx 2 (
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Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.
With

<

1
2’

. 1.
sin xcos x| = ‘5 sin 2x

the function 1

1 + sin xcos x
can be expanded in a geometric series

0
S Z )" sin” x cos” x
1 + sin xcos x

valid for all x. Now, for odd n,
/2
J sin” x cos"*? xIn(cos x) dx = 0
—n/2

because the integrand is an odd function; thus,

/2 2 D0 /2
— cos” xIn(cos x) ,
: dx sin?" x cos*"*2 xIn(cos x) dx
—qpp 1+ sinxcosx )

n=

0
-2 Z J sin®” x cos” ™ x In(cos x) dx.

b
() ()
a+b
(% +1
where B(x, y) is the beta function and I'(x) is the gamma function, and
atl b+1
/2 1F< )F(T> b+1 a+b
sin® x cos” xIn(cos x) dx = Yol —— | — o +1)1,
0 “or (# + 1) 2 2

where ¢y (x) is the digamma function. It then follows that

J*fr/2 — cos? xIn(cos x) dr — _li F<n+ %)F(n—k %> (lﬁo (n—l— é) — ¥ (2n+2)> .
2

Next,

/2 1 a+1 b+1
sa b

dx = =B

J;) SIn” X COoS™ xdx > ( > s > )

_zjp 1 +sinxcosx 24 I'(2n+2)

But,

r(n+§>r(n+§> - (2,1)

T (21 +2) 2 4
3
lﬁo (I’l + E) = —Y— 2In2 + 2H2n+2 — Hn+1, and
Yo(2n+2) = —y+ Huyis
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where H,, is the nth harmonic number, so

/2 _ cos® xIn(cos x)
—xpp 1+ sinxcosx

i( > (21n2+H2n+1>

2n+1

HZn-H - Z

The generating function for the central bmomlal coeflicients is

4>|=|

where

SO .
2 In2
—52 ") = (—2m2) = 1
4n=0 3
Moreover,
1 2n+1
14+ x
H,, d
2n+1 Jo 1+ x X
Suppose
- () +xf(x%)
= n na th an d .
X) ;:;)a X en 2 a,Hy, 1 = f 1 s x
Now,
S0 =
n=0 16 \/1 o Zl_r \/4 o X,
o)

2, n
i 2\ 1 f NN 2In2 ! 2x .
—Hyy = | ————dx= X.
= n 4211 2n+1 0 1+X \/7 ( x) /4_x2

For the remaining integral, the substitution x = 2sin6, followed by the Weierstrass substitution

0
t = tan > and multiple applications of partial fractions yields

! 2x /6 4sin@
dx = —db
o (I +x)v4d—x? o 1+2sinf

tan % ¢
= 16 dt
L (1 +4t4+2)(1 +7)

4 tan% 1 1 d
= — t
L <1+t2 1—|—4t+t2>

Jtanl’rz 1 1 d
— t
0 r+2—13 t+2+ 43

24+ 43
n 2 .

Sl sle



where we have used the fact that tan % — 2 — +/3. Finally,

J”/Z —Coslen(cosx)d nln2 n« 21n2+7r 2 | 2+ 43
x = —= ———1In
—xp 1 +sinxcosx V3 o4\ V3 3 \3 2
72+ V3) 7
243 12°

Solution 3 by Yunyong Zhang, Chinaunicom, Yunnan, China.

I: f; —coslen(cosx)dx _ JO — cos” xIn(cos x)dx+ f; —COSZXIH(COSX)dx
0

_z 1+ sinxcosx 1 + sinxcos x

1 + sinxcos x

s
2

2 1 1
= f — cos” x1n(cos x) ( , - , > dx
0 I +sinxcosx 1 —sinxcosx

n
2 2 cos? x
= | In(cosx)——; dx
0 sin” xcos?x — 1

2

Let t = tan x,

© In(1 + 2 Y+ 23 In(1 + 2 bx2
,:J :i__Jﬂr_J< %) In( xhn_zj__ﬁlg;@x:h_zb
0 0

o 1+2 4+ 1+ 22+ x* 1+ 22+ x*
1 2 1.2 4 00 1
x“Inx XT—X 2 4y, 6n
e e L B LD O] N RIREY
1 1
" In xdx = —
JOX n xdx (n+1)2
I_i 1 _ii 1 _li 1
PoAl(6n+5)2  (n+32] 364 (n+22 94 (2n+1)

1 5 2
= %W <8) ~Z_in which /' is trigamma function.

72
"1+ x¥)In(1 +x2)dx: 1 [fl In(1 + x?) dx+fl In(1 +x2)dx]
21 0

Now evaluate I; =
: L 1+ 22+

1 2
In(1 +
Lets(a) - [ FEE2)
0 X+ Xx

x2

1
d
JO (1 +ax?)(1+ x+ x?) *

1 m
= §Val@ —at D) {\/Zzlﬂn(l +a)+2V3(2a— 1)8 —3ln3] — 6(a — l)arctan(\/&)}

J(0) =0

J'(a) =

29



J(1) = Jl de = JOI J'(a)da = Ll J'(x)dx

o 14+ x+x2

J13ln(1+x)+@(2x—1)—31n3 Jl (x—l)arctan(\/})d
x— x
0 6(x*2 —x+1) o AVx(x®—x+1)
"In(1 + ax?)
Also, letK(a) = | ————=
s, let K(a) JO l —x+ x?
~ =3In(1+a) +2v3(2a—1)5  (a— 1)arctan(/a)

K'(a) 6@ _atl) Va(@ —a+1)

6(x>2—x+1) Vx(x2—x+1)

1| In3 2r ' (x — 1) arctan( \/x)
L==|-22 5 dx
2 343 o V/x(x2—x+1)
nln3 1(x—l)arctan(\/})d _ nln3 : =1

P R R e § Rt S N e |

: b=
In whichlet M =2 | ———
0 X4—x2+1

K(1) = Ll de _ Ll —3In(1 +x) + #(ZX_ 1) (x—1)arctan( /)

arctan xdx

arctan xdx

"In(—x% + v3x — 1) — In(x* + /3x
1 + x?

1 1
Then M = —[In(—x%+ v3x—1)—In(x*+ v/3x+1)] arctan x|} — J
\@[ ( )—In( )] lo Ve

ln(xz—\/gx-i-l)

T 1 ! in x24/3x+1
= i +2In(2 — V3)] — — ‘ d
4\@[m n(2— V) V3 Jo 1+ x2 1+ x2 *

¥—/3x+1
min 1 (! ln(szrﬂxL )d

43 43 B 12
n 1 ("In(x®+ V3x+1) —In(x> = V3x+ 1)
Zﬂln(z—ﬂwﬁfo 3

11 2+ 3x + 1 11 2 3x+ 1
Now evaluate § = S, — S, :J n(x + v3x )dx_J n(x* — v3x +1)
0 1+ x? 0 1+ 2

“In(x* + V3x + 1
First evaluate S| :f nlx 1 J:sz :
o X
(M In(x2 + V3x + 1) (“ In(x* + V3x+ 1)

= X+ dx
Jo 1 + x? 5 1+ x2

MG+ V3x+ 1), (Pt +L 1) /o

Jo 1+ x +J1 1+ 3 ( >
(M In(x® + V3x + 1) (M In(x®> + v3x+1) —2Inx
Jo 1+ x? +J0 1+ x2 d

[ir +21n(2 — v/3)]

dx

dx
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1
Inx .
J dx = G is Catalan’s constant
0

1 + x?
"In(x? + V3x+1
S’lzzf alx \sz Jax 126
0 I+ x
"In(x* + V3x+1 “In(x* + V3x+ 1
i.e.251=2J n(x> + v3x + )dx:f n(x* + v3x + )dx—2G
0 1+ x2 0 1+ x2
la|
“ In(x* + 2xsina + 1 z
Also,f0 n(x 1i5;1a )dxznln 2005%’+aln tang’—ZSgn(a)L In(tan x)dx
Whensinazﬁ,azz
a 3
“In(x® + 2xsi 1 §
J n(x’ + 2xsina + )dx:ﬂln 2cos =| + aln|tan = —ZJ In(tan x)dx
0 1+x2 6 6 0
— ln(V/3) + x ln(L) - 2fg In(tan x)dx
3 V3 0
%
- glnB—gln3—2JO In(tan x)dx
"In(x? + V3x+ 1 6
50,251:f N+ V3 )dx=§1n3—ZJ In(tan x)dx — 2G
0 1+x2 3 0
“In(x* — V3x+1
Then evaluate S, = f n(’ — v3x )dx
0 1 + x?
(M In(x* — V/3x + 1 [ In(x* — /3x + 1
_ n(x> — /3x + )dx+ n(x® — \/3x + )dx
Jo 1+x2 J1 1+x2
(M n(x®> — V3x + 1) (0 In(% — %5 +1) 1
= dx + —— | dx
Jo 1+ x? Ji 1+ x?
(M n(x®> — V3x+ 1) (M In(x* — V3x+ 1) ' Inx
= " dx+ 2 ~dx
Jo 1+ x Jo 1+x 0 1+ x
(M In(x* — V3x+1
_ [ Dot \sz Jax 126
Jo I+ x
"In(x? — V3x+1 “In(x* — V3x+ 1
252=2J bV )dx:J s >dx—2G
0 1 + x? 0 1+ x2
“In(x® — v/3x + 1 3 6
Also,f n(’ — Vi )dx=n1n2+7r1n \/§+(—7—r)ln(—£)+ZJ In(tan x)dx
0 1+x2 3 3 0

s

6
= 7_T]n3 + E1n3 —|—2J In(tan x)dx
2 6 0

2 s
= ?ﬂ In3 + ZJ In(tan x)dx
0
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n(x®> — V3x+ 1 2 6
252:f N - V3x )dx=—ﬂln3+2f In(tan x)dx — 2G
0 1+X2 3 0

2
?ﬂln3+2f

%
2(81—8,) = 7—Tln3—2j In(tan x)dx — 2G —
0 0

3

%
In(tan x)dx — 2G]

s

T 6
=—=In3— 4[ In(tan x)dx
3 0
%

S=8, —8,= —gln3 —2f In(tan x)dx
0

2 (s &
I= _rin3 + M _ LS n(2 — /3) - % (—gln?) —2fﬁln(tanx)dx>
0

in which

s

T 6
——In3 — ZJ In(tan x)dx
6 0

n n U .
= —gln3 —2 % —Eln?: +5 [Lzz(—) - le(——)]

_i [Liz(—i) _ Liz(—)]

NG
P E BN A0 N SIS S I BN
N R T WAL m[“( UL

Appendix 1

dx

*1In(1 + 2xsina + x?)
I(a) = T
0 X

m
h 0, =
Wereae( 2)

Differentiating I(a) w.r.t a yields

* 2xcosa
I'(a) = d
(@) L (1 4+ x2)(1 +2xsina + x?) g

t fo 1 1 d
= cota — x
o \I+x> 1+ 2xsina+ x?

o0
- R _y (x+sina
= cota [tan™ x tan~ | ———
cosa cosa .
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cot b4 1 /4
2 cosa \2

Integrating I'(a) back to I(a) , we have

I(a) — 1(0) = fcotx [g - Colsx (g —x)] dx

m [ 1 T x
= —J cotx — — |dx+ | ——dx
2 Jo sin x o Sinx

~" v

:21n(cos ’2—’) K

K = ,de = f xd [ln <tan E)]
o Sinx 0 2

= [xIn tanz —J In tanf dx

2 . 0 2

=aln (tan 6—1) — 2f In(tan x)dx
2 0

Now we can conclude that, for any a € (0,

SN

|

I=1I(a)=nln <cos g) +aln (tan g) - 2J In(tan x)dx
0

Similarly, for any a € (—g, O)

ST

—a

_ 2
[ =1I(a) =nln <cos g) —aln (tan ;) + ZJ In(tan x)dx
0

Appendix 2

iy

6
Evaluate = f In(tan x)dx
0

y
Let =\f3tanx, tanx = —
g V3
dy y?
d(1 +tan’x) = — = [ 1+ = | dx
V3
dx = ——d
R

1 1 1
y V3 1 J Iny f Iny n
I—Jln——d——_ dy — dy| — —=1In3
"R Zl[oy—\@iy oyt VA | 12
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1 1
lny 1 Iny
Ji ZJ y__ f dy
0 y— \3i V3ildo 1 -
1 1 1 .
Iny Iny 1 Iny _ i
JZZJ dy = f dy =Li, | —
oy+\fl o—\fi— V3i 1——\@. V3
1 1[ o I
1
L IEZde:JO IZ(xz) lnx] dx = Zz [Jo x”lnxdx]

n —

& 1

Z" go 't 1 )
Z (n+1)? 2z Z ELZZ(Z)

n=0 nO
I i
I
-3
Jz—le( )
I—Jlntanxdx
0
1 I I b4
=— |Li,| —— | —Li, | — — —1In3
2 (ﬂ) (ﬂ) 2"

Solution 4 by Michel Bataille, Rouen, France.

The change of variables x = —u shows that

O —cos? xIn(cos x) /2 _ cos? uln(cos u)
d.x = du’

—xp 1+ sinxcosx 0 1 —sinucosu

hence the required integral [ satisfies

/2 1 1 /2 251
I = J (— cos® xIn(cos x) ( + ) dx = ZJ cos” xIn(cos x) dx

0 1 +sinxcosx 1 —sinxcosx o 1 —sin’xcos?x

and therefore

/2 In(1 + tan? “ In(1 4 x2
I:J n( an’ %) (1+tan2x)dxzf de

o 1+ tan?x + tan*x o 1+x2+x*
log(i + 2) - o :
Let f(z) = Ti2+ 2 where log denotes the principal determination of the logarithm and for

R > 1, let C denote the contour formed by the line segment R(z) € [—R, R] and the semicircle I'g
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of the half-plane J(z) > 0 with center O and radius R. We have

f(z)dz =2ni- S
Cr

where S is the sum of the residues of f at w = exp(2ni/3) and at —w?. These residues are

~ log(i + w) _ log(2 cos(n/12)e™) _ In(2cos(n/12)) +i(7n/12)

R =
es(f,w) 40’ + 20 4+ 2w 3+i\3

and
log(i —w?)  In(2cos(n/12)) + i(57/12)

—4—20? —3+iv3

Res(f, —w?) =

so that, after a simple calculation,

nzﬁ ﬂ\/§ \@—i-\@ n?
2i- S = ' 1 -z 1
mi- S G I+ 3 n > 0 (1)
On the other hand, setting J(R) = J f(z) dz, we have
I'r
0 R R log(i — x) R log(i + x)
dz = d dx+JR)=| ———d —————=dx+ J(R
Q= | pwdrs | e s - |7 s | P s i)
K log(i — x) + log(i + x) RIn(1 + x%) +in
= d J(R) = d J(R). 2
L I+ x2+ x* x+ J(R) L 1+ x2+x ¥+ J(R) @

« d 3
We show at the end that ,}im J(R) = 0 and that J a ﬂ\f. From (1) and (2), we
—00

o I+x2+x 6
now deduce that

I+in

'ﬂ\/§:ﬂ2\/§i+ﬂ\@m<\@+ \/§>_7T2

6 6 3 2 12

and finally

1

12°

_JT\/§1 V6 + 12 n?
=~ . _

Proofoleim J(R)=0
o
We have

[J(R)| =

J” log(i + Re') (iRe®) 6

_ RJ” |log(i + Re")|
o 1+ R22i0 4 R4 40 =

0 |1 + R262i9 +R4e4i6|

with | log(i + Re™)| < |In(]i + Re"|| +| arg(i+ Re”)| < In(1+R)+mand |1+ R*e* +R*'™| ~ R*
. . R*
as R — oo. It follows that for sufficiently large R, we have |1 + R*e*” + R*e*| > > and

2(In(1 +R) + n)
R3

[J(R)] < -
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2(In(I + R
and the result follows since lim (In(1 + R) + 7)
R—0 R3

dx 73

1+ 2+ 6

. For X > 0, we have
X X
+1 —1
f x_dx_f _*=1 .
0o XX +x+1 o ¥ —x+1

fXlex—fXlex
0o XX +x+1 o XX+x+1

f‘h+1+1

—————ax
x X2 +x+1

=0.

Proof of JOOO

Lets(¥) = oo

ng(x) dx = %

0

N ST

1| xX+x+1 2 (1+2X) (1—2x>
= In + arctan — arctan

417X -x+1" 3 V3 V3
0
3
Letting X — o0, we see that J g(x)dx = %
0

Also solved by Moti Levy, Rehovot, Israel; Péter Fiilop, Gyomro, Hungary; Albert Stadler,
Herrliberg, Switzerland; and the proposer.

¢ 5701 Proposed by Toyesh Prakash Sharma (Student) St. C.F Andrews School, Agra, India.

fecoslt 3t2 —1 dt
A /t3 _ t5 )

Solution 1 by Yunyong Zhang, Chinaunicom, Yunnan, China.

Evaluate

Let x = arccost, then t = cos x, df = — sin xdx
_ 3 —1 1 — 3cos?
zzjem L i dt:Jex SO X gy = 1, — 3L
B -1 \Vcos3 x
in which, I, = | ¢* cos ™2 xdx
1, . : | ,
COS X = 3 (e’x + e_”‘) = Ee‘”‘ <1 + ez”‘)

3 2\~
e (l + e ’x> dx
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_ J 2(?) e dx
V8er(1+3) i(—k%)ezikx_

l + —l + 2ik
Also, I, = Jex cos? xdx

(=]

I=1 -3
© s 3 2ikx
_ iex(lJr%i) Z ( 2) e
V2 SN\ k )1+ 3i+2ik
3 2ikx

Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.

e 5702 Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

(a) Calculate

n 2.2
lim » (E —f S xdx) .
n—oo0 2 0 x2

(b) Determine the convergence or divergence of the series

i 7_r_f”sin2xd
3 LR x| .

n=1

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

Partial integration gives

0

0 L:..2 c 2 0 . 0 3 D0 L3
sin”x sin”x 2sinx cosx sin (2x sinx n
J s—dx = — +f —dx=f ( )dx=J dx = -
0 X x|, 0 X 0 X 0o X 2

o
) sinx
due to the well-known value of the integral J dx = m.

—00
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The second mean value theorem for integrals gives the asymptotic expansion

n o:.2 0 L:..2 0
T sin”x sin“x 1 — cos (2x) 1 1
= — dx = dx = ————dx=—+0(—=|.
2 L Y J o f e T (nz)

Hence
N 12
. m sin“x . 1 1 1
,}Ln;o”<z—f0 = dX) =,}Ln;"(5+0(;)> =3
andi 7r fn sin"x dx | diverges s'ncei 1/n does
== x | div , Sl n )
n=1 2 0 x2 : n=1

Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

(a) By integration by parts,

JOO sinzxdx — lm sin® x + lim sin’ x N JOC sin2xdx
0 X xX—0 X x—0 X 0 X
_ Joongxdx:f smudu_7_r
0 X 0 u
Thus,
no .2 0 312 0 0
b4 sin” x sin” x 1 1 1 CcoS 2x
T dx = dx==| —dx—= d
2 JO 2 L 2 T3 L 27 L 2
1 sin2x| 1 JOO sin 2x
= — — - = dx
2n 4x? 2), X
. n w
1 +s1n2n+c052x 3foo cos 2x
= — - X
2n 4n? 4x3 4], x*
1 sin 2n 1
= —+——+0(—=),
m Tme T <n3)
and

It follows that

(b) Because




the series

i E_f”sinzxdx
2 0 x2

n=1

has all positive terms. Moreover,

; T S(’)’ 5122xd l
ngﬂé 2

The harmonic series diverges, so the series

n=1

also diverges by the limit comparison test.

Solution 3 by by G. C. Greubel, Newport News, VA.

It can be determined that

n : .2
Sin” x
I = > dx
0 X

_ [Si(Zx) - Sin2(x)]

X
0

— Si(2n) — Sini("),

where Si(x) is the Sine Integral. Since, for large x,

Si(x) ~ g _cos(x) sin(x) (i)

X x2

n .2 .
n sin” x 1 sin(2n) 1
- — dx~ — (1 o(—= ).
2 L 2 2n(+ 2n >+ <n2)
, n " sin” x
L=1lmn|-=— dx
n—o0 2 0 X2
i +0

then
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In this case it can be shown that
1 sin(2n) 1 sin(2n + 2)
n = —_— 1 > —_— 1 _— = n
. 2n( M ) 2n+2( T T2 et

1 in(2
lim a, = lim — (1 L ">> —o.

and

n—oo n—o 2n 2n

These components suggest the use of the Alternating series test and Dirichlet’s test. The series in
question is not alternating and the Dirichlet test is inconclusive. Making use of the integral test

then for
sin’(n)

a, = g—Si(2n)  —

the integral is

L a,dx = L (g — Si(2x) + sinx(X>> dx
_ % [7x + In(x) — cos(2x) — 2.xSi(2x) — Ci(2x)]”
- % [}LTO (ln(x) * Coifix)) — (n — cos(2) — 28i(2) — Ci(2))
1 /..
=3 (}1_{{.10 In(x) — Co) .

This dependency on In(x) as x gets large suggests that the series diverges. Other tests like the root
and ratio tests yield inconclusive results.

Solution 4 by by Michel Bataille, Rouen, France.

o0 .2 o0 . : n .:. 2
(a) It is well-known that f gy f MY gy = g It follows that = — J X =1,

0o X2 o X 0o X
where s
sin” x
I, = J > dx.
. X
Letn € N and X > 2n. Integrating by parts, we obtain
X .2 X ) ) X ) ) 2X .
sin” x . sin“n sin” X sin 2x sin“n sin” X sin u
J dx = J sin? xd(—1/x) = - +f dx = - +J du
. X2 n n X . X n X o U

and, letting X — o0,

du.

sin’n “ sinu
+
2n u

) sin u 1 . . .
In the same way, since —— du = —d(— cos u), integrating by parts again leads to
u u

“ sinu cos 2n “ cosu 1 sin’n “ cosu
du = — du = — — - du

o U 2n o UP 2n n oy U
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so that

1 “ cos
Inz——f udu.
2n

u2

Q0 : 2
A third integration by parts gives f Coiu du = — Sl; 2” + ZJ Sin u du and finally
m U n 2n u?

du.

I, = —
2n + 4n? 3

1 sin 2n f “ sinu
2n u

sin 2n 1 “ sin “ | sin “1 1
Now, we have |——— <—andj udu <f “ duéf — du = —, hence
4n? 4n? oy U on | 13 oy U3 8n?
. 2 w .
lim n | 222" —2f ) =0
n—o0 4n2 on M3
and therefore
lim nl, = =
n—oo0
1 00]
(b) From (a), we have I, ~ o as n — o0, hence the series Z I, is divergent.
n

n=1

Solution 5 by Moti Levy, Rehovot, Israel.

(a)

= Si(2n) —

where Si (y) is the sine integral

The following asymptotic expansion of the sine integral is known::

o0 o0
T sin ( (2k + 1 cos !
Si(y) ~ Z x2k+1 Z x2k :

k=0 k=0
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T sin” (n)
=n<§—81(2n)+ - )

. <sin (2n) i 1 (2k+ 1)!  cos (2n) i 1 (26)! | sin® (n)>

2n k=0 (2n)2k+1 2n k=0 (2”)2k n

sin (2n) & ¢ (2k+ 1)1 cos (2n) & ¢ (2k)!
Z(_l) (2n)2k+1 + ) Z<_1)

(b)

_ %Z%Jri (sin(2n) (ﬁJro(%)) + cos (2n) (ﬁ+0($))).

0 0 . 2
1 n
Since Z — diverges then the series Z (g _ J (sm (X)) dx> diverges.
- N — 0 x
n=1 n=1
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Solution 6 by Perfetti Paolo, dipartimento di matematica, Universitg di “Tor Vergata'', Roma,
Italy.

0 :.2
(a) It is known that J sz xdx _z
0 X 2

no 2 © : 2 © 2
T sin” x T sin” x sin” x
n(z—fo 2 dx>=n<§—f0 2 dx—i—L =z dx)
* 1 — cos(2x) * dx * cos(2x)
=n —zdx =n — —n > dx

@ 2 d 2n si
—l—nf Cos(zx>a’x—l—2nf cos;zzyzl_ ns;ny

n X 2n y y
14 sin(2n) o JOO siny dy

2n 2n y3

s J “ sinydy
—4n 3
2n 2n y

‘ f sin ydy f *“ dy n 1
n - = =
on m ¥V 8nr 8n

n o :.2
lim n (’—T —J ek xdx) _
n—0o0 2 0 .x2

(b) The same computation yields

0 ) o0 . 0 .
n sin” x 1 sin(2n) sinydy
Z_ dv | = - —4

nZ:l (2 JO x? y> Z (n - 2n? Ln ¥

n=1

It follows

and

l+sin(2n)_4stinydy>l+sin(2n)_4Jw@i_1 1 1 1
2n 2

n 2n? ¥ T on 2n? . YV22n  n 2n2  4n? T 2n

for any n > 2 so determining the divergence of the series.

Solution 7 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

(a) Substituting

2 2 4

Gin? x — 1 — cos (2x) _ (f _ sin (2x))/’

integration by parts yields

.2 .
sin” x 1 /x sin( -2 sin (2x)
f 2 X = ;( ) = (—— 1 )dx

=1 sin( J sin ( 2x)

2x 2x3



0
Using f x~2sin” (x) dx = 7/2 it follows that

0
nooia2 0 i 2 . 0 -
n sin” x sin” x 1  sin(2n) sin (2x)
n<§_L =z dx>=an 2 dx=§+T—nL % dx

“ sin (2 S | 1
InJ Sm(x)dx <nf —dx = —

2x3

Since

n

T (" sin® x 1
li - — dx | = =.
et (2 ), @ x) 2

(b) From part (a) we know that

N g2
b sin” x 1 1
- — dx=—+0| = — ).
2 L 2 T * (nz) (n )
0
The divergence of the harmonic series and the convergence of Z n~% imply that

n=1
o0 n 2.2
T S x

n=1
Also solved by Yunyong Zhang, Chinaunicom, Yunnan, China; and the proposer.

we obtain

is divergent.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations
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When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).
#ProblemNumber_FirstName LastName_Solution_SSM]J

e FirstName stands for YOUR first name.
e [astName stands for YOUR last name.

Examples:
#1234 _Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:
“Proposed Solution to ##*** SSMJ”
where the string of four astrisks represents the problem number.
2. On the second line, write
“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.
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5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Gottingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

" /n
Compute xynk,
p l;)(k) y

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:
Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle
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Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:
“Problem proposed to SSMJ”
2. On the second line, write
“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.
4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ
Problem proposed by Isaac Newton, Trinity College, Cambridge, England.
Principia Mathematica (<— You may choose to not include a title.)

Statement of the problem:

Compute Z (Z)xky"_k.

k=0

s+ » « Thank You! & « «
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