
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 1, 2007

• 4954: Proposed by Kenneth Korbin, New York, NY.
Find four pairs of positive integers (a, b) that satisfy

a + i

a− i
· b + i

b− i
=

111 + i

111− i

with a < b.

• 4955: Proposed by Kenneth Korbin, New York, NY.
Between 100 and 200 pairs of red sox are mixed together with between 100 and 200 pairs
of blue sox. If three sox are selected at random, then the probability that all three are
the same color is 0.25. How many pairs of sox were there altogether?

• 4956: Proposed by Kenneth Korbin, New York, NY.
A circle with radius 3

√
2 is inscribed in a trapezoid having legs with lengths of 10 and

11. Find the lengths of the bases.

• 4957: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3

n = an−1an−2an−3. Find lim
n→∞

an.

• 4958: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let f : [a, b] → R ( 0 < a < b) be a continuous function on [a, b] and derivable in (a, b).



Prove that there exists a c ∈ (a, b) such that

f ′(c) =
1

c
√

ab
· ln(ab/c2)
ln(c/a) · ln(c/b)

.

• 4959: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.
Find all numbers N = ab, were a, b = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that

[S(N)]2 = S(N2),

where S(N)=a+b is the sum of the digits. For example:

N = 12 N2 = 144
S(N) = 3 S(N2) = 9 and [S(N)]2 = S(N2).

Solutions

• 4918: Proposed by Kenneth Korbin, New York, NY.
Find the dimensions of an isosceles triangle that has integer length inradius and sides and
which can be inscribed in a circle with diameter 50.

Solution by Paul M. Harms, North Newton, KS.
Put the circle on a coordinate system with center at (0, 0) and the vertex associated with
the two equal sides at (0, 25). Also make the side opposite the (0, 25) vertex parallel to
the x-axis. Using (x, y) as the vertex on the right side of the circle, we have x2 + y2 =
252 = 625. Let d be the length of the equal sides. Using the right triangle with vertices
at (0, 25), (0, y), and (x, y) we have (25− y)2 + x2 = d2.

Then d2 = (25 − y)2 + (252 − y2) = 1250 − 50y; the semi-perimeter s = x + d and the

inradius r =

√
x2(d− x)

d + x
. Using x2 + y2 = 252, we will check to see if x = 24 and y = 7

satisfies the problem. The number d2 = 900, so d = 30. The inradius r =

√
242(6)

54
= 8.

Thus the isosceles triangle with side lengths 30, 30, 48 and r = 8 satisfies the problem. If
x = 24 and y = −7, then d = 40 and r = 12. The isosceles triangle with side lengths
40, 40, 48 and r = 12 also satisfies the problem.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX; Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta, NY;
David Stone and John Hawkins, Statesboro, GA; David C. Wilson, Winston-
Salem, NC, and the proposer.

• 4919: Proposed by Kenneth Korbin, New York, NY.
Let x be any even positive integer. Find the value of

x/2∑

k=0

(
x− k

k

)

2k.



Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX.

To simplify matters, let x = 2n and

S (n) =
n∑

k=0

(
2n− k

k

)

2k.

Since (
m

i

)

=
(

m− 1
i− 1

)

+
(

m− 1
i

)

for m ≥ 2 and 1 ≤ i ≤ m− 1, we have
(

2n + 4− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 3− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 2− k

k − 1

)

+
(

2n + 2− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 3− k

k − 1

)

−
(

2n + 2− k

k − 2

)

+
(

2n + 2− k

k

)

=
(

2n + 2− k

k

)

+ 2
(

2n + 3− k

k − 1

)

−
(

2n + 2− k

k − 2

)

for n ≥ 1 and 2 ≤ k ≤ n + 1.
Therefore, for n ≥ 1,

S (n + 2) =
n+2∑

k=0

(
2n + 4− k

k

)

2k

= 1 + (2n + 3) · 2 +
n+1∑

k=2

(
2n + 4− k

k

)

2k + 2n+2

= 1 + (2n + 3) · 2 +
n+1∑

k=2

(
2n + 2− k

k

)

2k + 2
n+1∑

k=2

(
2n + 3− k

k − 1

)

2k

−
n+1∑

k=2

(
2n + 2− k

k − 2

)

2k + 2n+2

= 4 +
n+1∑

k=0

(
2n + 2− k

k

)

2k + 2
n∑

k=1

(
2n + 2− k

k

)

2k+1 −
n−1∑

k=0

(
2n− k

k

)

2k+2 + 2n+2

= S (n + 1) + 4
n+1∑

k=0

(
2n + 2− k

k

)

2k −
n−1∑

k=0

(
2n− k

k

)

2k+2 − 2n+2

= 5S (n + 1)− 4
n∑

k=0

(
2n− k

k

)

2k

= 5S (n + 1)− 4S (n) .

To solve for S (n), we use the usual techniques for solving homogeneous linear difference
equations with constant coefficients. If we look for a solution of the form S (n) = tn,
with t '= 0, then



S (n + 2) = 5S (n + 1)− 4S (n)

becomes
t2 = 5t− 4,

whose solutions are t = 1, 4. This implies that the general solution for S (n) is

S (n) = A · 4n + B · 1n = A · 4n + B,

for some constants A and B. The initial conditions S (1) = 3 and S (2) = 11 yield A =
2
3

and B =
1
3
. Hence,

S (n) =
2
3

· 4n +
1
3

=
22n+1 + 1

3
for all n ≥ 1. The final solution is

x/2∑

k=0

(
x− k

k

)

2k =
2x+1 + 1

3

for all even positive integers x.

Also solved by David E. Manes, Oneonta, NY, David Stone, John Hawkins,
and Scott Kersey (jointly), Statesboro, GA, and the proposer.

• 4920: Proposed by Stanley Rabinowitz, Chelmsford, MA.
Find positive integers a, b, and c (each less than 12) such that

sin
aπ

24
+ sin

bπ

24
= sin

cπ

24
.

Solution by John Boncek, Montgomery, AL.

Recall the standard trigonometric identity:

sin(x + y) + sin(x− y) = 2 sinx cos y.

Let x + y =
aπ

24
and x− y =

bπ

24
. Then

sin
aπ

24
+ sin

bπ

24
= 2 sin

(a + b)π
48

cos
(a− b)π

48
.

We can make the right hand side of this equation equal to sin
cπ

24
if we let a− b = 16 and

a + b = 2c, or in other words, by choosing a value for c and then taking a = 8 + c and
b = c− 8.
Since we want positive solutions, we start by taking c = 9. This gives us a = 17 and b = 1.

Since sin
17π

24
= sin

7π

24
, replace a = 17 by a = 7 and we have a solution a = 7, b = 1 and

c = 9.
By taking c = 10 and c = 11 and using the same analysis, we obtain two additional triples
that solve the problem, namely: a = 6, b = 2, c = 10 and a = 5, b = 3, c = 11.



Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Kenneth Korbin, NY, NY; Peter, E. Liley, Lafayette,
IN; David E. Manes, Oneonta, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 4921: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Evaluate
∫ π/2

0

cos2006 x + 2006 sin2 x

2006 + sin2006 x + cos2006 x
dx.

Solution by Michael C. Faleski, Midland, MI.

Call this integral I. Now, substitute sin2 x = 1 − cos2 x and add to the numerator
sin2006 x− sin2006 x to give

I =
∫ π/2

0

2006 + sin2006 x + cos2006 x− (2006 cos2 x + sin2006 x)
2006 + sin2006 x + cos2006x

dx

=
∫ π/2

0
dx−

∫ π/2

0

2006 cos2 x + sin2006 x

2006 + sin2006 x + cos2006 x
dx.

The second integral can be transformed with u = π/2− x to give
∫ π/2

0

2006 cos2 x + sin2006 x

2006 + sin2006 x + cos2006 x
dx = −

∫ 0

π/2

cos2006 u + 2006 sin2 u

2006 + sin2006 u + cos2006 u
du = I.

Hence, I =
∫ π/2
0 dx− I =⇒ 2I =

π

2
=⇒ I =

π

4
.

∫ π/2

0

cos2006 x + 2006 sin2 x

2006 + sin2006 x + cos2006 x
dx =

π

4
.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Ovidiu Furdui, Kala-
mazoo, MI; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the pro-
poser.

• 4922: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b be real numbers such that 0 < a < b and let f : [a, b] → R be a continuous
function in [a, b] and derivable in (a, b). Prove that there exists c ∈ (a, b) such that

cf(c) =
1

ln b− ln a

∫ b

a
f(t) dt.

Solution by David E. Manes, Oneonta, NY.

For each x ∈ [a, b], define the function F (x) so that F (x) =
∫ x
a f(t)dt. Then F (b) =∫ b

a f(t)dt, F (a) = 0 and, by the Fundamental Theorem of Calculus, F ′(x) = f(x) for each
x ∈ (a, b).
Let g(x) = ln(x) be defined on [a, b]. Then both functions F and g are continuous on

the closed interval [a, b] and differentiable on the open interval (a, b) and g′(x) =
1
x
'= 0



for each x ∈ (a, b). By the Extended Mean-Value Theorem, there is at least one number
c ∈ (a, b) such that

F ′(c)
g′(c)

=
F (b)− F (a)
g(b)− g(a)

=

∫ b

a
f(t)dt

ln b− ln a
.

Since
F ′(c)
g′(c)

= cf(c), the result follows.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M.
Harms, North Newton, KS; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 4923: Proposed by Michael Brozinsky, Central Islip, NY.
Show that if n ≥ 6 and is composite, then n divides (n− 2)!.
Solution by Brian D. Beasley, Clinton, SC.

Let n be a composite integer with n ≥ 6. We consider two cases:
(i) Assume n is not the square of a prime. Then we may write n = ab for integers a and
b with 1 < a < b < n− 1. Thus a and b are distinct and are in {2, 3, . . . , n− 2}, so n = ab
divides (n− 2)!.
(ii) Assume n = p2 for some odd prime p. Then n− 2 = p2 − 2 ≥ 2p, since p > 2. Hence
both p and 2p are in {3, 4, . . . , n− 2}, so n = p2 divides (n− 2)!.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Luke Drylie (student, Old Dominion U.), Chesa-
peake, VA; Kenneth Korbin, NY, NY; Paul M. Harms, North Newton, KS;
Jahangeer Kholdi, Portsmouth, VA; N. J. Kuenzi, Oshkosh, WI; David E.
Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays, Chesa-
peake, VA; Harry Sedinger, St. Bonaventure, NY; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4924: Proposed by Kenneth Korbin, New York, NY.

Given
∞∑

N=1

FN

KN
= 3 where FN is the N th Fibonacci number. Find the value of the positive

number K.
Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

The ratio test along with the fact that lim
n→∞

Fn+1

Fn
=

1 +
√

5
2

implies
∞∑

n=1

Fn

Kn
converges

for K >
1 +

√
5

2
. Then

3 =
∞∑

n=1

Fn

Kn
=

1
K

+
1

K2
+

∞∑

n=3

Fn

Kn

=
1
K

+
1

K2
+

∞∑

n=3

Fn−1 + Fn−2

Kn

=
1
K

+
1

K2
+

1
K

∞∑

n=3

Fn−1

Kn−1
+

1
K2

∞∑

n=3

Fn−2

Kn−2



=
1
K

+
1

K2
+

1
K

(
3− 1

K

)
+

3
K2

=
4
K

+
3

K2
⇒ K =

2 +
√

13
3

.

Also solved by Brian D. Beasley, Clinton, SC; Sam Brotherton (student,
Rockdale Magnet School For Science and Technology), Conyers, GA; Elsie
M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo,
TX; José Luis Dı́az-Barrero, Barcelona, Spain; Luke Drylie (student, Old Do-
minion U.), Chesapeake, VA; Paul M. Harms, North Newton, KS; Jahangeer
Kholdi and Boris Rays (jointly), Portsmouth, VA & Chesapeake,VA (respec-
tively); N. J. Kuenzi, Oshkosh, WI; Tom Leong, Scotrun, PA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4925: Proposed by Kenneth Korbin, New York, NY.
In the expansion of

x4

(1− x)3(1− x2)
= x4 + 3x5 + 7x6 + 13x7 + · · ·

find the coefficient of the term with x20 and with x21.
Solution 1 by Brian D. Beasley, Clinton, SC.

We have

1
(1− x)3(1− x2)

=
1

(1− x)4(1 + x)

= (1− x + x2 − x3 + · · ·)(1 + x + x2 + x3 + · · ·)4

= (1− x + x2 − x3 + · · ·)(1 + 2x + 3x2 + 4x3 + · · ·)2

= (1− x + x2 − x3 + · · ·)(1 + 4x + 10x2 + 20x3 + · · ·),

where the coefficients of the second factor in the last line are the binomial coefficients
C(k, 3) for k = 3, 4, 5, . . .. Hence, allowing for the x4 in the original numerator, the
desired coefficient of x20 is

19∑

k=3

C(k, 3)(−1)19−k = 525.

Similarly, the desired coefficient of x21 is
20∑

k=3

C(k, 3)(−1)20−k = 615.

Solution 2 by Tom Leong, Scotrun, PA.

Equivalently, we find the coefficients of x16 and x17 in

1
(1− x)3(1− x2)

. (1)



We use the following well-known generating functions:

1
1− x2

= 1 + x2 + x4 + x6 + · · ·

1
(1− x)m+1

=
(

m

m

)

+
(

m + 1
m

)

x +
(

m + 2
m

)

x2 +
(

m + 3
m

)

x3 + · · ·.

A decomposition of (1) is

1
(1− x)3(1− x2)

=
1
2

1
(1− x)4

+
1
4

1
(1− x)3

+
1
8

1
(1− x)2

+
1
8

1
(1− x)

.

Thus the coefficient of xn is

1
2

(
n + 3

3

)

+
1
4

(
n + 2

2

)

+
1
8

(
n + 1

1

)

+
1
8

=
(n + 2)(n + 4)(2n + 3)

24
if n is even

or

1
2

(
n + 3

3

)

+
1
4

(
n + 2

2

)

+
1
8

(
n + 1

1

)

=
(n + 1)(n + 3)(2n + 7)

24
if n is odd.

So the coefficient of x16 is
18 · 20 · · · 35

24
= 525 and the coefficient of x17 is

18 · 20 · · · 41
24

=
615.

Solution 3 by Paul M. Harms, North Newton, KS.

When
−1 < x < 1,

1
1− x

= 1 + x + x2 + · · ·.

Taking two derivatives, we obtain for

−1 < x < 1,
2

(1− x)3
= 2 + 3(2)x + 4(3)x2 + · · ·.

When

−1 < x < 1,
x4

1− x2
= x4 + x6 + x8 + · · ·.

The series for
x4

(1− x)3(1− x2)
can be found by multiplying

1
2
· 2
(1− x)3

· x4

(1− x2)
=

1
2

[
2+3(2)x+4(3)x2+···+18(17)x16+19(18)x17+···

][
x4+x6+x8+···

]
.

The coefficient of x20 is

1
2

[
18(17) + 16(15) + 14(13) + · · ·4(3) + 2

]
= 525.

The coefficient of x21 is

1
2

[
19(18) + 17(16) + 15(14) + · · ·5(4) + 3(2)

]
= 615.

Comment: Jahangeer Kholdi and Boris Rays noticed that the coefficients in x4 +
3x5+7x6+13x7+22x8+34x9+50x10+ · · ·, are the partial sums of the alternate triangular



numbers. I.e., 1, 3, 1 + 6, 3 + 10, 1 + 6 + 15, 3 + 10 + 21, · · ·, which leads to the coefficients
of x20 and x21 being 525 and 615 respectively.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; José Luis
Dı́az-Barrero, Barcelona, Spain; Jahangeer Kholdi and Boris Rays (jointly),
Portsmouth, VA & Chesapeake,VA (respectively); Peter E. Liley, Lafayette,
IN; John Nord, Spokane, WA; Harry Sedinger, St. Bonaventure, NY; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4926: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate ∞∑

n=1

nF 2
n

3n

where Fn is the nth Fibonacci number defined by F1 = F2 = 1 and for n ≥ 3, Fn =
Fn−1 + Fn−2.
Solution by David Stone and John Hawkins, Statesboro, GA.

By Binet’s Formula, Fn =
αn − βn

√
5

, where α and β are the solutions of the quadratic

equation x2 − x− 1 = 0; α =
1 +

√
5

2
, β =

1−
√

5
2

.

Note that a − b =
√

5, α · β = −1, α2 + β2 = 3, and α6 + β6 = 18. Also recall from

calculus that
∞∑

n=1

nxn =
x

(1− x)2
for |x| < 1. Thus we have

∞∑

n=1

nF 2
n

3n
=

∞∑

n=1

n

3n

α2n − 2αnβn + β2n

5

=
∞∑

n=1

n

3n

α2n − 2(−1)n + β2n

5

=
1
5

{ ∞∑

n=1

n
(

α2

3

)n

− 2
∞∑

n=1

n
(−1

3

)n

+
∞∑

n=1

n
(

β2

3

)n
}

=
1
5

{ α2

3[
1− α2

3

]2 − 2
−1
3[

1 + 1
3

]2 +
β2

3[
1− β2

3

]2

}
, valid because

β2

3
<

α2

3
< 1;

=
1
5

{ 3α2

[3− α2]2
+

3
8

+
3β2

[3− β2]2

}

=
3
5

{
α2

[β2]2
+

1
8

+
β2

[α2]2

}
because α2 + β2 = 3,

=
3
5

{1
8

+
α6 + β6

α4β4

}
by algebra,



=
3
5

{1
8

+
18
1

}
=

87
8

.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Tom Leong, Scotrun, PA, and the proposer.

• 4927: Proposed by José Luis Dı́az-Barrero and Miquel Grau-Sánchez, Barcelona, Spain.
Let k be a positive integer and let

A =
∞∑

n=0

(−1)n

2k(2n + 1)
and B =

∞∑

n=0

(−1)n

{
2k∑

m=0

(−1)m

(4k + 2)n + 2m + 1

}

.

Prove that
B

A
is an even integer for all k ≥ 1.

Solution by Tom Leong, Scotrun, PA.
Note that inside the curly braces in the expression for B, the terms of the (alternating) sum
are the reciprocals of the consecutive odd numbers from (4k+2)n+1 to (4k+2)n+(4k+1).
As n = 0, 1, 2, . . ., the reciprocal of every positive odd number appears exactly once in
this sum (disregarding its sign). Thus

B =
∞∑

n=0

{
2k∑

m=0

(−1)m+n

(4k + 2)n + 2m + 1

}

=
∞∑

i=0

(−1)i

2i + 1

from which we find
B

A
= 2k. (In fact, it is well-known that B = π/4.)

Comment by Editor: This problem was incorrectly stated when it was initially posted
in the May, 06 issue of SSM. The authors reformulated it, and the correct statement of
the problem and its solution are listed above. The corrected version was also solved by
Paul M. Harms of North Newton, KS.

• 4928: Proposed by Yair Mulian, Beer-Sheva, Israel.
Prove that for all natural numbers n

∫ 1

0

2x2n+1

x2 − 1
dx =

∫ 1

0

xn

x− 1
+

1
x + 1

dx.

Comment by Editor: The integrals in their present form do not exist, and I did not
see this when I accepted this problem for publication. Some of the readers rewrote
the problem in what they described as “its more common form;” i.e., to show that∫ 1

0

2x2n+1

x2 − 1
−

(
xn

x− 1
+

1
x + 1

)
dx = 0. But I believe that one cannot legitimately recast

the problem in this manner, because the
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx +

∫ b
a g(x)dx if,

and only if, f(x) and g(x) is each integrable over these limits. So as I see it, the problem
as it was originally stated is not solvable. Mea culpa, once again.



• 4929: Proposed by Michael Brozinsky, Central Islip, NY.
An archaeological expedition uncovered 85 houses. The floor of each of these houses was a
rectangular area covered by mn tiles where m ≤ n. Each tile was a 1 unit by 1 unit square.
The tiles in each house were all white, except for a (non-empty) square configuration of
blue tiles. Among the 85 houses, all possible square configurations of blue tiles appeared
once and only once. Find all possible values of m and n.
Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo,
TX.

Assume that each configuration of blue tiles is a k × k square. Since m ≤ n and each
such configuration was non-empty, it follows that k = 1, 2, . . . ,m. For each value of k,
there are (m− k + 1) (n− k + 1) possible locations for the k × k configuration of blue
tiles. Since each arrangement appeared once and only once among the 85 houses, we have

85 =
m∑

k=1

(m− k + 1) (n− k + 1)

=
m∑

k=1

(m + 1) (n + 1)− (m + n + 2)
m∑

k=1

k +
m∑

k=1

k2

= m (m + 1) (n + 1)− (m + n + 2)
m (m + 1)

2
+

m (m + 1) (2m + 1)
6

=
m (m + 1)

6
[3n− (m− 1)]

or
m (m + 1) [3n− (m− 1)] = 510. (1)

This implies that m and m + 1 must be consecutive factors of 510. By checking all 16
factors of 510, we see that the only possible values of m are 1, 2, 5. If m = 2, (1) does
not produce an integral solution for n. If m = 1 or 5, equation (1) yields n = 85 or 7
(respectively). Therefore, the only solutions are (m,n) = (1, 85) or (5, 7).

Also solved by Tom Leong, Scotrun, PA; Paul M. Harms, North Newton,
KS; Harry Sedinger, St. Bonaventure, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.


