Problems and Solutions Albert Natian, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at the Department of Mathematics,
Los Angeles Valley College, CA. Please make sure every proposed problem or proposed solution
is provided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at <www.ssma.org/publications>.

Solutions to the problems published in this issue should be submitted before July 1, 2023.

e 5727 Proposed by Daniel Sitaru, National Economic College “Theodor Costescu"
Drobeta Turnu - Severin, Romania.

b
If f:(0,00) — (0,00) is a continuous function and f f(x)dx = 5(b — a) where 0 < a < b,
then ‘

J” <5f(x) +3 . 6f(x) +4 N Tf(x) +5
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e 5728 Proposed by Floricd Anastase, “Alexandru Odobescu" high school, Lehliu-Gard, Cdldrasi,
Romania.

Define the sequences (ay),~; , (bx),; as follows:

n 2
ar :J V;J dx and by > 1, by = 1 + log(b,)
1

where [ . J denotes greatest integer (i.e., floor) function. Find the limit

Q — lim M.
n—o  logn



e 5729 Proposed by Goran Conar, VaraZdin, Croatia.

Let 0 < a < b be real numbers. Prove the following inequality

2b
2 b2
(a+ b)Y (b —a)’™ < (“ Z ) .

e 5730 Proposed by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.
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3 (c) c
Find all functions f:N — N such that Va,b,c e N : f (a)f(h)f +d"" = f(a)” +d'®

e 5731 Proposed by Mihaly Bencze, Bragov, Romania and Neculai Stanciu, “George Emil Palade”
School, Buzdu, Romania.

Solve for real x: \/6—11x+6x2—x3+ \/12—19x+8x2—x3 = \/15—23x+9x2—x3.

e 5732 Proposed by Sedn M. Stewart, Physical Sciences and Engineering Division, King Ab-
dullah University of Science and Technology, Thuwal, Saudi Arabia..

JOO tdt bis ese(ns) co s
= ——csc(ns)cos [ — | .
B+ (e—1)" 292 4

If0 < s < 1, prove

Solutions
To Formerly Published Problems

¢ 5703 Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, “George Emil Palade”
School, Buzdu, Romania.

Solve for real x:

X+ (x—6) Vx—7 +12 = 13x.

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

The continuous function f : [7,00) — R defined by f (x) = x* + (x —6) vVx — 7 + 12 — 13x



is monotonically strictly increasing for x > 7, since

-6
"(x) = 2x + \/x—7+x——13>0.
&) W

In addition f (7+) ~ —30, f(16) = 90. So, by continuity of f and Intermediate Value Theo-
rem, there is a unique real value of x at which f assumes the value 0, and we easily verify that
f(11) =0, so x = 11 is the only real solution.

Solution 2 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

We will show that x = 11 is the only real solution to this equation. Make the substitution
u = +/x—7.Then x = u* + 7, and since we need x > 7, each real solution of the given equation
corresponds to a nonnegative solution of
W+ T+ P+ Du+12=132+7) = u* + 14> + 49 + 1> + u + 12 = 134> + 91
= u* +u’ +u* + u = 30.
It is easy to verify that this equation has a solution of # = 2. Moreover, because the function

flu) = u* +u’ + u* + uis strictly increasing over [0, o), the transformed equation has a unique
solution. Therefore, the original equation has a unique real solution of x = 2% + 7 = 11.

Solution 3 by Trey Smith, Angelo State University, San Angelo, TX.

Lety = v/x—7. Then x = y* + 7. Substituting into the original equation and simplifying,
we obtain
Yy +y +y—30=0.

Using the rational root theorem, we have that y = 2 is a solution. Dividing y* + y* + y* + y — 30
by y — 2, and setting the quotient equal to 0, we have

432 +Tx+15=0.

The only possible real roots for this equation must be negative, but y = +/x — 7 > 0. Hence, there
are no other real solutions. So x = 11 is the only real solution for the original equation.

Solution 4 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

The only real solution is x = 11. If we let f(x) = (x — 1)(x — 12) + (x — 6) vVx — 7, then
the solutions to the given equation correspond to the zeros of f. Notice that f(11) = 0, so that
x = 11 is a solution to the equation. If x > 12, then f(x) > 0, so all real solutions must be less
than or equal 12, and greater than or equal to 7. If f(x) = 0, then

(x® — 13x + 12)? = <(6 %) \/ﬁf
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= 26x° +193x% — 312x + 144 = x> — 19x% + 120x — 252
=27 +212x% —432x + 396 = 0
(x — 11)(x> — 16x* + 36x —36) = 0

so either x = 11 or x> — 16x* + 36x — 36 = 0. However, the maximum value of g(x) =
x® — 16x* 4 36x — 36 on the interval [7,12] is g(12) = —180 < 0, so the only solution to the
equation is x = 11.

Solution 5 by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.

# First Solution: By the given equation,
x=1)(x=12)=(6—x) Vx—T......... (%)

Let y be a solution of (x). Itis clear thaty ¢ {1, 6, 7, 12}. Since y — 1, y — 12, and 6 — y are non-
zero real numbers, then so is v/y — 7, such thaty > 7. If y > 12, then in (x), LHS > 0 > RHS,
contradiction. Consequently, y € (7, 12). Notice that for x € (7, 12),

d((x— 1) (x— 12))
dx

=2x—-13>0

and

d<(6—x) m) C10-3

dx Vx—=17
such that (x — 1) (x — 12) and (6 — x) v/x — 7 are respectively strictly increasing and strictly de-

creasing over x in the interval (7, 12). So, the number of solutions satisfying (*) is at most 1. It is
easy to check that x = 11 works for (). Thus, x = 11 is the only solution.

<0

# Second Solution: By squaring both sides of the equation (x), then
(x—1)P2(x—12)° = (x—6)(x—17)
—

(x—11) (x((x—8)2—28> —36) ~0

Obviously, x = 11 works. If x # 11, then x <(x — 8)2 - 28) = 36. As we have mentioned in

the first solution, we should own 7 < x < 12, but it implies that x ((x — 8)2 — 28) < 0. Hence,
x = 11 is the only solution.

Solution 6 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Since x is real, it follows that x > 7. By substitution y = x — 7, the equation becomes

G+7)+ O+ 1) y+12 = 13(y+7)
y2+y\/§+y+\fy = 30.
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Now, because y > 0, we may let y = 72, so the equation becomes z* + z°> + 22 + z = 30, or equiv-
alently z(z + 1)(z* + 1) = 30. Since 30 = 2 - 3 - 5, it follows that z = 2 is the only real solution,
because function f(z) = z* + z° 4+ z* + z is strictly increasing. Therefore, y = 4, and x = 11, and
the problem is done.

Solution 7 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We write the given equation in the form
(x—6)vVx—T7=—x*+13x— 12
and square both sides to obtain
(x* —12x +36)(x — 7) = x* — 26x° + 193x* — 312x + 144,
which is in turn equivalent to
(x — 11)(x* — 16x* + 36x — 36) = 0.
Then to show that x = 11 is the unique real solution of the original equation, we let
fxX) =+ (x—6)vVx—T7—13x+ 12

for each real number x > 7, and we calculate

Fl)=2x— 13+ Vo740

24/x —
Since f'(x) > 0 for every real x > 7, f(x) is increasing on [7, oo) and thus has at most one real

zero. Since f(11) = 0, we conclude that the only real solution of the original equation is x = 11.

Solution 8 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Rewrite
K+ (x—6)vVx—7+12=13x
(x—1(x—12) = (6 —x)Vx—1,
and then let f(x) = (x — 1)(x — 12) and g(x) = (6 — x) v/x — 7. Because
f(x) 20> g(x)

for x > 12 and the domain of g is the set {x : x > 7}, if the equation f(x) = g(x) has any real
solutions, they must lie on the interval [7, 12). Now, f(7) = —30, f(12) = 0, and

fl(x)=2x—13>0
for x > 7, while g(7) = 0, g(12) = —6+/5, and

6—x
"X)=—Vx-T7T+ ———= <0
g'(x) T



for x > 7. Thus, the equation f(x) = g(x) has a unique solution on the interval [7,12). By
inspection,

f(11) =10 = g(11);
hence the equation

K+ (x—6)vVx—7+12=13x

has the unique real solution x = 11.
Solution 9 by David A. Huckaby, Angelo State University, San Angelo, TX.

The given equation can be rewritten as

X —13x+ 12+ (x—6)Vx—-7=0
(x—12)(x— 1)+ (x—6)Vx—7=0
(x—=7Nx—=1)=5x—-D)+x-7NVx—T+Vx-7=0
(x—=7N(x=7+6(x—7)—=5x—1)+(x—7NVx—T+Vx-7=0
x=7 4+ (x=TNVx—T+x-3T+Vx-7=0
(x=7P+(x-7Vx—T+x-T+Vx-7-30=0

This is a quartic equation in v/ x — 7, with coefficients 1, 1, 1, 1, and —30. Since the leading
coeflicient is 1, the only possible rational roots are +1, +2, +3, £5, £6, £10, and +30. Checking
each candidate yields 2 as the only rational root. So v/x —7 = 2, whence x = 11 is a real root of
the original equation. Synthetic division then yields

[Vx—=T7=2][(x=7)Vx—=T7+3(x—=7)+7vx—T+15] = 0.

The second factor is a cubic in v/ x — 7 with coefficientsa = 1, b = 3,¢c =7, and d = 15. We will
use the general formula for cubic equations:

Vx—17= (g + [qz + (r—p2)3]1/2)1/3 +(q— [q2 + (r—p2)3]1/2)1/3 +p,

b 5 bc—3ad c 3 3
where p = 30 4= P +T,andr= i Now p = 30 = —1,qg = (-1) +
3(7) —3(1)(15) 7 7
6(1)2 ——S,andr—m—g. So

Vx—17= (=5+[25+ (4/3)3]1/2)1/3 +(—5—[25+ (4/3)3]1/2>1/3 1.

Note that since —5 — [25 + (4/3)%]"/? < 0, the second term gives rise to one real root and two
non-real complex roots. (Note further that since neither complex root is purely imaginary, neither
root when squared would yield a real number.) Taking the real cube root from the second term, we
have

x= [(—5 +[25+ (4/3)%]2)13 + (=5 — [25 + (4/3)°]H)" — 1]2 +7 ~ 13.53709.



This irrational root, along with x = 11, are the two real roots of the original equation.

Solution 10 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State Univer-
sity, San Angelo, TX.

To begin, re-write the given equation in the form
¥ —13x+12=(6—-x) Vx—17. 1)

Since x is real, any solution of (1) must have (6 — x) v/x — 7 real as well. If x < 7, then v x — 7 is
complex while x* — 13x + 12 is real. It follows that we must have 6 — x = 0, i.e., x = 6. However,
it is easily seen that x = 6 is not a solution of (1). Hence, we may assume that x > 7 and it follows
that v/ x — 7 is real and non-negative.

If we substitute y = +/x — 7, then x = y* + 7 and (1) becomes

(y2+7>2—13<y2+7>~|—12= (6—y2—7>y

which simplifies to
Yy -y 4y —30=0. (2)

By trial and error, we find that y = 2 is one solution of (2) and long division establishes that
(y—2) (y3+3y2+7y+ 15) =y +y +y +y—30
= 0.
It follows that all other solutions of (2) come from
V' +3y*+Ty+15=0.

However, because y = v/x — 7 = 0, this implies that there are no additional solutions of (2). Thus,
the condition 2 = y = +/x — 7 yields x = 11 as the only solution of (1).

Solution 11 by by G. C. Greubel, Newport News, VA.

Writing the equation as
P+ (x—6)Va—T=13x—12

and square both sides to obtain
x* % — 188 x% +396x — 396 + 2 x* (x — 6) Vx —7 = 0.
Using the original equation to replace v/x — 7 leads to the equation
XM —27x +212x —432x+396 =0
which can be factored into the form

(x —11)(x — 16 x> + 36 x — 36) = 0.
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The cubic equation has one real valued solution, which is

1 3 3
N =z (16 + \/2 (995 + 9 V2217) + \/2 (995 -9 \/2217)) :

and the other solution is x = 11. By comparing these possible values to the graph of the equation
leads to the one solution which is x = 11.

Solution 12 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Settinga = x—6and b = vVx — 7, we see that a®> —b* = x> — 13x+43. Thus a®> —b*—43 +ab =
—12, or
a—b*—31+ab=0. (1)

Substituting 5*+1 for ain (1), we get (b*+1)*—b*—31+b(b*+1) = 0,0or b*+b*+b*+b—31 = 0,
which can be written as

(b —2)(b* + 3b> +7b + 15) = 0. )
Now we have b > 0 and b + 3b*> + 7b + 15 > 0, so that b = 2 is the only solution of (2). This, in
turn, implies that x = 11 is the only solution of the given equation.

Solution 13 by Michel Bataille, Rouen, France.

Let x be a solution. Then, x > 7 and X = +/x — 7 satisfies X > 0 and
X2+ 72+ X(X*+1) + 12 = 13(X* + 7),
that is,
X*+X+X>+X-30=0

or
(X —2)(X* +3X* +7X +15) = 0.

Since X* 4 3X* + 7X + 15 > 15, we must have X = 2. It follows that x = 11 is the only possible
solution. Conversely, it is readily checked that 11 satisfies the proposed equation. In conclusion,
x = 11 is the unique solution.

Solution 14 by Péter Fiilop, Gyomro, Hungary.

We have to exclude the x < 7 real numbers from the solutions because of the quantity under the
root cannot be a negative number.

X —Tx4 (x—6)Vx—T7=6x—12
\/x—7[x\/x—7+x—6] =6(x—7)+30
(x—7+1)\/ﬁ[\/ﬁ+1] ~ 30

8



Introducing z = Vx —7
(ZZ+ 1)(z+ 1)z =30
F+2+2+2=30

It can be seen that z = 2 is root of the equation. Regarding the original equation x = 11 satisfies
that.

Let’s devide the polynomial (z* + 2> + 2> + z — 30) by (z — 2), the result is the following
polynomial of the third degree:

2+37%2+77+15=0

After some rearrangements we get the suitable form of the equation so that the roots can be easily
determined.

(z+1P° +4(z+1)+10=0

Known that 7> + 3pz + 2q = 0 (the reduced form of the third degree equation) and
D = ¢* + p® > 0 then it has one real and two complex roots.

1
In our case D = 3 >0

Based on the Cardano-Tartaglia form the real root is:

739 739
wt1=[y-5+ 2_]_[35 7]%—1,55677..

7~ —2,55677.... could not be equal to v x — 7 in ‘R, so it is a false root.

The real solution is x = 11.

Solution 15 by Paolo Perfetti, dipartimento di matematica, Universita di ‘“Tor Vergata'',
Roma, Italy.

Let f(x) = x> + (x —6)vx — 7 + 12 — 13x

=

x—26 x—26
f’(x)=2x—13—|— \/x—7+—>14—13+2<\/x—7—> >1+ V2
24/x =17 24/x =17

It follows that x = 11 is the unique solution.



Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo, Spain; Daniel Vacaru, Pitesti, Ro-
mania; and the proposer.
e 5704 Proposed by Albert Stadler, Herrliberg, Switzerland.

Let a and k be positive integers that are relatively prime and of different parity. Further assume
that k is not a perfect square. Let u, and v, be integers such that

(a+ \/%) zun+vn\/l;, n=1,2, ...
Prove that u,, and v, are relatively prime for all natural numbers 7.

Solution 1 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

For all positive integers n,

(a + \/%)HH = <un + v, \/1;> (a + \&) — (au, + kvy) + (u, + av,) Vk,

[”n-}-l] =M [un] ,
Vnt1 Vn

I;] and (u;,v;) = (a, 1). Since k is not a perfect square, then det(M) = a* —k # 0.

so that

where M = [611

Lemma 1 Let p be a prime number that does not divide a* — k. Then for all natural numbers n,
(4, v) # (0,0) (mod p).

Since p does not divide a* — k, then p and det(M) are relatively prime, so there exists an integer s
such that sdet(M) = 1 (mod p). Thus,

i[5 ] o

so that (#,,1,v,1) = (0,0) (mod p) if and only if (u,,v,) = (0,0) (mod p). Since (uy,v;) =
(a,1) # (0,0) (mod p), then by induction (u,,v,) # (0,0) (mod p) for all natural numbers n.
Suppose 7 is a natural number for which u, and v, are not relatively prime. Then there is a prime

number p that is a common divisor of u, and v,; by the lemma, p | ( 2 k), so that k = o

(mod p). Since a and k are relatively prime, then a # 0 (mod p). In addition, since a and k have
opposite parity, then a* — k must be odd, and p # 2. We show by induction that

u, 2n—lan
[v ] = [2n—1an—1] (mod p)

10



for all natural numbers n. This is true for n = 1, since (uy,v;) = (a, 1). For the inductive step,

2 n—1 _n n_n+1
Ups1| _ |a a 2" a _ 2"a

so the statement is true for all natural numbers n. Since p does not divide 2 or a, then

[;‘;’] - [22] + [g] (mod p),

which is a contradiction. Therefore, u, and v, are relatively prime for all natural numbers 7.
Solution 2 by Michel Bataille, Rouen, France.

Since k is not a perfect square, the equality u + vk = x + y\/l; where u, v, x,y are integers
implies u = x,v = y (a well-known result). Thus, from ., + vus1 Vk = (a + \//’;)”Jr1 =
(a + Vk)(u, + v, Vk), we deduce that

Uyl = AUy + kvn, Vgl = Uy + avy. (1)

This holds for n = 1,2,... and can be extended to the case n = 0 by setting uy = 1,vy = 0
(in accordance with (a + \/];)o = 1). We use induction to prove that u,,v, are coprime for all
nonnegative integers n. Clearly, ug, v are coprime and it is also the case of u; = a and v; = 1.
Assume that n is a positive integer and that u,, v, are coprime. For the purpose of a contradiction,
suppose that a prime p divides both u,, | and v, . Then, p divides u, | — av,,; = (k — az)vn and
Ay — kvpy = (a® — k)u,. Tt follows that p divides |k — a*|, which is their ged (since u,, v, are
coprime). Since k, a are of opposite parity, we see that p must be odd. From (1), we readily obtain
that for all n > 1:

Uy = 2au, — (@ — k)u,_1, Vpi1 = 2av, — (a* — k)v,_1.

For example, w41 = att, + k(u_1 +avy_1) = aity + kity_y + a(uy — au,_1) = 2au, — (@* — k)uy_;.
Since p divides u, 1, v, and a* — k, we deduce that p divides 2au, and 2av,, hence their gcd 2a,
hence a (since p is odd) and therefore p divides k = a* — (a* — k). Finally, we obtain that p di-
vides a and k, in contradiction with the hypothesis. This completes the induction step and the proof.

Solution 3 by Trey Smith, Angelo State University, San Angelo, TX.

We start by observing that if the m divides both u, and v,, then m divides u,,; and v,,;. To
see this, notice that

(a+ Vi)
= (a+ Vk)"(a+ Vk)
= (tp + vy VE)(a + Vk)
= (au, + kv,) + (4, + av,) Vk.

11



Now m|u, and m|v,. So m|(au, + kv,) = u,y,, and m|(u, + av,) = v,y;. Using the above
observation, we have that if for some n, u, and v,, are not relatively prime, then for all k > n, u; and
v will not be relatively prime. We say that the pair (u,,v,) is good if u, is odd, v, is even, u, and
v, are relatively prime, and u, and k are relatively prime. We start by demonstrating that (uy, v,) is
good. To see this, observe that

(a+ Vk)* = (a® + k) + 2a k.

Since a and k have different parities, we have u, = a*> + k is odd. Clearly v, = 2a is even. Since
u, is odd, 2 does not divide u,. If an odd prime p were to divide v,, then p divides a which implies
p does not divide k, so p does not divide u,. Hence u, and v, are relatively prime. Finally, if p
divides k then p does not divide a which implies p does not divide u,. Hence k and u, are relatively
prime. Now we show that if (u,, v,) is good, so is (uy,, v,). Notice that

Uy + Vop \/%

= (uy + vy Vk)?
= (up + vik) + (2u,v,) V.

Since v, is even and u, is odd, we have that u,, = u,zl + v,zlk is odd. Clearly v,, = 2u,v, is even.
Let p be a prime that divides v,,. If p = 2 then p does not divide u,, since u,, is odd. If p divides
k then p does not divide u, but p does divide v,k which means p does not divide u,,. If p divides
u, then p does not divide k and p does not divide v,, so p does not divide u,,. Thus u,, and v,,
are relatively prime. Similarly, if p divides k it does not divide u, so it does not divide u,,. Thus
Uy, and k are relatively prime. Hence, (u,,, v2,) is good. Using both observations about good pairs,
we have that (uyr, vor) is good for r = 1,2, .. .. The fact that u, and v, are relatively prime for all n
follows by assuming that there is some 7 that fails. Then by our first observation, u; and v are not
relatively prime for any k > n. But, we know there is some r such that 2" > n, and u,- and v, are
relatively prime. Hence there is no » that fails.

Also solved by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia; and the
proposer.

e 5705 Proposed by Rafael Jakimczuk, Division Matemdtica, Universidad Nacional de Lujdn,
Buenos Aires, Argentina.

o0

Prove the series Z a, converges where the the sequence (a,),-, is recursively defined as follows:
n=1

ap ap—1 anp—2 ap

a; =1 and an+]=§+ 3] + e +"'+m

(n=1).

12



Solution 1 by G. C. Greubel, Newport News, VA.

Writing the first few terms of a, gives

61121
1
a2=§
26
a3:a
2760
T

leads to a form of (3n — 3)!a, = b,, with

b, € {1,1,26,2760,768504,442554840, 457050442176, 769348154736000, ...},
and b, < (3n — 3)! for n > 2. By comparison it can be noticed that
1 n—1
O < n < - )
“=(3)
which is in essence the direct comparison test for convergence, and leads to
‘ 4 1
0< <=z (1—-—=
2,9 < 3 ( 4n>
j=1
In the limit as n — oo this gives
0¢]
4
O < Z Clj < 5
j=1
This demonstrates that the series for a, converges.
A second case, which also uses the direct comparison test, may be seen as follows:
Let
! it n=1 1 if n=1
Pni=y 1 &T-3(-1) = n
Loy St AP, 41 T L,
6 o= 10 198 99 - 107
Then

and as n — oo, we have



Solution 2 by Moti Levy, Rehovot, Israel.

The sequence {a,},, is recursively defined as

We prove that the series Z a, converges by evaluating it.
n=1
Let F (z) be the generating function of the sequence {a,},-,

0

F(z) := Zanz”,

n=1
and let B (z) be the generating function of the sequence

n

B(z) ::Zm'

n=1

Q0
Substituting (3) in Z a,17" we get,

n=1

0 0 n 1
a,+1Z3 = a n
2o Z(Z k(2<n_k)+3).>
n=1 \k=1 (2(n—k+1)+1)'
Now ]; a 2o ki D+ 1) is the convolution of {a,},-, with {<2 o }n>1 , hence

>t = F B,

n=1

= 1 & 1 & 1
2 = 2 ) @™ = 2 )@ =1 = SF ()~ 1.
— g = I = Z
n=1 n=1 n=0

1
By (4) and (5) we get —F (z) — 1 = F (z) B(z) and solving for F (z) , we get
z

<

F@:—l—zB(z)'

14
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The generating function B (z) can be evaluated using the Taylor series of sinh (z),

i 2k+1
sinh (z) =
k:O (2k +1
o # | sinh(\/Z)
=) =1+ —"
2k +1)! Vz
Z Z
F(z) = 4 = , :
I_Z(_1+Smh\(/;/g)) 1+z—\/2s1nh(\/2)
Now Zan = F (1), hence
n=1
o0
Z — = 12124.
ot —smh(l)

Solution 3 by Paolo Perfetti, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

N
The general term a, of the series is positive for any n thus if Z a, is bounded by a constant M

n=1

for any N, the series converges.

an—k
an+1 = ) =
— (2K +3)!
N N n—1 a N—1 N N—-1 1 N—k
n—k
ZI“ ZZ 2k + 3)! ,;) 2k+3 ; ,;) 2k+3)!Z“”
n= =1k= = = p=1
hence using the positivity of a, for any n
N+1 N—1 N—k N—1 N+1

nz_;“"_z 2k+3‘ “< ) Er A 2k+3 Z

p= =0

—_
=~

if and only if
N+1 N—1 1 Nill
Z a, <1+ Z »
~ — (2K + 3)!
This implies
N+1 . 21 1
a, < , c=
= 1—c = (2k + 3)!
and N
- 1 o 1 o1 cosh(1) 1
2k 1 3) Z(2k+3)v<28(2k)v_ 6()<§
k=0 k=0 k=0



Tuse (2k + 3)! = (2k)!(2k + 1)(2k + 2)(2k + 3) > (2k)! - 6.

N

This means that the sequence {Z ak} is monotonically increasing and bounded; thus con-
N=1

k=1
verges.

Solution 4 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

We prove the series converges by using the comparison test with a geometric series Z r", where r
is areal number and O < r < 1. We begin with the following lemma.

10
Lemma 2 [fr is a real number satisfying I < r < 1 and n is a positive integer, then

n n—k
n

r
<
4 2k + 1)

Using the power series expansion for e*, we see that if x is a positive real number then

ixk © k4
er—1—x=> —>
= k! k:l 2k+
In addition, if x > 1, then x**! > ¥, so that
© 2k o o 20
e —1—-x> > —+—+—+---
Z(2k+ Sk+ ) 35T

10
Ifﬁ <r<Il,weletR =1/r,sothat ]| < R < 1.1 Since f(x) = ¢* — 1 — x is increasing for
x>0,thene® — 1 —R<e'' —2.1 <1forl <R < L1. Thus,

i—rn—k —r”i—Rk <r"(f—=1-R) </
Sk Ak ) '

10
We now let r = — and prove that 0 < a,,; < r" for all positive integers n. It is clear from the

definition that a,,; > O for all positive integers n; we prove the remaining inequality using strong
induction. Since a; = 1/6 < 10/11 = r, the inequality is true for n = 1. Suppose that n is a
positive integer and that a;,; < r* for all integers k with 1 < k < n. Then

n+1 n+1 n+1—k

An+2—k r
o2 = 2, 2 < Y
P (2k + 1)! pa (2k + 1)!

n+1,

and by the Lemma, a, ., < r"""; thus, 0 < a,,; < r" for all positive integers n. Since the geometric
[ee} 0

series Z " converges (to 10) for r = 10/11, then by the Comparison Test, Z a, converges as well.

n=1 n=1

16



While our argument shows that the series converges to a number less than 10, we note that this is far
from sharp; numerical computation shows that the series converges to approximately 1.21241688554.

Solution 5 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

Observe that for each positive integer n,

ay Ani1 1
an_;,_l 2 - > O = Z .
3! a, 6
Repeatedly iterating this lower bound yields
an+k__ Aptk pik—1  Apik—2 ap41 > 1
= . . o > —
ay Antk—1 Ant+k—2  Ant+k-3 an 6%

for every integer k > 0. Hence

n 1
an+l . Ap—k+1 6

k= 1
a, (2k +1 ’an\k1(2k+1) 66

n <\f6)2k+1 1 © (\f6)2k+1
Z(zm 1! <6\@,;(2k+1)!‘

This together with the fact that
0
Vze C: sinh(z) = Z

tells us that
Apy1

- sinh(1/6) — /6

~ 0224 < 1.
66

lim sup
n—0o0

an

So Z a, converges by the Ratio Test.

n=1
Solution 6 by Michel Bataille, Rouen, France.

We will need the following result: if f(x) = 2x — sinh(x), then for some xy > 1 we have
f(x0) =0, f(x) >0if 0 < x < xp and f(x) < 0if x > x.

Indeed, f is strictly increasing on [0,cosh™!(2)] and strictly decreasing on [(cosh™!(2),o0) with
f(0) = 0. Therefore f(cosh™'(2)) > 0 and observing that xlgg) f(x) = —oo, we have f(xy) = 0

for some x; € (cosh™'(2),0). Also, f(x) > 0for 0 < x < xo, f(x) < 0 for x > x, and because
f(1) =2 —sinh(1) > 0, we must have xo > 1.

© P
Let T be the entire function defined by T Z and let F' be the analytic function
n:1
defined by F(z) = 1;71() on the open set {z : |T (z)| < 1} containing 0. Then F(z) has a unique
—T(z

e @] 0 ¢]

expansion as a power series Z b,7" = 2 z(T(z))" whose radius of convergence is the distance

n=1 n=0

17



from O to the closest singularity (which is a solution to the equation 7'(z) = 1).
+ x5 < r sinh(/7)

Now, let r =  sothat 1 < r < x3. We have T(r) = = ~ 1.
ow, let r so tha r < x. We have T(r) Zl G 1) 7
0 0
Clearly, T(r) > 0 and also T(r) < 1 (since f(+/r) > 0). It follows that Z r(T(r)" = Z b,r" is
n=0 n=1
convergent. Therefore p > r > 1 and for |z| < p, F Z b,7" writes as
n=1

0

o)
(Z:l an Z 21’1 1 2 an

Calculating the Cauchy product on the left (the two series on the left are absolutely convergent),

the uniqueness of a power series expansion shows that the sequence (b,) must satisfy b; = 1 and
bn bn—l bn—Z

b,y = §+ 51 + o +~--+mf0rn 1. We deduce that b, = a, forall n > 1, so
0 0

that Z a,7" is convergent when |z| < p. In particular Z a, converges (since p > 1).
n=1 n=1

Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.

e 5706 Proposed by Raluca Maria Caraion, Cdldrasi, Romania and Floricd Anastase, Lehliu-
Gard, Romania.

Suppose a, b, c > 0. Prove

14+ab)(1+ 3
Ut a9 -y ey
cye 1 4+ av/be

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We note that

(1+ab)(1+ac)—(1+a\/%)2=a(f— ﬁ)2>o

Hence

(1 +ab) (1 + ac) (I +ab)(1+ ac)
> (1 +ab)(1+ac
1;[ 1+ av/be 1;[\/(1+ab) 1+ ac) 1;[\/ )=

= (1 +ab) (1 +bc)(1+ca).

18



Finally, by the AM-GM inequality,
3

(1+ab) (14+bc) (1+ca) — <1+V3 a2b2c2>
= (ab+bc+ca—3 m> + <a2bc+ab2c+abcz—3 v a4b4c4> =>0.

Solution 2 by Daniel Vacaru, Pitesti, Romania.

(1+ab)(1+ac) 1+ ab+ac+ a*be aMz6M 1+ 2a+/bc + a’be

1 +a~/bc - 1+ a+v/bc i 1 +a~/bc ~1ravbe
We have
]Cy_c[(l Jrlcflil/%ac) > (1 +a\/§> (1 + b +/ac) (1 +cx/%>
- (1 +a\/§+b\/c§+abc@> (1 +c\/%>
=1+ avbc + brac + abc\ab + cvab + abe \/ac + abe N ch + a*b*?
But

abe + b+ evab ™5™ 3abe | (Voe) (vae) (Vab) = 3 abe?

and

abcx/%—i—abc\/a—i—abc\/a:abc(\/cﬁ—i— Vbe + @)
AMiGM 3abc</<\/cE> (@) (\/@)

3aber(Vab) (Voe) (Ve

= 3abcvabe = 34/ (abc)’

It follows that by the above results, we have

1 +ab)(1 3
H( + ab) (1 + ac) > 14 3Va222 + 3V a*bAc* + dPbPc? = (1 4V a2b2c2> )
cyc 1+a\/%

19



Solution 3 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

The AGM inequality gives us

H(l—i—ab)(l—i—ac) 1—[1+a(b+c)—|—a2bc
oye 1 4+ a+/be oye 1 +av/bc

1 + 2a+/bc + a*bc
(1 + av/be)?

- 1;,[ 1 4+ av/be

= 1_[(1+a\/1;)

cyc

> (1+ vV a’b’c?)?,

where the last inequality is a known consequence of the AGM inequality: \3/ (a1 + by)(ax + by)(az + b3) =
Jaiazas + +/b1bybs. Equality holds in the original problem if and only if a = b = c.

Solution 4 by Michel Bataille, Rouen, France.

Setting x = bc,y = ca, z = ab, the inequality to be proved becomes

[(T+ )1 +y) (1 +2)]
(1+ )1+ Vax)(1+ y/xy) ~

> (14 /xy2)°. (1)
Noticing that

IT+x)1+y)=T+x+y+xy=1+2xy+xy=(1+ )’
we see that
[(142) (1+y) (142)] = (1+20) (14+y) (1+y) (1+2) (1+2) (T+x) = (14 y/a)* (14 y/32)* (14 y/2x)?
so that (1) will follow if we show that
(1+ Vrz)(1+ Vax) (1 + Vay) = (1 + §ayz)’. 2)
Now, for u, v, w > 0 we have, by AM-GM inequality,

1 (ww)'/3

[+ (T wlB [T+ 0+ )+ w7

<11+1+1+1u+v+w—1
T3\1l4+u 14+v 14w 3\1+u 1+4v 14w/

20




hence 1+ (uvw)"? < [(1+u)(1+v)(1+w)]">. Lettingu = /yz,v = /zx,w = ,/xy, we readily
obtain inequality (2).

Solution 5 by Moti Levy, Rehovot, Israel.

The inequality is equivalent to

((1+ab)(l+bc)(1—|—ca)) /< +a\ﬁ>( +b\/ﬁ)( +C\/CE> <l—|—(abc)

Wit

> 3
Hence it suffices to prove the following two inequalities:

(1+ab) (1 +be) (1 + ca) = (1+ avbe) (1+bvea) (1+cvab) ©)

) ™

Wit

(I +ab)(1+bc)(1+ca)= (1 (abc)?
Let f (x,y,z) be defined as follows:
fyz)=0+x)1+y)(1+2), xyz>0. (8)

The inequality (6) is equivalent to

f(xy,2) = f (Vay, V2 Vzx) ©)
and inequality (7) is equivalent to
f(y,2) = f (V02 /22, 3/xyz) - (10)

Proof of inequality (6):
Let x = u?, y = v* and z = w?, then inequality (6) is equivalent to

(1 +u2) <1 +v2> <1+w2> > (14 uw) (1 4+vw) (14 wu).
After expansion and arranging terms according to their order, it follows that it is enough to prove
the following two inequalities:

W+ w0V = uv A+ uw + vw, (11)
=

WV 4+ 1Pw? + v = iPvw + w4+ uvw?. (12)

Inequalities (11) and (12) are true by Muirhead’s Theorem.

Proof of inequality (7): Let x = °, y = v’ and z = w’, then inequality (7) is equivalent to

(1 + u3> <l + v3> (1 + w3> > (1 4 ww)’.

After expansion and arranging terms according to their order, it follows that it is enough to prove
the following two inequalities:

wviw?, (13)

3
Suvw. (14)



Again, inequalities (13) and (14) are true by Muirhead’s Theorem.

Solution 6 by Péter Fiilop, Gyomro, Hungary.

Rearranging the left hand side (LHS) of the inequality!

LHS _H(1+ab)(1+a6) _1—[(1+ab+ac+a2bc) _1—[(1+a(b+c)+azbc)
cyc 1+a\/ﬁ cye 1+a\/ﬁ cye 1+Cl\/%

Let’s apply the AM-GM inequality for b + c:

/1—[ +?a+\/c:/iabc)=ﬂ%=ﬂ(l+a\/ﬁ)

After performing the multiplication we get:

LHS > 1 + (abc)* + abe(Vab + Vbe + vac) + Vabe(va+ Vb + /)

Applying the AM-GM inequality for vab + vbc + v/ac and va + Vb + +/c:

LHS > 1 + (abc)? + abc(3Vabe) + Vabe(3 \ Vabc) =

1 + (abc)* + 34/ (abe)* + 34/ (abc)? = RHS

It just equals to the right hand side (RHS) of the inequality. The statement is proved!

Solution 7 by Vasile Cirtoaje, Petroleum-Gas University of Ploiesti, Romania.

By the Cauchy-Schwarz inequality, we have
(1 + ab)(1 + ac) = (1 + av/bc)?,

(1+be)(1 + ba) = (1 + by/ca)®,
(1 4 ca)(1 +cb) = (1 + cVab)>.

In addition, by Horner’s inequality, we have

(1 -+ abe)(1 + bea)(1 +cvab) > (1 + Vaibier) .

Multiplying all these inequalities yields the desired inequality. The equality occurs for a = b = c.
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Also solved by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia; Paolo Per-
fetti, dipartimento di matematica, Universita di ‘“Tor Vergata”, Roma, Italy; and the pro-
poser.

e 5707 Proposed by Narendra Bhandari, Bajura District, Nepal.

Prove that

2
f (sinx - arctanh®(sin x) — 2 sin x - arctanh(sin x)) dx =4G —n
0

o0
where G := Z(fl)"“/(Zk — 1)%is Catalan’s constant.
k=1

Solution 1 by Yunyong Zhang, Chinaunicom, Yunnan, China.

Lety = sinx
2
I = J (sinx - arctanh®(sin x) — 2 sin x - arctanh(sin x)) dx
0

1
d
— J y (arctanhz(y) — 2arctanh(y)) B
0 1—y

J~l ydy (arctanhz(—y) - 2arctanh(—y))
0

A1 —y?

1 I+y

tanhy = —In [ ——
arctanh y 2n(1_y
l+y 1—1t 2

t, =—— dy=———dt
l—y M TNUPL (1+41)?

1
1—1¢ 2 1 1
Then I = —f — dr | - —In’f—Int
o L4+t \ (141)? a__ \4

(1+1)2

1 J—
—J e (lln2t—lnt) dt
0 (1-{-1‘)2\/;

1 l_xZ )
—2| ——— (nx—2mx)dx =1~ I,
o ((1+x)?)

Let

N

in which

23



"(1 - x¥)Inx
L=4| ———dx=n
0

((1+x)2)?
I =4G —n
NOTE 1:
Jl(l-xﬂanxdx
o ((1+x)?)

) 1
ixlnx

= [Liz(ix) — Liy(—ix) + Inx (1 >+ In(1 —ix) — In(1 + ix))]
= —i[Li(i) — Lir(—i)]

. o o
= — (—& + lG) — (—& — lG)

= —i(2iG) = 2G

+ X 0

I, =2 x 2G = 4G
NOTE 2:

Jl (1—x%) lnxd
0

((1+xp2)’
EEAREI

X

Solution 2 by Péter Fiilop, Gyomro, Hungary.

Let’s perform the following substitution: ¢ = sin(x).

1
/o Jt(tanhl(t))2 21tanh*1(t)dt
v1-17 v1-1¢
1

1 +1
2
>,

Using that tanh™' (¢) = ) and performing the integration by parts we get:

24



1

1 1 1+1¢ 1+1¢

- 12(—)—21( >dt
Jzﬁ_tzgn =) 2 (i)
OE/_J ~~

u' v

The u’, v are given as indicated in the above integral, follows that:

1 2 |41
w=—=~/T—2andV = (m( +)—2)

2 1—¢ 1—1t
1 1 I+t 1+t 1+1¢
- VA () ()] ()
2V D) —r )t
0
\ 1
1 1+1¢
1=J In () -2 d
) Vi—g£ \N—t V-1
Using the ¢ = sin(r) substitution we get the followings:
[ 1+ [ l+si
szln(ﬂ_%n(r))_zdr:fln(ﬂ)dr_n
1 — sin(r) 1 — sin(r)
0 0

Because of the double-angle formulae we can write that sin(r) = 2 sin(%) cos(%), we get:

1 +sin(r)  (cos(3
1 —sin(r)  (cos(5) — sin(

where u = — + —, take it account in the integral we have:

N
NS

[ =4 | In(tan(u))du — n

INE %N\N

Catalan’s constant equals to | In (tan(u))du, can be proved as follows:

ISE %Nm

( In(x)

By the substitution of x = tan(u), the integral becomes f o
x

1
1

1
n®) ,
1+ y?

o 1 )
substitution x = —, the integral becomes -J
y

0

25



Using the fact In(y) =

a=0

d [
- JZ(_l)kkawdy
0
After performing the integration,
-
= da(Zk+a+1)| = 2k+

The original integral equals to I = 4G — &r. The statement is proved!

Solution 3 by Paolo Perfetti, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

Let’s integrate by parts

s

2
f sin x - arctanh? (sin x)dx =
0

z 2
— — cos x - arctanh?(sin x) + f cos x - 2arctanh(sin x) - dx
o Jo COS X
) 1. 1+sinx . .
arctan(sin x) = 5 In T sinx’ hrr(l) cos x - arctanh(sinx) = 1-0=0
—sinx’ x>

1
lim cos x - arctanh(sin x) = = lim cos x(In(1 + sinx) — In(1 — sinx)) =

n b
x—7 x—3

-1 —1
= Tiin% sin(7—2r —x)In (1 — cos(g —x)) = 7£il%sinyln(l —cosy) =0

% n
J sin x - arctanh?(sin x)dx —f 2arctanh(sin x)dx dy
0

0 —— cosh y

sin x=tanh ¢
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o] x R R
J dx = lim | 2xarctan(e") —ZJ arctan(e”)dx | =
o coshx R—0 0 0

R
" arct
~ lim 2R7—T—2J ke anydy> _
R—00 2 1 y
R 1
t t
~ lim 2R7_T_2J arcanydy +2J arcanydy:
Roo 2 0 Yy o
R R 0 k
) . N (0 =1
ngglo 2R2 2<1nyarctan(e)0 ; 1+yza’y +2§(2k+1)2
lim 7R — 2R JOO Iy 4 +2i 22
= lim 7R — 2R= — =
R 2 ), 1+ 2% (2k+ 2k+
because
“ Iny “ —Inx
y = dx =0
1+y2 ~—— 1+x2
y=1/x
0 2kt
By th th h arctanhx = , <1, Id h itten al
y the way through arctanhx §2k+1 | x| we could have written also

2k+1

ZJ smx dx
= 2k+1

2k+1

2 (sin
J 2arctanh(sin x)dx = J 22 in x)
0

This is allowed by

smx 2k+1 Jg 0 x2k+1 0 1
——dx < 2 dx=rn < 0
f kz(]) 2k + 1 0 ];)2/(—1—1 %(2](-1—1)(2/(—1—2)

and the positivity of all the terms.

0 z 2k+1 0 2 1 2k+1

ZJ 2(smx) I - Z = dt

k:OO 2k+1 ;;_:kOZk—{_l 0 x/l—l’z
S ML (R LTI YR (RR R

—— =2k +1 ) 2k +1 2

=,y "= -

_i 1 T+ 1)0(3) i k! /7 i (k)4
H2%+1 Tk+3)  S2%+1(k+Hk+ ikl 2k+ )2 2 \/7(2k)!

= 4G

0 k! 2 4k
whence G = Z > (2k(+ )1 T2(20)1 (arelation that can be found in https://viterbi-web.usc.edu/ adam-
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chik/articles/catalan/catalan.htm where many other representations of G can be found)

i

4 . w
2t sinh t dt —2t |®© 2dt
f 2sin x - arctanh(sin x)dx f S — = ‘ f
0 — cosh™ ¢ coshtlo

o cosht
sin x=tanh ¢
o

=4arctane’| =2r—n=n
0

By employing the power series of arctanh(x) we would obtain

SR lyk+1/2(1 — )2y = i I Bk + 3 l) —
ok +1 ok + 1 2°2
_fl 1 T(k+3 )@)_i: 1 (k+5)T(k+35)T(;)
2k +1 k+2) =2k +1 (k+1)!
o O w(2Kk)!
- Z v4kkv =2, 2(k+( 1))'4kk' -7
k:O k=0 .

In fact

5 (e -+l B0 i v

Solution 4 by Moti Levy, Rehovot, Israel.

Let

I:= f: <sin (x) (tanh’1 (sin (x))>2 — 2sin (x) tanh~' (sin (x))> dx.

Integrating by parts gives,

E x

0

T

=2 JZ tanh™' (sin (x)) dx.

Hence
3 5

I = ZJO tanh~' (sin (x)) dx — 2Jo sin (x) tanh™" (sin (x)) dx

Now the first integral is

I

2 Jz tanh™' (sin (x)) dx = ZJ tanh™" (cos (x)) dx

_ Lg In (ifz—zzgg) dx = —2 L In <tan (é)) d

s

:_{Emhw@»@-

[STE]
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The following Fourier series expansions are well known:

+1In(2),

Thus the Fourier series expansion of In (tan (x)) is

(x
In (tan (x)) = — 3" S {2k0) Z 1) €08 (k)

= k k
o0 14 (=1 k 0
= Z (=1) cos (2kx) cos 2(2m+1)x).
k=1 k m=0 2m

Changing the order of summation and integration we get,

J(: In (tan (y)) dy = — Z 2m2+ 1 f(: cos (2(2m + 1) x) dx

3
I

I‘ll

2 ( m 0]
—=—G.
2m+12(2m+ Z (2m + 1

I
M8

m=0

It follows that the value of the first integral is 4G.
Now for the second integral, we use the orthogonality property

x T .

4 —_— =
f cos (2r)cos (2(2m + 1)t)dr = { 8 ifom=0.

0 0  otherwise.

[SIE]

2 Lg sin (x) tanh~" (sin (x)) dx = Jo cos (x) In <1iz—228> dx

= o cosyin [tan (L) ) ar
[ (en(3))

= —4] cos (2¢) In (tan (t)) dt

IS

0
=8 cos (2t) cos 2m+ 1)t) dt
[ mzoz 2(2m + 1))

oe]

ENEY

cos (21) cos (2 (2m + 1) 1) dt

We conclude that I = 4G — .
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Solution 5 by Michel Bataille, Rouen, France.

Leta € (0, g) and let

I(a) = f (sin x - arctanh?(sin x) — 2 sin x - arctanh(sin x)) dx.

Integration by parts gives

a

J (— sin x)arctanh(sin x) dx = [(cos x)arctanh(sin x)]§ — J COS X -
0 0 cos x

dx

= (cosa)arctanh(sina) — a

and
J (sin x) - arctanh?(sin x) dx = (— cos a)arctanh®(sina) + 2 f arctanh(sin x) dx.
0 0
Since u a
J arctanh(sin x) dx = a arctanh(sina) — J * dx
0 o COSX
we have
I(a) = (— cos a)arctanh?(sin @) + 2(a + cos a)arctanh(sina) — 2a — ZJ co); dx.
0 X

The change of variables x = g — u yields

a 3 d 3
J * dx = ZJ o f 2 du = ﬂ[ arctanh(cos u) |
o COSX 2 )z ,sinu x_, Sinu 2

T
= Earctanh sina) f

I\J\El (ST}

n

2 u
T — du

x_, Sinu

2

sin I/l

Gathering the results, we obtain I(a) = J(a) + K(a) where
72l

J(a) = (2cosa + 2a — m)arctanh(sina) — (cos a)arctanh?(sin a), K(a) = ZJ du — 2a.

_g Sinu
We have

/2
lim K(a)=2f du—n=4G —nr
a—n/2 0 sinu

/2 1 t
(since f 2 = 2f AL 4y = 26 by the change of variables x = tan(u/2)). It just

o sinu 0o X
remains to prove that lim J(a) = 0.
a—n/2
n
Asa — 3 we have
cosa , (1 + sina)'/?

(cos a)arctanh(sina) = 5 In(1—sina)+o(1) = -(1—sina)?In(1—sina)+o(1).

2
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Since }(in}) X'21n X = 0, we see that lim (cos a)arctanh(sina) = 0.

a—75

Similarly, we have lim (cos a)arctanh®(sina) = 0.
d—’i
Finally, setting b = g — a, we have
(7 —2a)In(1 —sina) = 2bIn(1 — cosb) ~ 2v2(1 —cosh)?In(1 — cosbh) asb — 0,

hence lim (7 — 2a)arctanh(sina) = 0. Thus lim J(a) = 0 and we are done.

a—%

x
a— 2

2

Solution 6 by G. C. Greubel, Newport News, VA.

This solution makes use of

o 2n+1

X
tanh ™' (x) =
= 2n+1

1
B(x,y) = f 1 =,
0

which are the inverse hyperbolic tangent and Beta function. Now consider the integral

/2
L = f sin x tanh ™' (sin x) dx
0

0 1 /2
= J sin?*2(x) dx

This leads to the consideration of the integral

/2
I = f sin x arctanh?(sin x) dx.
0

Let ¢ = cos x to obtain the integral as
1
I = J arctanh®( /1 — 12) dt.
0

Now let ¢ = sech u to obtain

0
I = J u? sech(u) tanh(u) du.
0
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Using integration by parts this becomes

0
L =2 J u sech(u) du = 4G,
0

where G is Catalan’s constant. Now looking at the integral proposed, namely,

/2
I = J <sinx arctanh®(sin x) — 2 sin x arctanh(sin x)) dx
0

-1, -21
=4G—n

which gives the desired result.

Solution 7 by David A. Huckaby, Angelo State University, San Angelo, TX.

1 1
First note that arctanh(x) = 5 In 1 X
— X

org/wiki/Inverse_hyperbolic_functions.) So the given integral is

, with domain (—1,1). (See https://en.wikipedia.

2
f <sin x - arctanh?(sin x) — 2 sin x - arctanh(sin x)) dx
0
b . 2 .
) ) 1 I + sinx ) 1 I +sinx
= lim sinx- |=In| ——— —2sinx- [ zIn|{ ———— dx
b—% Jo 2 1 —sinx 2 I —sinx

2
1 b 1 + si
:—mlsm»bnciﬂﬂ)‘m (15)

b—Z ) I —sinx
b .
1
~ lim gnx-bn(—iﬁff>]¢m (16)
b—Z Jo 1 —sinx

In computing both integrals in (15) and (16) we will use the following trigonometric identities:

I +sinx 1+sinx 1+sinx 1 +sinx)’ 5
— = — — = | —— | = (secx +tanx)
I —sinx 1—sinx 1+sinx COSs X

X

_a2 (X7
= tan <2+4). )

(The final identity is given here: https://en.wikipedia.org/wiki/List_of_trigonometric_
identities.) Applying the first trig identity, the integral in (16) becomes

b . 2
) ) 1 +sinx
lim sin x - lln (—) ] dx
b—% ), COS X
b b

= Z;in} sinx - In(1 + sin x) dx — Z;in} sin x - In(cos x) dx (18)
—2Jo —2Jo
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Integrating by parts with 4 = In(1 + sinx) and dv = sinxdx, so that v = —cosx and du =

COS X )
——— dx, the first term in (18) becomes
I + sinx

b 2
21im [~ cos x - In(1 + sinx)]) + 2 Tim | ——— dx
b—1 b—% Jo 1 4+ sinx
) P 1 —sin’*x
—2(0) +21im | —— 2
b—% Jo 14 sinx

b
= 21imf (1 —sinx)dx
b=3 Jo
= Zgin} [x + cos x]}
-3

T

:%2

) =mn—2.

sin x

Integrating by parts with u = In(cos x) and dv = sinxdx, so that v = — cos x and du = — o5 dx,
X

the second term in (18) becomes

b

2 lim [— cos x - In(cos x)]g —21lim | sinxdx

b—3 =3 Jo
=2(0) + 2l}irr} [cos x]p dx

-3
—2(—1) = —2.

So the difference of the two integrals (18), that is, the integral in (16), is 7—2 — (—2) = n. Note that
in the preceeding calculation, ;irr; [— cos b - In(cos b)] yields the indeterminate form O - co. This
-3

limit is indeed O, as an application of L’Ho6pital’s Rule shows after rewriting the limit:

1 .
In(cos b) ———sinb
. . . b .
lim [—cosb - In(cosb)| = lim ——— = lim —*>—— = lim —cos b = 0.
b_% b_)% " cosb 72{ cos2 b sinb b—%

Having found that the integral in (16) is equal to &, we turn now to the first integral (15), including
1 + sinx
I —sinx
1+ sinx} 1 —sinx d <1 - sinx) o ll + sinx] 1l —sinx 2cosx

1 2
the factor of 7 Integrating by parts with u = [ln } and dv = sinxdx, so thatv = —cos x

ddu = 21 —
anedau nll—sinx I +sinxdx \1—sinx I —sinx

1 + sinx (1 — sinx)?

1 i 1
41n l i s%nx] dx, the first integral (15) becomes
1 —sinx| cosx
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2
1 .. b 1+ sinx
—lim | sinx-|In{ ——— dx
4 b7 J, 1 —sinx

- 9b
- 12
1. 1+ sinx 1 . b 1+ sinx
=—-lim|—cosx- |In| — +—-lim | 4In{ —— | dx
4 bz 1 —sinx b—% Jo I —sinx
- i )
_ _ob
1 1+ sinx b 1+ sinx
=—lim|—cosx: |In| — +lim | In{ — | dx. (19)
4 p-1 1 —sinx b—Z ) 1 —sinx
B - - do
) 2
. i 1+ sinx )
The first term in (19) evaluates to 0. Note that glm —cosbh - |In T sinx yields the
—% —sinx
indeterminate form O - co. Rewriting and using L’Hopital’s Rule:
2
[ln <1+Sinh>] Iisinb 1 1+sinb
Qi Sin Sin
lim I=sinb — lim 41n I—sinb cosb — lim 41n T—sinb
z 1 - oz 1 - oz 1
b=3 " cosb b=3 cos2 b b=3 cosh
. l=sinb = _2cosh
. I+sinb ~ (I—sinb)2 i
= lim o 1( snpy _ lim —8 cosb = 0.
gk =1
cos* b

To evaluate the second term in (19), we rewrite the integrand using the final trigonometric identity
given in (17) above:
]) dx

b : b
1
lim | I (ﬂ) dx = lim | 1n (tan2 l
]) dx

+

N =
NN

- Jo I —sinx b=z )

b
=2lim | In tanl
b—3% Jo

, this becomes

+

N &=
IS

With the substitution 4 = = +

| =

b b
2lim | In(tanu) (2du) = 4lim | In(tanu) du

b—7% z b—3

Ll BN

= 4J In (tanu) du

s

7

Since the final integral above is equal to Catalan’s constant G (See https://en.wikipedia.org/
wiki/Catalan\’s\_constant), the expression above is equal to 4G. Since the expression (15)
is equal to 4G, and the integral in (16) is equal to «, the given integral is indeed equal to 4G — 7.
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Solution 8 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

By integration by parts with u = arctanh(sin x) and dv = sin xdx,

/2 /2 /2 Vi
f sin x - arctanh(sin x) dx = —cos x - arctanh(sinx)|  + f dx = 5
0 0

0
by integration by parts with = arctanh?(sin x) and dv = sin x dx,
/2

/2
+2 J arctanh(sin x) dx

/2
J sin x - arctanh®(sin x)dx = — cos x - arctanh?(sin x)
0

0
- Jﬂ/z In (—1 ha s%nx) dx
0 1 —sinx

/2
_ J 1n<1+cosx> I
0 1 —cosx

— 4G.

0

For this last line, see [1, equation (10)] or [2]. Thus,

/2
f (sinx - arctanh?(sin x) — 2 sin x arctanh(sin x)) dx = 4G —n.
0

Solution 9 by Albert Stadler, Herrliberg, Switzerland.

1 1 2 1
We have arctanh (x) = Elﬂ (1 i x) for |x|<1. Hence arctanh (1 +y 2) = In (—1 i y> for
- y -y

yl<l.
The change of variables t = sin x, dt = cos x dx gives

3
I:= J (sinx arctanh? (sinx ) — 2sinx arctanh (sinx ) ) dx =
0

1
1 < 5
= tarctanh” (¢) — 2tarctanh (¢ )dt
L Vi g ) 0

2 2 (1 —u?
We rationalize the integrand and perform the change of variables ¢ = " , dt = (—2)
I+ (1+u?)

We get

1 2 2
1 2 2 2 2 2(1 —u
I = J tu “ arctanh? “ -2 “ arctanh “ ( ) du =
o 1—u? \ 1+ u? 1+ u? 1+ u? 1+ u? (1 4 u2)?
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1
2 2 1
= 4J uarctanh?® “ — 2uarctanh “ —du =
0 1 + u? 1 + u? (1 + u2)?
1
1 1
= 4J In? ey 2In tu “ du.
0 I —u L—u) ) (1+uw)

Integration by parts yields

u=1 1+u
1 +u 1 +u 2 ! 4ln(m> 4 J1-w
I=[In? —21 1 - — du =
(n (1—u) n(l—u))( 1+u2> +L 1 —u? = | T+2
-0

since

1
1
=—11 dv=G
Jo n(v)l—i—v2 Y

by a known integral representation of Catalan’s constant; see for instance:

https://en.wikipedia.org/wiki/Catalan%27s_constant
Also solved by the proposer.

e 5708 Proposed by Toyesh Prakash Sharma, Agra College, Agra, India.

Solve the differential equation

IF TRtz t A dy = LED Ty dx) delademzdy)

X2+ 32+ 22

Solution 1 by Moti Levy, Rehovot, Israel.

Collecting terms, we get total differential equation:

2 2
+
(y yzﬂz_L)dH (Z WHZ_L)dﬁy_de:o

x2+y2_|_Z2 x2+y2+Z2 x2+y2_|_Z2
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1 . .
After multiplication by the factor —— e get an integrable total differential,
Yy +z

212
Xz X +2z

y- dz+|z- . dy+
(X2 +y2+22) /¥ + 22 (X2 +y2+22) /¥ +z Xy Atz

[\

Now we use cylindrical coordinates:

y = rcos (1)
z = rsin (1)
X=x

dy = cos (t)dr — rsin (t) dt
dz = sin (t) dr + rcos (1) dt
dx = dx

The differential equation in cylindrical coordinates becomes:

(r sin (21) — ﬁ) dr + 1 cos (21) di + ——dx = 0

x% + r?

The function F (r, 1, x)

r x
F(r,tx) = 5 sin (21) + arctan (—>
.

satisfies the following

OF (r,t,x) . X
— = rsin (2t) — o
OF (1,1,
% = r*cos (21),
OF (r,t,x)  r

oz x4

Hence the solution is
r (21) + arct a 0
— sin arctan | — | = 0.
2 r

The solution in x, y, z is

yzZ + arctan (

BT S

Also solved by the proposer.
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Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to proper LaTeX code. Porposals without a proper LaTeX document
will not be published regrettably.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).
#ProblemNumber_FirstName_LastName_Solution_SSMJ

e FirstName stands for YOUR first name.
e [astName stands for YOUR last name.

Examples:
#1234 _Max_Planck_Solution_SSMJ

#9876 Charles_Darwin_Solution_ SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:
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1. On top of the first page of your solution, begin with the phrase:
“Proposed Solution to ##*** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write
“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Gottingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute Z (Z) Ky,

k=0
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Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:
Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:
“Problem proposed to SSMJ”
2. On the second line, write
“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.
4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:
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Problem proposed to SSMJ
Problem proposed by Isaac Newton, Trinity College, Cambridge, England.
Principia Mathematica (<— You may choose to not include a title.)

Statement of the problem:

Compute Z (Z) Ky,

k=0

+ » « Thank You! & « «
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