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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2008

• 5008: Proposed by Kenneth Korbin, New York, NY.

Given isosceles trapezoid ABCD with 6 ABD = 60o, and with legs BC = AD = 31.
Find the perimeter of the trapezoid if each of the bases has positive integer length with
AB > CD.

• 5009: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with a cevian CD such that AD and BD have integer
lengths. Find the side of the triangle AB if CD = 1729 and if (AB, 1729) = 1.

• 5010: Proposed by José Gibergans-Báguena and José Luis Dı́az-Barrero, Barcelona,
Spain.

Let α, β, and γ be real numbers such that 0 < α ≤ β ≤ γ < π/2. Prove that

sin 2α + sin 2β + sin 2γ

(sinα + sin β + sin γ)(cos α + cos β + cos γ)
≤ 2

3
.

• 5011: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = a1 = 2 and for n ≥ 2, an = 2an−1 −
1
2
an−2.

Prove that
2pap+q + aq−p = 2papaq

where p ≤ q are nonnegative integers.



• 5012 Richard L. Francis, Cape Girardeau, MO.

Is the incenter of a triangle the same as the incenter of its Morley triangle?

• 5013: Proposed by Ovidiu Furdui, Toledo, OH.

Let k ≥ 2 be a natural number. Find the sum

∑
n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
.

Solutions

• 4990: Proposed by Kenneth Korbin, New York, NY.
Solve

40x + 42
√
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√

1 + x + 29
√

1− x

with 0 < x < 1.

Solution by Boris Rays, Chesapeake, VA.

Let x = cos α, where α ∈ (0, π/2). Then
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Therefore we obtain from the above,
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Therefore,
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The solution is:
x1 =
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2
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)
+
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)
.

Remark: This solution is an adaptation of the solution to SSM problem 4966, which is
an adaptation of the solution on pages 13-14 of Mathematical Miniatures by Savchev
and Andreescu.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; José Hernández Santiago (student at UTM), Oaxaca,
México; Kee-Wai Lau, Hong Kong, China; Peter E. Liley, Lafayette, IN;
John Nord, Spokane, WA; Paolo Perfetti, Math Dept., U. of Rome, Italy;
David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4991: Proposed by Kenneth Korbin, New York, NY.
Find six triples of positive integers (a, b, c) such that

9
a

+
a

b
+

b

9
= c.

Solution by David Stone and John Hawkins, Statesboro, GA,(with comments
by editor).

David Stone and John Hawkins submitted a six page densely packed analysis of the
problem, but it is too long to include here. Listed below is their solution and the gist of



their analysis as to how they solved it. (Interested readers may obtain their full analysis
by writing to David at <dstone@georgiasouthern.edu> or to me at <eisenbt@013.net>.
Others who solved the problem programmed a computer.
David and John began by listing what they believe to be all ten solutions to the problem.

a b c
2 12 6
9 9 3
14 588 66
18 36 5
54 12 6
162 4 41
378 588 66
405 25 19

11826 21316 2369
29565 133225 14803


The analysis in their words:
Rewriting the equation, we seek positive integer solutions to

(1) 81b + 9a2 + ab2 = 9abc.

Theorem. A solution must have the form a = 3iA, b = 3jA2, where (A, 3) = 1, i, j ≥ 0.
At least one of i, j must be ≥ 1.
Proof. From equation (1), we see that 9 divides all terms but ab2, so 9 divides ab2, so 3
divides a or b so at least one of i, j must be ≥ 1.
Also from equation (1), it is clear that if p is a prime different from 3, then p divides a if
and only if p divides b.
Suppose p is such a prime and a = 3ipmC, b = 3jpnD, where m,n ≥ 1, and C and D are
not divisible by 3 or p. Then equation (1) becomes

81
(

3jpnD

)
+ 9

(
3ipmC

)2

+
(

3ipmC

)(
3jpnD

)2

= 9
(

3ipmC
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)
c,

or
(#) 3j+4pnD + 32i+2p2mC2 + 3i+2jpm+2nCD2 = 3i+j+2pm+nCDc.

If n < 2m, we can divide equation (#) by pn to obtain

3j+4D + 32i+2p2m−nC2 + 3i+2jpm+nCD2 = 3i+j+2pmCDc.

But then p divides each term after the first, so p divides 3j+4D, which is impossible.
If n > 2m, we can divide through equation (#) by p2m to obtain

3j+4pn−2mD + 32i+2C2 + 3i+2jp2n−mCD2 = 3i+j+2pn−mCDc

81pm−2nD + 9C2 + pmCD2 = 9pm−nCDc.

Noting that 2n > 4m > m and n > 2m > m, we see that p divides each term except
32i+2C2, so p divides 32i+2C2, which is impossible.
Therefore n = 2m.
That is, a and b have the same prime divisors, and in b, the power on each such prime is



twice the corresponding power in a; therefore, in b, the product of all divisors other than
3 is the square of the analogous product in a. So the proof is complete.

They then substituted this result into equation (1) obtaining
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(
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3iA

)(
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(
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or
(2)

(
2j+4 + 32i+2

)
+ 3i+2jA3 = 3i+j+2Ac

and started looking for values of i, j, A and c satisfying this equation.
Analyzing the cases (1) where 3 divides b but not a; (2) where 3 divides a but not b;
and (3) where 3 divides a and b led to the solutions listed above.
They ended their submission with comments about the patterns they observed in

solving analogous equations of the form
N

a
+ b +

c

N
= c for various integral values of N .

Also solved by Charles Ashbacher, Marion, IA; Britton Stamper (student at
Saint George’s School), Spokane, WA, and the proposer.

• 4992: Proposed by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie, San
Angelo, TX.
A closed circular cone has integral values for its height and base radius. Find all
possible values for its dimensions if its volume V and its total area (including its circular
base) A satisfy V = 2A.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

1
3
πr2h = 2(πr2 + πr

√
r2 + h2) or

rh = 6r + 6
√

r2 + h2.

Squaring and simplifying gives r2 = 36
h

h− 12
. Therefore,

h

h− 12
is a square, and

h

h− 12
∈ {1, 4, 9, 16, . . .}. Note that f(h) =

h

h− 12
is a decreasing function of h for

h > 12 and that h(16) = 4. Note also that f(13), f(14) and f(15) are not squares of
integers. Therefore (h, r) = (16, 24) is the only solution.

Also solved by Paul M.Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; Britton
Stamper (student at Saint George’s School), Spokane, WA; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4993: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

126x7 − 127x6 + 1 = 0.

Solution by N. J. Kuenzi, Oshkosh, WI.



Both 1 and 1/2 are easily seen to be positive rational roots of the given equation. So
(x− 1) and (2x− 1) are both factors of the polynomial 126x7 − 127x6 + 1. Factoring
yields

126x2 − 127x6 + 1 = (x− 1)(2x− 1)(63x5 + 31x4 + 15c3 + 7x2 + 3x + 1).

The equation (63x5 + 31x4 + 15c3 + 7x2 + 3x + 1) does not have any rational roots
(Rational Roots Theorem) nor any positive real roots (Descartes’ Rule of Signs).
Using numerical techniques one can find that −0.420834167 is the approximate value of
a real root.
The four other roots are complex with approximate values:

0.1956354060 + 0.4093830251i 0.1956354060− 0.4093830251i

−0.2312499936 + 0.3601917120i −0.2312499936− 0.3601917120i

So the real solutions of the equation 126x7 − 127x6 + 1 = 0 are 1, 1/2 and −0.420834167.

Also solved by Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; Charles McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Statesboro GA, and the proposer.

• 4994: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be three nonzero complex numbers lying on the circle C = {z ∈ C : |z| = r}.
Prove that the roots of the equation az2 + bz + c = 0 lie in the ring shaped region

D =

{
z ∈ C :
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√

5
2

≤ |z| ≤ 1 +
√

5
2

}
.

Solution by Kee-Wai Lau, Hong Kong, China.

By rewriting the equation as az2 = −bz − c, we obtain

|a||z|2 = |az2| = |bz + c| ≤ |b||z|+ |c| or |z |2 − |z | − 1 ≤ 0

or
(
|z|+

√
5− 1
2

)(
|z| −

√
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2

)
≤ 0 so that |z | ≤ 1 +

√
5

2
.

By rewriting the equation as c = −az2 − bz, we obtain

|c| = | − az2 − bz| ≤ |a||z|2 + |b||z| or |z |2 + |z | − 1 ≥ 0

or
(
|z|+

√
5 + 1
2

)(
|z| −

√
5− 1
2

)
≥ 0 so that |z | ≥

√
5− 1
2

.

This finishes the solution.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Russell
Euler and Jawad Sadek (jointly), Maryville, MO; Boris Rays, Chesapeake,
VA; José Hernández Santiago (student at UTM) Oaxaca, México; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.



• 4995: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India.
Let A be a triangular array ai,j where i = 1, 2, · · · , and j = 0, 1, 2, · · · , i. Let

a1,0 = 1, a1,1 = 2, and ai,0 = T (i + 1)− 2 for i = 2, 3, 4, · · · ,

where T (i + 1) = (i + 1)(i + 2)/2, the usual triangular numbers. Furthermore, let
ai,j+1 − ai,j = j + 1 for all j. Thus, the array will look like this:

1 2
4 5 7

8 9 11 14
13 14 16 19 23

19 20 22 25 29 34

Show that for every pair (i, j), 4ai,j + 9 is the sum of two perfect squares.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX.

If we allow T (0) = 0, then for i ≥ 1 and j = 0, 1, . . . , i, it’s clear from the definition of
ai,j that

ai,j = ai,0 + T (j)
= T (i + 1)− 2 + T (j)

=
i2 + 3i− 2 + j2 + j

2
.

Therefore, for every pair (i, j),

4ai,j + 9 = 2
(
i2 + 3i− 2 + j2 + j

)
+ 9

= 2
(
i2 + 3i + j2 + j

)
+ 5

= (i + j + 2)2 + (i− j + 1)2 .

Solution 2 by Carl Libis, Kingston, RI.

For every pair (i, j), 4a(i, j) + 9 = (i− j + 1)2 + (i + j + 2)2 since

4a(i, j) + 9 = 4
[
a(i, 0) +

j(j + 1)
2

]
+ 9 = 4

[
(i + 1)(i + 2)

2
− 2 +

j(j + 1)
2

]
+ 9

= 2(i + 1)(i + 2)− 8 + 2j(j + 1) + 9

= 2i2 + 6i + 4 + 2j2 + 2j + 1

= (i− j + 1)2 + (i + j + 2)2.

Also solved by Paul M. Harms, North Newton, KS; N. J. Kuenzi, Oshkosh,
WI; R. P. Sealy, Sackville, New Brunswick, Canada; David Stone and John
Hawkins (jointly), Statesboro GA; José Hernándz Santiago (student at
UTM), Oaxaca, México, and the proposers.


