
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2008

• 4990: Proposed by Kenneth Korbin, New York, NY.
Solve

40x + 42
√

1− x2 = 29
√

1 + x + 29
√

1− x

with 0 < x < 1.

• 4991: Proposed by Kenneth Korbin, New York, NY.
Find six triples of positive integers (a, b, c) such that

9
a

+
a

b
+

b

9
= c.

• 4992: Proposed by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie, San
Angelo, TX.
A closed circular cone has integral values for its height and base radius. Find all
possible values for its dimensions if its volume V and its total area (including its circular
base) A satisfy V = 2A.

• 4993: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

126x7 − 127x6 + 1 = 0.

• 4994: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.



Let a, b, c be three nonzero complex numbers lying on the circle C = {z ∈ C : |z| = r}.
Prove that the roots of the equation az2 + bz + c = 0 lie in the ring shaped region

D =

{
z ∈ C :

1−
√

5
2

≤ |z| ≤ 1 +
√

5
2

}
.

• 4995: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India.
Let A be a triangular array ai,j where i = 1, 2, · · · , and j = 0, 1, 2, · · · , i. Let

a1,0 = 1, a1,1 = 2, and ai,0 = T (i + 1)− 2 for i = 2, 3, 4, · · · ,

where T (i + 1) = (i + 1)(i + 2)/2, the usual triangular numbers. Furthermore, let
ai,j+1 − ai,j = j + 1 for all j. Thus, the array will look like this:

1 2
4 5 7

8 9 11 14
13 14 16 19 23

19 20 22 25 29 34

Show that for every pair (i, j), 4ai,j + 9 is the sum of two perfect squares.

Solutions

• 4972:Proposed by Kenneth Korbin, New York, NY.
Find the length of the side of equilateral triangle ABC if it has a cevian CD such that

AD = x, BD = x + 1 CD =
√

y

where x and y are positive integers with 20 < x < 120.

Solution by Kee-Wai Lau, Hong Kong, China.

Applying the cosine formula to triangle CAD, we obtain

CD
2 = AD

2 + AC
2 − 2AD ·AC cos 60o,

or

(
√

y)2 = x2 + (2x + 1)2 − 2x(2x + 1) cos 60o

y = 3x2 + 3x + 1.

For 20 < x < 120, we find using a calculator that y is the square of a positive integer if
x = 104, y = 32761. Hence the length of the side of equilateral triangle ABC is 209.

Comments:

1) Scott H. Brown, Montgomery, AL.

The list of pairs (x, y) that satisfy the equation y = 3x2 + 3x + 1 is so large I will not
attempt to name each pair...numerous triangles with the given conditions can be found.

2) David Stone and John Hawkins, Statesboro, GA.



The restriction on x seems artificial–every x produces a triangle. In fact, if we require
the cevian length to be an integer, this becomes a Pell’s Equation problem and we can
generate nice solutions recursively in the usual fashion. The first few for
x, s = 2x + 1, y = 3x2 + 3x + 1, & cevian =

√
y are:

7 15 169 13

104 209 32761 181

1455 2911 6355441 2521

20272 40545 1232922769 35113

Also solved by Peter E. Liley, Lafayette, IN, and the proposer.

• 4973: Proposed by Kenneth Korbin, New York, NY.
Find the area of trapezoid ABCD if it is inscribed in a circle with radius R=2, and if it
has base AB = 1 and 6 ACD = 60o.
Solution by David E. Manes, Oneonta, NY.

The area A of the trapezoid is given by A =
3
√

3
8

(
15 +

√
5
)

.

Since the trapezoid is cyclic, it is isosceles so that AD = BC. Note that
6 ACD = 60o ⇒ 6 CAB = 60o since alternate interior angles of a transversal intersecting
two parallel lines are congruent. Therefore, from the law of sines in triangle ABC,

BC

sin 60o = 2R or BC = 2
√

3. Using the law of cosines in triangle ABC,

BC2 = 1 + AC2 − 2AC · cos 60o, or AC2 −AC− 11 = 0.

Thus, AC is the positive root of this equation so that AC =
1 + 3

√
5

2
. Similarly, using

the law of cosines in triangle ACD and recalling that AD = BC, one obtains

AD2 = AC2 + DC2 − 2 ·AC ·DC · cos 60o

or DC2 −
(

1 + 3
√

5
2

)
DC +

−1 + 3
√

5
2

= 0. Noting that DC > 2 and√
6− 2

√
5 =

√
(1−

√
5)2 =

√
5− 1, it follows that DC = 3

√
5− 1. Finally, let H be the

point on line segment DC such that AH is perpendicular to DC. Then the height h of

the trapezoid is given by h = AC · sin 60o =
√

3
4

(
1 + 3

√
5
)

. Hence,

A =
1
2

(
AB + DC

)
· h =

1
2

(
1 + 3

√
5− 1

)√
3

4

(
1 + 3

√
5
)

=
3
√

3
8

(
15 +

√
5
)

.

Also solved by Robert Anderson, Gino Mizusawa, and Jahangeer Kholdi
(jointly), Portsmouth, VA; Dionne Bailey, Elsie Campbell, and Charles
Diminnie, (jointly), San Angelo, TX; Paul M. Harms, North Newton, KS;
Zhonghong Jiang, NY, NY; Charles McCracken, Dayton, OH; Boris Rays,
Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.



• 4974: Proposed by Kenneth Korbin, New York, NY.
A convex cyclic hexagon has sides a, a, a, b, b, and b. Express the values of the
circumradius and the area of the hexagon in terms of a and b.
Solution by Kee-Wai Lau, Hong Cong, China.

We show that the circumradius R is

√
a2 + ab + b2

3
and the area A of the hexagon is

√
3(a2 + 4ab + b2)

4
.

Denote the angle subtended by side a and side b at the center of the circumcircle
respectively by θ and φ. Since 3θ + 3φ = 360o so θ = 120− φ and

cos θ = cos(120o − φ) =
− cos φ +

√
3 sinφ

2
. Hence,

(2 cos θ + cos φ)2 = 3(1− cos2 φ) or 4 cos2 θ + 4 cos θ cos φ + 4 cos2 φ− 3 = 0.

Now by the cosine formula cos θ =
2R2 − a2

2R2
and cos φ =

2R2 − b2

2R2
.

Therefore,

(2R2 − a2)2 + (2R2 − a2)(2R2 − b2) + (2R2 − b2)2 − 3R4 = 0 or

9R4 − 6(a2 + b2)R2 + a4 + a2b2 + b4 = 0.

Solving the equation we obtain R2 =
a2 + ab + b2

3
or R2 =

a2 − ab + b2

3
. The latter

result is rejected because if not, then for a = b, we have cos θ = cos φ < 0 so that

θ + φ > 180o, which is not true. Hence, R =

√
a2 + ab + b2

3
.

To find A, we need to find the area of the triangles with sides R,R, a and R,R, b. The

heights to bases a and b are respectively
√

4R2 − a2

2
=
√

3(a + 2b)
6

and
√

4R2 − b2

2
=
√

3(2a + b)
6

. Hence the area of the hexagon equals

3
(√

3a(a + 2b)
12

+
√

3b(2a + b)
12

)
=
√

3
4

(
a2 + 4ab + b2

)
as claimed.

Also solved by Matt DeLong, Upland, IN; Paul M. Harms, North Newton,
KS; Zhonghong Jiang, NY, NY; David E. Manes, Oneonta, NY; M. N.
Deshpande, Nagpur, India; Boris Rays, Chesapeake, VA; David Stone and
John Hawkins (jointly), Statesboro, GA; Jonathan Schrock, Seth Bird, and
Jim Moore (jointly, students at Taylor University), Upland, IN; David
Wilson, Winston-Salem, NC, and the proposer.

• 4975: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Solve in R the following system of equations



2x1 = 3x2

√
1 + x2

3

2x2 = 3x3

√
1 + x2

4

. . . . . .

2xn = 3x1

√
1 + x2

2


Solution by David Stone and John Hawkins, Statesboro, GA.

Squaring each equation and summing, we have

4(x2
1+x2

2+x2
3+ · · ·+x2

n) = 9(x2
1+x2

2+x2
3+ · · ·+x2

n)+9(x2
1x

2
2+x2

2x
2
3+x2

3x
2
4+ · · ·+x2

n−1x
2
n).

So
0 = 5(x2

1 + x2
2 + x2

3 + · · ·+ x2
n) + 9(x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
4 + · · ·+ x2

n−1x
2
n).

Because these squares are non-negative and the sum is zero, each term on the right-hand
side must indeed equal 0. Therefore x1 = x2 = x3 = · · · = xn = 0.

Alternatively, we could multiply the equations to obtain

2nx1x2x3x4 · · ·xn = 3nx1x2x3x4n

√
1 + x2

1

√
1 + x2

2 · · ·
√

1 + x2
n.

If all xk are non-zero, we’ll have
(

2
3

)n

=
√

1 + x2
1

√
1 + x2

2 · · ·
√

1 + x2
n. The term on the

left is < 1, while each term on the right is > 1, so the product is > 1. Thus we have
reached a contradiction, forcing all xk to be zero.

Also solved by Bethany Ballard, Nicole Gottier, and Jessica Heil (jointly,
students, Taylor University), Upland, IN; Elsie M. Campbell, Dionne T.
Bailey and Charles Diminnie, San Angelo, TX; Matt DeLong, Upland, IN;
Paul M. Harms, North Newton, KS; Mandy Isaacson, Julia Temple, and
Adrienne Ramsay (jointly, students, Taylor University), Upland, IN;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris
Rays, Chesapeake, VA, and the proposer.

• 4976: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers. Prove that

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
≥ 27.

Solution by Matt DeLong, Upland, IN.

In fact, I will prove that the sum is at least 39. Rewrite the sum

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
as

a2

bc
+ 3

b

c
+ 9

c

b
+

b2

ca
+ 3

c

a
+ 9

a

c
+

c2

ab
+ 3

a

b
+ 9

b

a
.

Rearranging the terms gives(
a2

bc
+

b2

ca
+

c2

ab

)
+ 3

(
b

c
+

c

b
+

c

a
+

a

c
+

a

b
+

b

a

)
+ 6

(
c

b
+

a

c
+

b

a

)



Now, repeatedly apply the Arithmetic Mean-Geometric Mean inequality.

a2

bc
+

b2

ca
+

c2

ab
≥ 3

(
a2b2c2

bccaab

)1/3

= 3

b

c
+

c

b
≥ 2

(
bc

cb

)1/2

= 2

c

a
+

a

c
≥ 2

(
ac

ca

)1/2

= 2

a

b
+

b

a
≥ 2

(
ab

ba

)1/2

= 2

c

b
+

a

c
+

b

a
≥ 3

(
cab

bca

)1/3

= 3.

Thus, we have(
a2

bc
+

b2

ca
+

c2

ab

)
+ 3

(
b

c
+

c

b
+

c

a
+

a

c
+

a

b
+

b

a

)
+ 6

(
c

b
+

a

c
+

b

a

)
≥ 3 + 3(2 + 2 + 2) + 6(3).

In other words

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
≥ 39

.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie,
San Angelo, TX; Jeremy Erickson, Matthew Russell, and Chad Mangum
(jointly, students, Taylor University), Upland, IN; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 4977: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let 1 < a < b be real numbers. Prove that for any x1, x2, x3 ∈ [a, b] there exist c ∈ (a, b)
such that

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log c

.

Solution by Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles
Diminnie, San Angelo, TX .

Strictly speaking, the conclusion is incorrect as stated. If a = x1 = x2 = x3, then

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log a

.

Similarly,
1

log x1
+

1
log x2

+
1

log x3
+

3
log x1x2x3

=
4

log b

when b = x1 = x2 = x3.
The statement is true when 1 < a ≤ x1 ≤ x2 ≤ x3 ≤ b with x1 6= x3. Since

3
log x1x2x3

=
3

log x1 + log x2 + log x3
,



then
4

log x3
<

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
<

4
log x1

.

By the Intermediate Value Theorem, there exists c ∈ (a, b) such that

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log c

.

Solution 2 by Paul M. Harms, North Newton, KS.

Assume x1 < x3 with x2 in the interval [x1, x3]. For x > 1, we note that f(x) = log(x)
and g(x) = 1/ log(x) are both continuous, one-to-one, positive functions with f(x)
strictly increasing and g(x) strictly decreasing.

Consider
3

log(x1x2x3)
=

1
log(x1) + log(x2) + log(x3)

3

.

The denominator is the average of the 3 log values which means this average value is
between the extremes log x1 and log x3. Since f(x) is one-to-one and continuous there is

a value x4 where x1 < x4 < x3 and log x4 =
(log x1 + log x2 + log x3)

3
with log x4

between log x1 and log x3.

The equation in the problem can now be written

1
log x1

+ 1
log x2

+ 1
log x3

+ 1
log x4

4
=

1
log c

or

g(x1) + g(x2) + g(x3) + g(x4)
4

=
1

log c
.

The average of the four g(x) values is between the extremes g(x1) and g(x3). Since g(x)
is continuous and one-to-one there is a value x = c such that

g(c) =
1

log c
=

g(x1) + g(x2) + g(x3) + g(x4)
4

where x1 < c < x3 and, thus, a < c < b.

Note that if x1 = x2 = x3, then we obtain c = x1 = x2 = x3. If we want a < c < b, then
it appears that we need to keep x1, x2 and x3 away from a and b when these three
x-values are equal to each other.

Also solved by Michael Brozinsky, Central Islip, NY; Matt DeLong, Upland,
IN; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.


