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This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at Department of Mathematics, Los
Angeles Valley College. Please present all proposed solutions and proposed problems according to
formatting requirements delineated near the end of this document. Also, please make sure every
proposed problem or proposed solution is provided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@ gmail.com
To propose solutions, email them to: solutions4ssma@ gmail.com

Solutions to previously published problems can be seen at <www.ssma.org/publications>.

Solutions to the problems published in this issue should be submitted before March 1, 2024.

e 5751 Proposed by Daniel Sitaru, National Economic College "Theodor Costescu,” Drobeta
Turnu - Severin, Romania.

Show that if 0 < a < b < g then

b
+3(b* —d*) + 2J x* tan (x) dx < 0.

a

cos (b)
cos (a)

6log

e 5752 Proposed by Raluca Maria Caraion, Cdldrasi, Romania and Floricd Anastase, Lehliu-
Gard, Romania.

Show that if x,y,z > 0, then

5 (kx* +yY)z 3(k+1)< 15 2).

= —n
3y3(1 + nz) 8 X2+ y? + 72

cyc

e 5753 Proposed by Goran Conar, VaraZdin, Croatia.

n
Let xq,...,x, > 0and set s = Ex,-. Prove

i=1

n

[T= (55) TTo o
i=1

i=1

When does equality occur?



e 5754 Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Calculate § = i(Zn —1) (i (’i_—:]){;> :

n=1 k=0

e 5755 Proposed by Paolo Perfetti, dipartimento di matematica Universitg di “Tor Vergata', Rome,
Italy .

Formally assuming that (sin0)/0 = 1, prove
sinx  (sinx)*
+
X x*
e 5756 Proposed by Toyesh Prakash Sharma (Undergraduate Student) Agra College, India.

Vxe [0,71/2] : > 2¢cos X.

o0
Calculate T = J dx .
o x?(tanx + cot? x)

Solutions
To Formerly Published Problems

e 5727 Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”
Drobeta Turnu - Severin, Romania.

b
If f:(0,00) — (0,00) is a continuous function and J f(x)dx = 5(b — a) where 0 < a < b,
then ‘

Jb <5f(x) +3 . 6f(x)+4 Tf(x)+5
+7 +

Fx) OEERNCE 11) dx <9(b - a).

a

Solution 1 by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.

Note that
SF(x)+3  6f(x)+4  Tf(x)+5 42 5 g
f(x)+7+f(x)+9+f(x)+11_18 2<f(x)+7+f(x)+9+f(x)+11> ------- (1)

By Titu’s lemma,

a 5 6’ 15 144
? (f(x) +7 i f(x)+9 " flx) + 11> >2 <3f(x) +27> = 1o (2)

2




By AM-GM inequality,

144 144
f(x)+9+f(x>+9>2\/<f(x)+9)(f(x)+9)=24 ......... 3)

Combining (1), (2), and (3) gives us

Then,

PUSF(xX)+3  6f(x)+4  Tf(x)+5
J (f(X)+7 W19 fr 1l

proven. Equality holds if and only if a = b.

) dx<ff(x)dx+fb3dx:8(b—a)<9(b—a),

a a

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

The function

(o SXT3 6xtd TxeS o 32 50 72
W =TT T 9 T xr11 x+7 x+49 x+11

is concave on (0, o0) since g” (x) < 0. Therefore, it can be estimated from above by its tangent in
the point (5, g (5)) ,1.e., we have

g(x)<g(5)+4(5)(x—5).

We infer that

PUSF(x)+3 6f(x)+4 Tf(x)+5 (
f(f<x>+7+f<x>+9+f<x>+n)d"‘f

< f(g<5>+g’<s>(f<x>—5>)dx=g<5><b—a>,

a

g (f(x))dx

a a

b
since by assumption J (f (x) = 5) dx = 0. Now the inequality follows since g (5) = 305/42 ~

7.2619 < 9. ’
Remark: The inequality shown above is sharp. Equality occurs if f (x) = 5 on (0, c0).

Solution 3 by Albert Stadler, Herrliberg, Switzerland.

We will prove the stronger inequality

PUSF(x)+3 6f(x)+4 Tf(x)+5 305
| e+ Foms o) e w

a



Clearly,

Jb <5f 6;1( >)+9 +;]E$>flf>dx—
=J(5 6—%—1—7—#111)61962

32 50 72
= 18(b—a)- f (f<x>+7 O +f<x>+n)d’“'

We need to prove that

451 b 32 50 72

—(b—a) < + + dx. «

b= a f (f(x)+7 T 19 f(x)+11> ()
Let r>0. By the Cauchy-Schwarz inequality for integrals,

(b—a) = (Lbdx>2<Lb(f(x)+r)deb (#ﬂ)dxz(sw)(b—a)f (ﬁ)dx

which implies

We conclude that

b( 32 50 72 )d>b )<32 50 72)—451(19 )
L o7 T TPl Tt s et ) T b

which is (*).

Solution 4 by Michel Bataille, Rouen, France.

5x+3 6x + 4 Tx+5

Let g(x) = P h(x) = P k(x) = T It is easily checked that g, &, k are non-

decreasing and concave on (0, 0).

Wewanttoprovethatj #(x)dx < 9(b — a) where ¢(x) = g(f(x)) + h(f(x)) + k(f(x)). .

Let m and M be the minimum and the maximum of the continuous function f on the interval [a, b].
b

Then, 0 < m < M and since m(b—a) < J f(x)dx < M(b—a), the hypothesis givesm < 5 < M.

From the concavity of g on the interval [m, M], the curve y = g(x) is under its tangent at (5, g(5)).

1
The equation of this tangent is y — % = §(x —5) (note that g'(x) = m), that is, y = gx + 5
2
and therefore g(f(x)) < fx ) 3 for x € [a, b].
25 11 9
Similar calculations lead to h(f(x)) < S (%) + — 5 and k(f(x)) < () + » and we deduce

98 98 32 32

that for x € [a, b],

¢(x)< z+§+_ f(x)+£+£+§_@ f(x)+%
~\9 98 32 9 98 32 14112 14112



Integrating yields

b 10705 48955
£¢( 14112J flx)dx+ b —a).
that is, \
53525 48955 6405
< —a) = ———(b—a).
L Plx) dx <14112 " 14112) (b-a)= gz (b=
. 6405 . .
Since 230 < 9, we obtain a sharper result than the required one.

Also solved by the problem proposer.
e 5728 Proposed by Floricd Anastase, “Alexandru Odobescu" high school, Lehliu-Gard, Cdldragi,
Romania.

Define the sequences (ay,),~ , (bu),s; as follows:

n 2
a :J V—| dx and by > 1, by = 1 + log(by)
1

X

where [ : J denotes greatest integer (i.e., floor) function. Find the limit
O — lim M'
n—00 logn
Solution 1 by Albert Stadler, Herrliberg, Switzerland.
We have

L 1’12 n?—1 I’l2 l’l2 n?—1 1
J{ ‘a’x—Zan {;‘dx—gm<m m+1>_n _erl_n(H"2 H).

m+1

3|

where H,, denotes the n harmonic number. It is well-known that the asymptotics of the harmonic
numbers is

1
= logn +y+0(—), n— oo.
n

Thus

n| o2
an—f V—‘ dx = n’logn + O (n), n— .
1 X

Let ¢, = logb, . Then ¢;>0and ¢, = log (1 + ¢,) < ¢,. So (c,),: is a monotonically decreasing
sequence of positive numbers which tends to a limit c=0. That limit equals O, for ¢ = lim ¢, =
n—o0



lim log (1 +¢,) =log(l+ c) implies c=0. We have

n—o0

< < -, x>0.
25 dog(l+tx) 207

i<x—log(1+x) 1

0| =

To prove these two inequalities we replace x by e’-1 and use Taylor’s expansion of the exponential
function. We then see that

1 7 ‘ 1 : :
x—1log (1 +x) —xlog (1l + x) (——i) zey—l—y—ﬁy(ey—l)JrEy(eZ)—e)) =

212
S5y 2y 1, Xy (21 —-8)k
- y 7 Yy — z
bre -3 T gkz T >0

and

k=3

Hence
1 ck<ck—log(1+ck) a1 1<1
2 12 qlog(l+c¢) a1 a2

We sum over k from k=1 to k=n-1 and get

1 1
—1) <———<-(n—1
(n Z cr < el 2 (n—1)
which is equivalent to
1 1
n 1 1 SO S n 1 1 1 n—1
SR 55t o T 15 2kt
n—1 2
However Z cx = o(n), since ¢, tends to zero. Thus ¢, = = (1 + 0 (1)) and we conclude that
n
k=1
a, - log (/b, nflogn +0 (n)) 2 (1 +o0/(l
g (Vb,) i GG =lim( g (n) 7 ( ()):2'
n—a0 logn n—w nlogn n—a0 nlogn

Solution 2 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

For any real number b; > 1, Q = 2.



2
For each integer k with n < k < n?, the function {—‘ has constant value k& on the interval

X
f’lz n2
,— 1, that
(k+1 k) S0 tha

—
SN »Fw
—_—
=S,
N
=
I
7N
|3,
|
=
[S=Y
?\\4
I
=
[S—"

and . .
n-—1 I’l2 ) n 1
a, = =n -
k=n k+1 j=n+1 J
Since .
n?+1 n n?
1 1 1
J —dx < - < f — dx,
n+1 X j:n+1 .] n X
then 2
n®> + 1) — 1
g < Z - <logn
( n+1 S
and
2
+1
n’ log (’;Jr I ) < a, <n’logn
Notice that
ay - log \n/FH . a - logbn o an (bn+1 - 1)
logn ~ n-logn  nlogn
so that

n2
tog (77
logn
L’hospital’s Rule shows that

an~log\"/b7<

n(bpy —1) <
n byt ) log 1

I’l(bn+1 — 1) .

n2
10g ( nJ-ri_l1 )
lim ——= =1
n—00 logn

b

so it only remains to show that
lim n (b, — 1) = 2.

n—o0

Let ¢, = b, — 1. Then ¢; > 0 and c¢,;; = log (1 + ¢,) for all positive integers n. We prove
that if A and B are any two real numbers with 0 < A < 2 < B, then

A < liminf nc, < limsupnc, < B.



Lemma 1 If A and B are any two real numbers with 0 < A < 2 < B, then there are positive
integers Ny and Mg > B such that

1 B B? 1 1 A

+ — < <
n 2n? 2n® n+1 n 2n?

for all integers n > max{N4, Mp}.

Proof: For positive integers n,
1 B B? 1

+ <
n 2n? 2n¥ n+1

if and only if
(3B — 6)n* + (3B — 2B*)n — 2B* > 0.
Since 3B—6 > 0, there exists a positive integer Mz > B such that (3B—6)n*+(3B—2B*)n—2B* >

0 for all n > Mp. Similarly, for positive integers n,

1 A 1

>
n 2n2 n+1

if and only if —A + (2 — A)n > 0. Since 2 — A > 0, there exists an integer N, such that
—A + (2 — A)n > 0 for all integers n > Njy.

Lemma 2 If x; > 0 and x,.; = log (1 + x,,) for each positive integer n, then (x,) is decreasing
and converges to 0.

Proof: The sequence is decreasing since x,,; = log (1 + x,) < x, and x, > O for all positive in-
tegers n, so by the Monotone Convergence Theorem, the sequence converges to some real number
L. Since L =log (1 + L), then L = 0.

Lemma 3 Let (x,),., be a sequence of positive real numbers such that liminfnx, = S and
lim supnx, = T. Then for any positive integer N,
liminfnx,_y =S and limsupnx,_y =T.

Proof: The result follows from the fact that

n
n—N

nX, N = (n—N)x,_n-

Lemma 4 Let A and B be two real numbers such that 0 < A < 2 < B, and let ¢, = b, — 1. Then

A < liminf nc, < limsupnc, < B.



Proof: Let Ny and Mp be as described in Lemma 1. Since ¢, — 0, there are positive integers N and
J such that cy < B/Mp, cy = A/J and J > N,. Let x, = ¢,_p,+n forn = Mg andy, = ¢,y for
n = J,sothat xy, = cy < B/Mpgandy;, = cy > A/J. Notice that the sequences (x,) and (y,) also
satisfy the recurrence relation in Lemma 2.

We use induction to prove the inequalities x, < B/n for alln > Mg andy, > A/n foralln > J.
For the first inequality, the basis case is true because xy;, = cy. Suppose that x, < B/n for some
n = Mp. By the cubic approximation of log(1 + x), which is increasing for x > 0, and Lemma 1,
we have

xﬁ x,31 B B B B

xn+1=10g(1+xn)<xn—5+?<;—ﬁ+ﬁ<n+1.

For the second inequality, the basis case is true since y; = cy. Suppose that y, > A/n for some
n > J. By the quadratic approximation of log(1 + x) for 0 < x < 1, which is increasing, and
Lemma 1, we have

2 2
¥ A A A
el =log (I +y,) >y, — 22 > — — — > ——,
yuer =log (L yn) >y =5 > 0= 55> =
Thus, if n > max{Mp, J}, then nx, < B and ny, > A, and hence,
lim supnx, < B and liminf ny, > A.

By Lemma 3,
lim sup nc, = limsup nx, p,—y = limsupnx, < B

and
liminf nc, = liminf ny,,;_y = liminf ny, > A.

Since the values of liminf nc, and lim sup nc, are independent of our choice of A and B, A and B
may be chosen arbitrarily close to 2, so that Lemma 4 implies that

lim n (b, — 1) = lim nc, = 2.
n—0o0 n—o0

Solution 3 by Michel Bataille, Rouen, France.

We claim that Q = 2.

[\

n

If x € (1,n], then {—‘ € {n,n+1,...,n* — 1} and for k in this set, we have
X

It follows that

n?—1 n? Jk n?—1 2 2 2nz—l 1 )
anzsz kdXZZk I_k—i—l =n k—f——lzn(an_Hn>

n?/(k+1) k=n




1
where H,,, = —.
25
We know that H, = log(n) + vy + o(1) as n — oo (where v is the Euler constant). Therefore,
a, = n*(log(n®) +y — (log(n) +y) + o(1)) = n’log(n) + o(n’)

and we obtain a, ~ n’log(n) asn — .

Now we consider the sequence (b,). An easy induction shows that b, > 1 for any positive integer
n. In addition, b, — b, = log(b,) — (b, — 1) < 0 (since log(x) < x — 1 for x > 0,x # 1).
We deduce that (b,) is bounded below and non-increasing, hence convergent. Its limit ¢ satisfies
¢ =1+log(¢), hence ¢ = 1.

To go further, we introduce the sequence (c,) defined by ¢, = b, — 1. Then ¢, = log(1 + ¢,) for

2
any positive integer n and lim ¢, = 0. Using log(1 + x) = x — 4 o(x*) as x — 0, we obtain

n—00 2
1 1 1 ¢+ o(c? 1 .
L latele) 1 e i,y
Chel  Cn 2 CpCpgi 2 log(1+c,)

1 1 1
so that lim ( — —> = —.
=0\ Cpy Cn 2

1 n 2 )
From the Stolz-Cesaro theorem, we deduce that — ~ > asn — oo. Thus, ¢, ~ -, thatis,
Ch n

2 2 1 2
b, =1+ =+ 0(1/n), and log(b,) ~ =, which leads to log(/b,) = —log(b,) ~ — asn — .
n n n n

We conclude
an - log( \H/E)
logn

=2

2 1
~ n%l i
- log(n) n*> log(n)

as n — oo and the claim follows.

Also solved by Paolo Perfetti, dipartimento di matematica, Universitg di “Tor Vergata',
Roma, Italy; and the problem proposer.

e 5729 Proposed by Goran Conar, VaraZdin, Croatia.

Let 0 < a < b be real numbers. Prove the following inequality

2b
2 b2
(a+ b)Y (b —a)’™ < (“ Z ) .

Solution 1 by Paolo Perfetti, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

b b 24 B
“;b Ina + b) + 2baln(b—a)<ln<a;r >

10



a+b N b—a
2b 2b
and the concavity of the logarithm yield

=1

a+b b—a a+b b—a a* + b?
5 In(a + b) + T In(b—a) <In ( o5 (a+Db) + T (b a)) In ( 5 )

Solution 2 by Ivan Hadinata, Department of mathematics, Gadjah Mada University, Yo-
gyakarta, Indonesia.

Let x=a+b and y = b — a then x,y € R". By weighted AM-GM inequality,

X+
x4 y? y_ X-x+y-y x+y
x+y xX+y
Equality of (1) holds if and only if x = y, then @ = 0 which is impossible. Therefore,

x+y 2b
X%+ y? a* + b?
X'y b)Y’ (b —a)" .
( P > xy = 5 > (a+b)"™( a)

\%

x'y (D

Solution 3 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

The desired inequality is an immediate consequence of the weighted AGM inequality for two vari-
ables: W W

;”/W- ;Z/W < Wl X+ Wz - xp, where W = w; + w,.

In this problem, x; = a + b, wy =a+ b;x, = b —a, w, = b — a; W = 2b. Equality holds in the

AGM if and only if x; = x,. Since 0 < a < b, the inequality in this problem is strict.

X

Solution 4 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

With 0 < a < b, it follows that a + b and b — a are both positive numbers with a + b # b — a. Now,
by the weighted arithmetic mean - geometric mean inequality,

a+b pa _ [ (a+b)?+ (b—a) 2}’_ 242\
(a+ by (b—a) << . ) _( ! ) |

Solution 5 by Albert Stadler, Herrliberg, Switzerland.

Put u:=a+b, v:=b-a. By assumption u>v>0. The stated inequality is equivalent to
u+v
2, .2 2,2
! u +v u v u +v
u"v' < and to Inu + Inv <In .
u+v u+v u+v u+v

11




The function x—In(x) is concave for x>0. Hence, by Jensen’s inequality,

u V u % u2+v2
Inu + Inv <lIn u+ v] =In )
u-+v u-+v u-+v u-+v u-+v

Equality in Jensen’s inequality holds if and only if In(x) is linear or u=v. But In(x) is nowhere
piecewise linear (since the second derivative is nowhere 0) and u>v. So we have strict inequality.

Solution 6 by Michel Bataille, Rouen, France.

We prove the equivalent inequality

a —da 2 b2
(a+b)Fb-a)7 <2 Z . (1)
b b—
Since & 2—; ' ba are positive and sum to 1, the weighted AM-GM gives

a+b b—a a+b b_a
(@a+b)» (b—a)™> 25 (a+b)+ 5

(b —a)

(strict inequality because a + b # b — a).
The inequality (1) follows since (a + b)* + (b — a)* = 2(a* + b*).

Solution 7 by Prakash Pant, Mathematics Initiatives in Nepal, Bardiya, Nepal.

We modify the problem taking In on both sides,

a’ + b?

(a+b)In(a +b) + (b —a)In(b — a) < 2bIn( ) (1)

Now, we will focus on proving this statement.

1
Then, consider a function f(x) = In(x). Then f’(x) = —— < 0 Vx > 0. So, the function is
x

concave Vx # 0. Also notice that both a+b and b-a are strictly positive here.
Now, using Jensen’s inequality,

(a+Db)In(a+b) + (b—a)ln(b —a)

a+b+b—a
which on simplification gives

(a+b)(a+b)+ (b—a)lb—a)
a+b+b—a

< In( )

a’ + b?
)

(a+Db)In(a+b) + (b—a)ln(b —a) < 2bIn(

And the equality holds when a + b = b — a = a=0. But since 0 < a < b, the equality does not
hold. Hence, we have proved (1).

Also solved by the problem proposer.

12



e 5730 Proposed by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.

c

= f(a)” +a'®",

f() c
Find all functions f:N — N such that Va,b,c e N : f (a)f(b)/ +a""

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

To show impossibility (or contradiction), suppose that f(1) # 1. If a = b = ¢ = 1, then

f(l)f(l)f(1> = f(1). So f(l)f(l) = 1. However this is impossible gi ition th
: . p given our supposition that
f (1) # 1. So, we must conclude that f (1) = 1 whena =b =c¢ = 1.

Consider the case ¢ = 1,a = b. This implies f (a)’“ — a/@ = f (a)* — .

Suppose a > 1. To show impossibility (or contradiction), suppose that f(a) > a. We divide
both sides of the latter equation by f(a) — a and get

Jia)(f(a))f(a kkl Z akkl.
k=1

However this is impossible since (f (a))f(a)_k > (f (a))a_k for 1 < k < a, and the left-hand side
has more (positive) terms than the right-hand side.

To show impossibility (or contradiction), suppose that f(a) < a. As before we have

O (f (@) =D a (@)

Again this is impossible since a/@* < a** for 1 < k < f (a), and the left-hand side has fewer
(positive) terms than the right-hand side.

!

—~
N

a

bl
Il

1

So f(x) = x for all x and this is the only function with the required property.

Also solved by ; and the problem proposer.

e 5731 Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, “George Emil Palade”
School, Buzdu, Romania.

Solve forreal x: /6 — 11x +6x2 — x3 + /12 — 19x + 8x2 — x3 = 4/15 — 23x + 9x2 — 3.

13



Solution 1 by Michael C. Faleski, Delta College, University Center, MI .
We start by factoring the polynomials. The expression given can be rewritten as

VE =2 =3)(1—x) + /x4 x = 3)(1 —x) = y/(x = 5)(x—3)(1 —x)

By bringing all of the tems to one side of the equation, we have

(Va=3) (Vi—x) (Va—2+ V=4~ vx=5) =0

This leads to three possible solutions: x = 3, x = 1, and Vi—=2++Vx—4—+Vx—5=0.

The third condition cannot provide a real solution because for all x > 5 (which makes all of
the terms real), vx—2 > vx—5and vx—4 > +/x— 5 meaning that Vi—2+ Vx—4-—
Vx—5>0.

The only real solutions are x = 1, 3.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

We note that
6—1lx+6x*—x =—(-3+x)(=2+x)(~1+x),
12-19x +8x* = = — (=4 4+ x) (=3 + x) (-1 + x),
15-23x4+9x* —x = — (—5+x) (-3 +x)(—1 +x).

So x=1 and x=3 are solutions of the given equation.

If x#1 and x#3 we may divide both sides by \/ — (=34 x) (=1 + x) and get

Vx—2+Vx—4=+x-5. (*)

Squaring both sides gives

2vVx—2vVx—4=1-—x.

Squaring both sides again gives
31-22x+3x° =0

which has the two roots <11 +247 ) /3, with one root less than 2 and the other greater 5.

If we define \/x = iv/—x if x < 0, then x = (11 —2\ﬁ> /3 is a solution of (*), but x =
(11 +2+/7)/3 is not.

So the set of real solutions of the given equation is

{1, 3, (11—2[7)/3}.

14



Solution 3 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

6—11x+6x"—x = —(x—1)(x—2)(x—3), 12— 19x+8x* — x> = —(x — 1)(x—3)(x— 4), and
15-23x+9x" —x = —(x—1)(x—3)(x—5), it follows that x = 1 and x = 3 are real solutions of
the proposed equation, and the given equation simplifies to v/2 — x + v/3 —x = /5 — x, where
x < 2. Solving this last equation, since x < 2 it follows that other real solution of the problem is

x= (11-2v7) /3.

Solution 4 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Because

6—1lx+6x*—x = (1-x)(6-5x+x)=(1-x)(2—x)(3—x),
12-19x+8x% —x = (1-x)(12-7x+x*) =(1-x)(3—x)(4 - x),
15-23x+9x% —x = (1-x)(15-8x+x*) =(1—-x)(3—x)(5— x),

it follows that

\/6—11x+6x2—x3+ \/12—19x+8x2—x3= \/15—23x+9x2—x3

is equivalent to

(1—x)(3—x)<\/2—x+ VA= x— \/5—x> —0.

Thus, either

(1-x)3-x)=0 or V2—x++V4—x—+/5-x=0.

The equation 4/(1 —x)(3 —x) = 0 has roots x = 1 and x = 3. For the remaining equation,

transpose the V5 — x to the right side, square both sides, and then combine like terms to obtain
24/2—x)(4—x) =x— 1.
Again, square both sides and combine like terms to obtain
3x* —22x +31 =0,

an equation whose roots are
11

3 37

X = +

W N

11 2
Withx=?+§\f7,
2—x<4—-—x<5—-—x<0,

SO

Im<\/2—x+ \/4—x> >Im\/ﬁ,

15



11 2
and x = 3 + 3 /7 is thus an extraneous root. Therefore, the real roots of

\/6—11x+6x2—x3+ \/12—19x+8x2—x3= \/15—23x+9x2—x3

are " o
=1, =3, d x=—-2-vVT.
X X and x=——z

If the intent of this problem is to determine the real roots of the given equation using only real

11 2 11 2
arithmetic, then x = 33 7 must be excluded as 6 — 11x + 6x*> — x° < 0 for x = 373 V7.
11 2
In fact, all three radicands are negative for x = 33 7.

Solution 5 by David A. Huckaby, Angelo State University, San Angelo, TX.

The three cubic polynomials X +6xF—11x+6, — x> +8x> —19x+ 12, and —x> +9x> —23x+ 15
have leading coeflicient —1 and constant terms 6, 12, and 15, respectively. So the sets of possible
rational roots for the three poynomials are, respectively, {+1, £2, 3, £6}, {£1, £2, £3, +4, £6,
+12}, and {£1, £3, £5, £15}.

Synthetic division yields x = 1 as a root of each of the three polynomials, so that —x> +
6x* —1lx+6 = —(x—1)(x* =5x+6) = —(x — )(x —2)(x = 3), —x> + 8x* — 19x + 12 =
—(x—1)(x*=7x+12) = —(x—1)(x—3)(x—4), and —x* +9x*—23x+15 = —(x—1)(x*—8x+15) =
—(x—=1)(x=3)(x—3).

So the original equation is

Vo D=2 =3) - D=3 —4) = - D= B3 @

It is clear that x = 1 and x = 3 are solutions to the equation. Squaring both sides of the
equation, isolating the remaining radicals on one side, and then squaring both sides again yields

(= D= 2)(x—3) + 24/~ D= 2)(x —3) 3/~ (r— D(x—3)(x—4)
—(x=1)(x—=3)(x—4)
=—(x—1)(x=3)(x=15)
24/ (x = D(x = 2)x—3) 3/~ x—3)(x—4)
= (x—=1Dx=3)[(x=2)+(x—4) — (x = 5)]

2\/—(x— (x—2)(x—3) \/—(x— D(x—3)(x—4) = (x—1)*(x—3)
4x — 1) (x =3 (x—2)(x —4) = (x — 1)*(x — 3)?
(x—1)*(x—3)*[4(x—2)(x—4) — (x—1)*] = 0.

16



The solutions x = 1 and x = 3 are again obvious. Expanding 4(x — 2)(x — 4) — (x — 1) and
collecting like terms, we have the quadratic equation 3x*> — 22x — 31 = 0, whose solutions are
11 £247
-—

X

11 —247

values of x, all three cubic polynomials are negative, and therefore all three radical expressions are

11 -2+7 11 +2+7
imaginary. If we allow this, then checking x = —\f and x = +—\/> in the original

3

11427

Since x = ~19and x = ~ 5.4, it is clear from (2) that for each of these

equation, we find that the former is a solution, whereas the latter is not.

So x = 1 and x = 3 are solutions to the original equation. If we are restricting solutions—but

11 —247 .

not operations—to the real numbers, then x = —3 is also a solution.

Solution 6 by Perfetti Paolo, dipartimento di matematica Universita di ‘““Tor Vergata'', Roma,
Italy.

6—11x+6x* —x = (1 —x)(x—2)(x—3),
12— 19x+8x* —x* = (1 —x)(x — 3)(x — 4)
15-23x+9x* —x = (1 — x)(x = 3)(x = 5)

It follows that the equation is defined for x < 1, x = 3 and x = 1, x = 3 are solutions. Let’s square

2
<\/6—11x+6x2—x3+ \/12—19x—|—8x2—x3> =15 —23x+9x* — x°

2\/6—11x+6x2—x3\/12—19x+8x2—x3=—3+7x—5x2+x3=(x—3)(x—1)2<0

It follows that there are no other solution apart of those found thus the only solutions are x = 1,
x = 3.

Solution 7 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

The solutions are the zeros of the function

F(xX) = V6 —1lx+6x2— x>+ /12— 19x + 8x2 — x3 — /15 — 23x + 9x2 — x3.
Observe that

6-1lx+6x>—x = (1-x)(2—x)(3—1x),
12— 19x+8x* —x = (1-x)(3—x)(4—x),
15-23x+9x —x = (1-x)3—x)(5—x).

17



We distinguish two cases.
Case 1: Only square roots of nonnegative real numbers are accepted.
We have

\/(l—x)(3—x)<\/2—x+ VA= x—V5-x), x—2| > 1,
f(x) =

\/—(l—x)(3—x)<\/x—2+ Vx—4— \/x—5>, x—2| < 1.

Since v/ x — 5 is defined only for x > 5 there is no real solution of f (x) = 0 if |x — 2| < 1. Since
v/2 — x is defined only for x < 2 there is no real solution of f (x) = 0 if x > 3. In the case x < 1,
we obviously have v/2 — x < v/4 — x + /5 — x, which implies that f (x) < 0. Summarizing, the
only real solutions are x = 1 and x = 3.

Case 2: Complex roots are accepted.

Solutions different from x = 1 and x = 3 satisfy vx —2 + vx —4 = v/x — 5. We consider
different intervals.

e If x < 1 orl < x < 2, the equation is equivalent to v/2 — x + v/4 — x = /5 — x. Taking

squares on both sides yields 2 \/ (2 — x) (4 — x) = x — 1. Taking again squares leads to the
equation 3x* — 22x + 31 = 0, whose unique solution in (1,2) is x = (11 -2 \ﬁ) /3.

e I[f2 < x < 3o0r3 < x < 4, the equation is equivalent to Vx—2+ivd—x=ivV5—x,
which has no real solution.

e [f4 < x < 5, the equation is equivalent to vVx—2+ v/x—4 =i+/5 — x, which has no real
solution.

e If x > 5, the equation is equivalent to vx —2 + v/x —4 = +/x — 5, Taking squares on
both sides yields 2 \/ (x—2)(x—4) = 1 — x. Taking again squares leads to the equation

3x* — 22x 4 31 = 0, whose unique solution in (5, +0) is x = (11 +2 \ﬁ) /3. Interpreting
vz = 0and v/—z = i+/z, for z > 0, this solution does not solve the original equation.

Summarizing, the (real) solution set to the equation is {1, 3, (11 — 247 ) / 3}.

Solution 8 by Brian D. Beasley, Simpsonville, SC.

We let f(x) =6 — 11x + 6x* — x°, g(x) = 12 — 19x + 8x* — x°, and h(x) = 15 — 23x + 9x* — x°.
This yields:

fx) = =(x=1)(x—=2)(x -3

(
8(x) = =(x = 1)(x =3)(x - 4)
h(x) = —(x—1)(x=3)(x—5)

18



Then the domain of 4/ f(x) is (—o0, 1] U [2,3], of 4/g(x) is (—o0,1] U [3,4], and of 4/h(x) is

(—o0, 1] U [3,5]. Hence any real solution of the given equation must be in (—o0, 1] U {3}.

It is straightforward to verify that both x = 1 and x = 3 satisfy the equation. If x < 1, then

(x — 1)(x — 3) > 0, so the equation becomes

V2—x4+Vd—x=+5—x

But the only real solution of the latter equation is x = (11 — 2 V7 )/3 ~ 1.903. Hence the solution

set of the original equation over the real numbers is {1, 3}.

Solution 9 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State Univer-

sity, San Angelo, TX.

If we use the Rational Root Theorem and some trial and error, we obtain that

X —6x* +1lx—6=(x—1)(x—2)(x—3),

X =8+ 19x—12=(x—1) (x = 3) (x — 4),
and

=9 +23x—15=(x—1)(x—3) (x—5).

Hence, the equation to solve may be considered in the form

V=0 (=2 (x=3) + 4 /(1 -2 (= 3) (x—4) = 4 /(1 —2) (x— 3) (x - 9).

Equation (1) implies that x = 1, x = 3, or
Vx—2++Vx—4=1+/x-5.
By squaring both sides of (2), we get
(x=2)+(x—4)+2Vx—-2Vx—4=x-5

which reduces to

2v/x—=2Vx—4=1-x.
If we now square both sides of (3), the situation reduces again to
4(x=2)(x—4)=(1-xP=x>—2x+1

or
3x* —22x+ 31 = 0.
Finally, if we apply the quadratic formula to (4), we obtain

114247

o 3
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It remains for us to test the expressions given in (5) to see if they satisfy equation (2).

First of all, we note that if
11+2+/7
X= ———

3
then 2vx —2+/x —4 > 0 while 1 — x < 0. This violates equation (3) and thus this choice will not
11 +2+7

~ 5.4305009,

satisfy equation (2) This makes x = extraneous as a possible solution of equation (1).

On the other hand,
11 —247
X= ————
3
and this leads to vVx—2 ~ .3117171i, vx—4 ~ 1.4481601i, and vx —5 ~ 1.759871i. We

conclude here that
Vx—2+Vx—4~+x-5

and hence, (6) is a plausible solution to equation (2).

~ 1.9028325 (6)

11 —2+/7
As a result, we see that x = 1 and x = 3 are solutions of equation (1) and x = —\f is

at least a plausible approximate solution of equation (1).5 equation over the real numbers is {1, 3}.

Solution 10 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

11 —247
—

Notice that the three radicands may be factored as (x — 1)(x — 3)(2 — x), (x — 1)(x — 3)(4 — x),
and (x — 1)(x — 3)(5 — x), respectively, so that the original equation can be rewritten as

There are three real solutions: x = 1, x = 3, and x =

(x—l)(x—3)<\/2—x+ Va4 —x — \/5—x> =0.
Thus, x = 1 and x = 3 are solutions. In addition,
V2—x+Vd—x=+5-x
2—x+24/2—x)4—x)+4—x=5—x

240/ x2 —6x+8=x—1
4(x* —6x+8)=x*—2x+1
3x2—22x+31=0

11 +2+7 11 —2+7
gives solutions x = _T\f, but of these, only x = T\f results in positive radicands.
11 -2+/7

Thus the three real solutions are x = 1, x = 3, and x = 3

20



Solution 11 by Michel Bataille, Rouen, France.

The solutions of the proposed equation are 1 and 3.
Since the equation rewrites as

V=906 -9+ /(1 -0B-9@-x = /1 -0B-96-x O

1 and 3 are obvious solutions. We show that there are no other solutions.

For the purpose of a contradiction, assume that x is a solution and that x ¢ {1, 3}. Since (1 —x)(2—
x)(3—x),(1 —x)(3—x)(4 —x)and (I — x)(3 — x)(5 — x) are nonnegative, x must satisfy x < 1.
Squaring (1) then readily leads to

(I1=x)3—x)(1 —x+24/(2—x)(4—x)) =0,

a contradiction since x # 1,3 and 1 — x > 0,24/(2 — x)(4 — x) > 0. This completes the proof.

Solution 12 by Péter Fiilop, Gyomro, Hungary.

Let’s group the quantities under the root as follows:

\/5— 1lx+6x° +1—x3 + \/11 —19x + 8x> +1 — % = \/14—23x+9x2+1 — 23
—_— —_ —_—
The underbraced parts are quadratic expressions, solve them for zero we get the roots of them.

5—1lx+6x>=0 xp=1,x =

AN W

11
11—19x+8x*=0 x1=1,x2=§

14
14—-23x+9x>=0 x1=1,x2=?

And konwn that 1 — x* = (1 — x)(1 + x + x?) the /1 — x term can be highlighted on the both
sides.

11 19 23
\/l—xq/x2+€+ V1 —x x2+§: V1—x x2+g

It means that x = 1 is a real root of the original equation.

It can be shown that the remaining equation cannot have any additional real roots:

21



e

23
Let’s introduce 72 = x* + Ch Substitute back to the previous equation we get:

39 13
2 22 2, 2 2
\/z +54+\/z +72 &

g " =z
>z >z

It can be seen that LHS > RHS for all real values.
The only real root is 1.

Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo; Hossaena Tedla, ADA University,
Baku, Azerbaijan; and by the problem proposer.

e 5732 Proposed by Sedn M. Stewart, Physical Sciences and Engineering Division, King Ab-
dullah University of Science and Technology, Thuwal, Saudi Arabia..

JOO tdt s (ns) s
- = ——csc(ms)cos [ — | .
p (B+1)(e—1) 292 4

Solution 1 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

If0 < s < 1, prove

) . 1 )
First, make the change of variable t — pt to obtain

0 1
1
J rdi :J £ (1 — 1) dr.
B+ D=1y )y A+1

by its geometric series expansion and interchange the order of integration and

1
Next, repl
ext, replace 57

summation to obtain

Now,
I(s+26)(1—5) T(s+2k)I(1—5)

1
RN - dr = = ,
JO (1=1) T2k + 1) (24!

where I'(z) denotes the gamma function. By Euler’s reflection formula,

r'(l1—s)= ﬁncsc(ns},

22



SO

* tdt s+2k)
f] Er)(- 1)3, 7TCSC s) Z .

Recall

0 0
[(z) = J Fle'dt, so T(s+2k)= J Pt gy,
0 0

It then follows that

= [(s+ 2k © X tlk o
2(—1)"“7)‘) — J rle Yy (—1 " —f e costdt

0 =0 0

= Ref:or‘ le=(=01 g — Re {(1FES2-)S}
- S Rel ) = s ().

J‘oo rdi —icsc( ) cos 3
D)1y pp 1)

Solution 2 by Perfetti Paolo, dipartimento di matematica Universita di ‘““Tor Vergata'', Roma,
Italy.

Finally,

The integral is

o (t+ 1)dt
JO (14 (t+1)2)r
z+1

We pass to the complex function f(z) =
(e >0

compute the contour integral on the path
I+ (At P ¢ P

yi(t) =t+ie, 0 <t <R, y2(t) = VR + 2", oo < t < 21 — ¢y, o = arctan(g/R)

y3(t) = (—t —ig)e*™, —R <t <0, Yat) = ge™", —3n/2 <t < —n/2.
Let’s show that

lim limf f(z)dz = lim lim J flz2)dz =0 (1).

R—00 -0 y R—00 -0 y.

If R is large enough and € < 1 we have

2+ Uy, = |1+ /R + &2)e"] <2/R2 + €2 <2V2R? = 2/2R

M+ G+ 1D e, =2+ D =12 (lyo] = 1) = 1= (R-1)>— 1= R*/2.
’ZS‘ZE’}/Z _ (RZ + 82)s/2 > Rs
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We get

=% 2 \2R\/R? + £2dt 8R?
@) Id] < j <2
Y2

" ERs TRats:
The limit R — oo shows that the integral tends to zero.
As for the second integral in (1) we have
2+ 1y, =1+ | <1 +e<2
1+ @+ D en =2+ 20+ % 22 -2ln| - nl 22-2e—&" > 1

2’| |zey4 =&

* 2e|(—i)e " |dt
f ’f ‘dZ’ f 8’( l) ‘ < 27T81_S

ES

and tends to zero as € — 0.

Of course

o (t+ 1)dt
lim 1 =
Ringosgllf fla)de = J (T+(+1)2)r

[ e [}l o

1+ (—t _ lg)eZIJT)Z)(_l- _ l8>.v62ins ;

- fo (L+ (x —ie))dr _ = s JOO ho(1)dt.

o (1+(1+ (r—ig))?)(r — ig)se¥ns

We perform the limit & — 0 under the integral and a sufficient condition is that the integrand is
o}

bounded in modulus with a function, say g(t), independent by & and such that J g(t)dt < 0. To

0
this end we break the integral as
0 1 0
f hg(t)dtzf hs(t)dt+f he(t)dt.
0 0 1
If 0 <7 <1 wehave
1 +7—ig| <2+e<3
1
M+(1+7—ie)? | =1+ (1+7)22ie(1+7) =& = 1+(1+7)* —de—&" > 5(2—5—27'4—7’ ) =1

It — el = (7 + §%)* = 1

yielding

hence we can perform




Moreoverifr > 1

T+7—ig|<1+74+e<2+7<
1
N+ +7—ig|=[1+1+7)7-2ie(1+7)-&|=1+(1+71)*—de—& > 57'2)
thus |
2
|he(1)] < 2+T =g(1), T=1, f g(t)dr < o
Zrs/2 0
hence - " ( 1d
t+ t
lim h.(t)dt = .
e=0J @ ﬁ (14 (t+ 1))
We have obtained
[ (t+ Ddt
lim i dz + dz | = (1 — e 27 J
Jim lim <L f(z)dz Lf(z) Z) (1 —e™) o (1+(t+ 1))
The zeroes of the denominators are t = —1 + ei%, t=-1+ ei%ﬂ, . The residues theorem yields
N t+ 1)dr —i
(1 o e—ZRlS)J ( ) = i : ! : ! :
o (14 (4 1)%)r 2i(—1+140)  2(—i)(=1—1i)
J‘OO (t+ 1)dt _ 27” . <27S/28 Allﬂ n 2 S/Zeffzr) _
o (I+(@+1)2)rs 1 —e s
2 ] i —in
= — il (2’5/2e4 + 2727 > = ——csc(xs) cos ™).
i sin(7rs) /2

Solution 3 by Yunyong Zhang, Chinaunicom, Yunnan, China.

Solution 1

According to the following theorem:

Let function f(x) defined holomorphic on C\|a, b] except a;,as, - -

ment [a,b]. If0 < |m|, |n| < 1,m

Then

[

(x —a)"(b — x)"f(x)dx =

,ay, continuous to line seg-
+ne€ Z,and

lim """ f(z) = A e C.

z—0

Am
sinzn

T

Z Res(F, a;)

—nmi g3
e sinmn p
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in which F(z) = (z —a)"(b — 2)"f(2).

So

» rds ! 1% ! s—1
I = J = f x(le) dx = f al dx.
@+ DE-1) b (F+DE -1 o (1=2x)(1+x%)
1 - 1
i
14+ x2 >0 1 + 72

Leta = 0,b = I,m = s — l,n = —s, and f(z) = = A =0. ThenI =

P

n z
——F— > R , . Now evaluate
e~ sin tn ; “ ((1 —2)°(1+2%) ak) wev

=1

P nyl P 1
;Res <(1 T Zz),ak> = ZRes ((1 s z2)zl_s’ak> = ResF(z) + ResF(z2).

k=1 =1 =—1
Whenz — i T ara(1—2) — —: ResF(z) — i ! !
enz = i,argz = —,arg(1—z) = ——: ResF(z) = lim — = .
& 2 & 4 =i 7—i (1 — Z)SZI_S(Z + l) (zl)zgef%sef%(lfs)
(Gms— )
e a2 3n m 1
. Wh = —i, = —, 1 - = —! ResF =1l =
2y ens = —hags = Tnagl =2 = g ResFl) = Ui e
e(%ns—’%"
(—2i)28eFseF (-9 23 x (=2i)
V4 e ra s Vg 1 i i
I: - e |:e47TA§_e47TSi| — - - |:e47rS+e47TSj|
—sin(s) 23 x 2 sin(rs) 22 x 2
n 1 s m oSy
= — - X 2€08 — = — -
sin(7rs) 23 x 2 4 sin(ns) 23

Solution 2

1
Letx=t—1,t=x+1,y=—.
X

* rdt * (1+x)
- fl (24 1)(t— 1) fo B(x%+2x+2) *
B Jao (% + 1)%2 . foo Vs 4yt

= | 55— —-d
0 w(zF+i+2) 0o 2P +2y2+y

According to Laplace Transform and Inverse Laplace Transform,

1 ; t t
] B _t .
L (m) =1]1—e¢2 (COS E + sin 5)

L' S S —et sin£
22 +2y+1) 2
o T(s+1)
LY') = ——

ts+l
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© e isint+ 1 —e Zcost—e Zsint
I=T(s+1) J 2 2 2dr
0 t5+1
S P Cos 3 ¢
ZF(S+1)J;) Tdt (letx=§,t=2x)
©1—e*cosx [(s+1) (®1—e*cosx
= F(S + 1)J;) Wde = 25 J;) _xs+] dx
I(s+1) foo e *(e* —cosx)
= dx.
25 0 strl

0
If F(s) is the Laplace Transform of f(¢), then J f(t)e ™dt = F(x)
0

L(%{) _ %F(—s) 20— 1) — (t— i) — (t + i)].

Whent=1,e " =e "

e* —cosx 1

L( — )=—§F(—s) [(1—i0)" + (1 + )%

= —%F(—s)(ﬁ)%os? x 2.

I(s+1) [® _e"—cosx I'(s+1) s s
TJO e TdX:T r(—S)COSZ (\/§>
n
I'(s+1DI'(—s)=—
(s JT(=s) sin s
n cosT  x ns

I = = — csc(ns) cos(—

sinzts 23 25/2 4 )

Solution 4 by Michel Bataille, Rouen, France.

1 “R

Let I denote the integral. The substitution t = 1 + — readily leads to I = f () du where
u o u“

u+1
Ru) = ————anda =1 —=s.
() 2w 1 2u 1 e g _
We apply the formula established in [1] p. 106-107, which gives: (1 — e ?"*)I = 2nio- where o
R —1+i 1 : —1—i 1 ,
denotes the sum of the residus of ﬂ at the poles LA — 4 and Lo i,
ue 2 V2 2 V2

We calculate

(1+i)2 2072 (1—-i)/2 292 202

_ ((1 . i)e—37mri/4 + (1 + i)e—Snai/4) )

T= T s Tt Smaif 4
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Since 1 — e~ = 2isin(na)e” ™, we deduce that
: 2%/2 . .
[=— T I = — T e ((1 . l-)ema/4 + (1 + l-)efma/4>
sin(ra) sin(ra) 4
a/2
_ n2*/ (ﬁe—mﬂenmm " \fzein/4e—nm/4>
4 sin(na)
or, back to s,
1 n . : T s
J= - —~ (e—ms/4 + ems/4) =— " cos|—],
2 252sin(ns) 2¢/2 sin(7s) 4
as desired.

[1] H. Cartan, Elementary Theory of Analytic Functions of One or Several Complex Variables,
Dover, 1995

Also solved by Albert Stadler, Herrliberg, Switzerland; Péter Fiilop, Gyomr6, Hungary; and
the problem proposer.

Belated Acknowledgement: As the Section Editor, I failed to publish The Eagle Problem Solvers’
solution to Problem 5722 due to my regrettable error in failing to download their sent solution into
the download folder on my computer. I express my sincerest apologies for this shortcoming. De-
spite my systematic process for downloading and acknowledging the submission of solutions, I am
surprised at myself that I let this happen. I will be much more cautious from now on. This error is
the first of its kind. Hopefully such an error will not repeat. Below is the statement of the Problem
5722, followed by Eagle Problem Solvers’ solution:

Proposed by Rafael Jakimczuk, Departamento de Ciencias Bdsicas, Division Matemdtica, Uni-
versidad Nacional de Lujdn, Buenos Aires, Argentina.

Let p, be the n-th prime number. Prove the following inequality

Pni1 < 3p[ J+1 forn > 1,

%
where |.| denotes the integer part function.

Hint: Use the Rosser-Schoenfeld inequalities p, < nlogn + nloglogn — g for n > 20 and
pn > nlogn forn > 1, along with a small table of primes.

n—1

2
Since poii1 < parya, then it suffices to show porin < 3pisq, or equivalently, p,,, < 3p,, for each
positive integer m.

If f(x) = (log2x)*, then f'(x)

Solution of the Problem: If n is odd, then n = 2k + 1 for an integer &, and g =k =

_ 2log2x _ 2—2log2x

x2

and f"(x)

21
f(x) is concave down for x > 2. Since f(21) < Te’ and f'(21) < Z, then the graph of f lies

e
< 0 for x > 5 so that
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below the line y = e4_x for x > 21. Therefore, for integers m > 21,

(log2m)* < (2) m
4m? (log 2m)?
3
log <4m2 (log 2m)2> —logm® < 1

<e

2log (2mlog2m) — 3logm < 1
2 (log2m + loglog2m) — 1 < 3logm

2
2mlog 2m + 2mlog log 2m — 7’” < 3mlogm.

By the Rosser-Schoenfeld inequalities, since m > 10,

2
DPom < 2mlog2m + 2mloglog 2m — Tm < 3mlogm < 3p,,.

To complete the proof, the following table verifies that p,,, < 3p,, for 1 < m < 20.

m  pyy 3pm | M P 3pn
1 3 6 11 79 93
2 7 9 12 89 111
3 13 15 |13 101 123
4 19 21 |14 107 129
5 29 33 |15 113 141
6 37 39 |16 131 159
7 43 51 | 17 139 177
8 53 57 |18 151 183
9 61 69 |19 163 201
10 71 87 |20 173 213

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your

cooperation is much appreciated!
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Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to proper LaTeX code. Porposals without a proper LaTeX document
will not be published regrettably.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).
#ProblemNumber_FirstName LastName_ Solution_ SSMJ
e FirstName stands for YOUR first name.

e [astName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ
Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:
“Proposed Solution to ##*** SSMJ”

where the string of four astrisks represents the problem number.
2. On the second line, write
“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).
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3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Gottingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute Z (Z)xky"_k.

k=0

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.
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Examples:
Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns
Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:
“Problem proposed to SSMJ”
2. On the second line, write
“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.
4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ
Problem proposed by Isaac Newton, Trinity College, Cambridge, England.
Principia Mathematica (<—— You may choose to not include a title.)

Statement of the problem:

- n
Compute =k,
p ;)(k) y
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s+ » » Thank You! « « «
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