
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2008

• 5002: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon with sides 3x, 3x, 3x, 5x, 5x and 5x is inscribed in a unit circle. Find
the value of x.

• 5003: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that
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• 5004: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be nonnegative real numbers. Prove that
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• 5005: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that
√

3
2

(
a + b + c

)1/2

≥ 1
a + b

+
1

b + c
+

1
c + a

.



• 5006: Proposed by Ovidiu Furdui, Toledo, OH.

Find the sum ∞∑
k=2
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• 5007: Richard L. Francis, Cape Girardeau, MO.

Is the centroid of a triangle the same as the centroid of its Morley triangle?

Solutions

• 4984: Proposed by Kenneth Korbin, New York, NY.
Prove that
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Solution 1 by Kee-Wai Lau, Hong Kong, China.
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as required.

Solution 2 by Kenneth Korbin, the proposer.
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Also solved by Brian D. Beasley, Clinton, SC; Charles R. Diminnie, San
Angelo, TX; Paul M. Harms, North Newton, KS; Paolo Perfetti,
Mathematics Department, U. of Rome, Italy, and David Stone & John
Hawkins (jointly), Statesboro, GA.

• 4985: Proposed by Kenneth Korbin, New York, NY.
A Heron triangle is one that has both integer length sides and integer area. Assume
Heron triangle ABC is such that 6 B = 26 A and with (a,b,c)=1.

PartI : Find the dimensions of the triangle if side a = 25.
PartII : Find the dimensions of the triangle if 100 < a < 200.

Solution by Brian D. Beasely, Clinton, SC.

Using the Law of Sines, we obtain
sinA

a
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where 6 B = 26 A forces 0◦ < A < 60◦. Since sin(2A) = 2 sinA cos A and
sin(3A) = 3 sinA− 4 sin3 A, we have b = 2a cos A and c = a(3− 4 sin2 A). In particular,
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Then a divides b2, so we claim that a must be a perfect square: Otherwise, if a prime p
divides a but p2 does not, then p divides b2; thus p divides b, yet p2 does not divide a,
which would imply that p divides b2/a and hence p divides c, a contradiction of
(a, b, c) = 1.

Next, we note that the area of the triangle is (1/2)bc sin A, which becomes
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I. Let a = 25. Then 25 < b < 50 and c = −25 + b2/25, so 5 divides b. Checking
b ∈ {30, 35, 40, 45} yields two solutions for which the area of the triangle is an integer:

(a, b, c) = (25, 30, 11) with area = 132; (a, b, c) = (25, 40, 39) with area = 468.

II. Let 100 < a < 200. Then a ∈ {121, 144, 169, 196}.

If a = 121, then 11 divides b, so b = 11d for d ∈ {12, 13, . . . , 21}. Since the area formula
requires 4a2 − b2 = 112(222 − d2) to be a perfect square, we check that no such d
produces a perfect square 222 − d2.

If a = 144, then 12 divides b, so b = 12d for d ∈ {13, 14, . . . , 23}. Since
4a2 − b2 = 122(242 − d2) must be a perfect square, we check that no such d produces a
perfect square 242 − d2.

If a = 169, then 13 divides b, so b = 13d for d ∈ {14, 15, . . . , 25}. Since
4a2 − b2 = 132(262 − d2) must be a perfect square, we check that the only such d to
produce a perfect square 262 − d2 is d = 24. This yields the triangle

(a, b, c) = (169, 312, 407) with area 24,420.

If a = 196, then 14 divides b, so b = 14d for d ∈ {15, 16, . . . , 27}. Since
4a2 − b2 = 142(282 − d2) must be a perfect square, we check that no such d produces a
perfect square 282 − d2.

Comment: David Stone and John Hawkins of Statesboro, GA conjectured that
in order to meet the conditions of the problem, a must equal p2, where p is an odd
prime congruent to 1 mod 4. With p = m2 + n2, there are one or two triangles,
according to the ratio of m and n. If

√
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Also solved by M.N. Deshpande, Nagpur, India; Grant Evans (student, Saint
George’s School), Spokane, WA; Paul M. Harms, North Newton, KS; Peter
E. Liley, Lafayette, IN; John Nord, Spokane, WA; David Stone & John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4986: Michael Brozinsky, Central Islip, NY.
Show that if 0 < a < b and c > 0, that√
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Solution 1 by Kee-Wai Lau, Hong Kong, China.

Squaring both sides and simplifying, we reduce the desired inequality to
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Squaring the last inequality and simplifying we obtain√
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(b + c)2 + d2 ≥ ab + ac− bc− c2 − d2. (1)

If ab + ac− bc− c2 − d2 ≤ 0, (1) is certainly true. If ab + ac− bc− c2 − d2 > 0, we square
both sides of (1) and the resulting inequality simplifies to the trivial inequality
(a + b)2d2 ≥ 0. This completes the solution.



Solution 2 by Paolo Perfetti, Mathematics Department, U. of Rome, Italy.
The inequality is√
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There are three possibilities: 1) b + x > a + x ≥ 0, 2) a + x < b + x < 0, and 3)
b + x > 0, a + x < 0. It is evident that 3) implies f ′(x) > 0. With the condition 1), after
squaring, we obtain

(b + x)2((a + x)2 + d2) > (a + x)2((b + x)2 + d2) or

(b + x)2 > (a + x)2which is true.

As for 2) we have
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and making the square root −(b + x) < −(a + x) which is true as well.

Also solved by Angelo State University Problem Solving Group, San Angelo,
TX; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York, NY,
and the proposer.

• 4987: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be the sides of a triangle ABC with area S. Prove that

(a2 + b2)(b2 + c2)(c2 + a2) ≤ 64S3 csc 2A csc 2B csc 2C.

Solution by José Luis Dı́az-Barrero, the proposer.

Let A′ ∈ BC be the foot of ha. We have,

ha = c sinB and BA′ = c cos B (1)

and
ha = b sinC and A′C = b cos C (2)

Multiplying up and adding the resulting expressions yields

ha(BA′ + A′C) =
b2 sin 2C

2
+

c2 sin 2B

2

or
c2 sin 2B + b2 sin 2C = 4S



Likewise, we have
a2 sin 2C + c2 sin 2A = 4S,

a2 sin 2B + b2 sin 2A = 4S.

Adding up the above expressions yields

(a2 + b2) sin 2C + (b2 + c2) sin 2A + (c2 + a2) sin 2B = 12S

Applying the AM-GM inequality yields

3

√
(a2 + b2) sin 2C(b2 + c2) sin 2A(c2 + a2) sin 2B ≤ 4S

from which the statement follows. Equality holds when 4ABC is equilateral and we are
done.

• 4988: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

3x2−x−z + 3y2−y−x + 3z2−z−y = 1.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, Karl Havlak,
and Paula Koca (jointly), San Angelo, TX.

By the Arithmetic - Geometric Mean Inequality,

1 = 3x2−x−z + 3y2−y−x + 3z2−z−y

≥ 3
3
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=
3
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and hence,
3(x−1)2+(y−1)2+(z−1)2 ≤ 1.

It follows that
(x− 1)2 + (y − 1)2 + (z − 1)2 = 0,

i.e.,
x = y = z = 1.

Since it is easily checked that these values satisfy the original equation, the solution is
complete.

Also solved by Kee-Wai Lau, Hong Kong, China; Charles McCracken,
Dayton, OH; Paolo Perfetti, Mathematics Department, U. of Rome, Italy;
Boris Rays, Chesapeake, VA, and the proposer.

• 4989: Proposed by Tom Leong, Scotrun, PA.
The numbers 1, 2, 3, · · · , 2n are randomly arranged onto 2n distinct points on a circle.
For a chord joining two of these points, define its value to be the absolute value of the
difference of the numbers on its endpoints. Show that we can connect the 2n points in
disjoint pairs with n chords such that no two chords intersect inside the circle and the
sum of the values of the chords is exactly n2.



Solution 1 by Harry Sedinger, St. Bonaventure, NY.

First we show by induction that if there are n red points and n blue points (all distinct)
on the circle, then there exist n nonintersecting chords, each connecting a read point an
a blue point (with each point being used exactly once). This is obvious for n = 1.
Assume it is true for n and consider the case for n + 1. There obviously is a pair of
adjacent points (no other points between them on one arc), one read and one blue.
Clearly they can be connected by a chord which does not intersect any chord connecting
two other points. Removing this chord and the two end points then reduces the problem
to the case for n, which can be done according to the induction hypothesis. The desired
result is then true for n + 1 and by induction true for all n.
Now for the given problem, color the points numbered 1, 2, · · · , n red and color the ones
numbered n + 1, n + 2, · · · , 2n blue. From above there exists n nonintersecting chords
and the sum of their values is
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k − 2
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k =
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2
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2

= n2.

Solution 2 by Kenneth Korbin, New York, NY.

Arrange the numbers 1, 2, 3, · · · , 2n randomly on points of a circle. Place a red checker
on each point from 1 through n. Let

∑
R = 1 + 2 + · · ·+ n =

n(n + 1)
2

.

Place a black checker on each point numbered from n + 1 through 2n. Let

∑
B = (n + 1) + (n + 2) + · · ·+ (2n) = n2 +

n(n + 1)
2

.

Remove a pair of adjacent checkers that have different colors. Connect the two points
with a chord. The value of this chord is (B1 −R1).
Remove another pair of adjacent checkers with different colors. The chord between these
two points will have value (B2 −R2).
Continue this procedure until the last checkers are removed and the last chord will have
value (Bn −Rn).
The sum of the value of these n chords is

(B1 −R1) + (B2 −R2) + · · ·+ (Bn −Rn) =
∑

B −
∑

R = n2.

Also solved by N.J. Kuenzi, Oshkosh, WI; David Stone & John Hawkins
(jointly), Statesboro,GA, and the proposer.


