
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 1, 2007

• 4972: Proposed by Kenneth Korbin, New York, NY.
Find the length of the side of equilateral triangle ABC if it has a cevian CD such that

AD = x, BD = x + 1 CD =
√

y

where x and y are positive integers with 20 < x < 120.

• 4973: Proposed by Kenneth Korbin, New York, NY.
Find the area of trapezoid ABCD if it is inscribed in a circle with radius R=2, and if it
has base AB = 1 and 6 ACD = 60o.

• 4974: Proposed by Kenneth Korbin, New York, NY.
A convex cyclic hexagon has sides a, a, a, b, b, and b. Express the values of the circumradius
and the area of the hexagon in terms of a and b.

• 4975: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Solve in R the following system of equations

2x1 = 3x2

√
1 + x2

3

2x2 = 3x3

√
1 + x2

4

. . . . . .

2xn = 3x1

√
1 + x2
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• 4976: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers. Prove that

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
≥ 27.

• 4977: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let 1 < a < b be real numbers. Prove that for any x1, x2, x3 ∈ [a, b] there exist c ∈ (a, b)
such that

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log c

.

Solutions

• 4942: Proposed by Kenneth Korbin, New York, NY.
Given positive integers a and b. Find the minimum and the maximum possible values of

the sum (a + b) if
ab− 1
a + b

= 2007.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX.

If
ab− 1
a + b

= 2007, then

ab− 1 = 2007(a + b)
ab− 2007a− 2007b = 1

ab− 2007a− 2007b + 20072 = 1 + 20072

(a− 2007)(b− 2007) = 2 · 52 · 13 · 6197 (1).

Since (1) and the sum (a + b) are symmetric in a and b, then we will assume that a < b.
By the prime factorization in (1), there are exactly 12 distinct values for (a− 2007) and
(b− 2007) which are summarized below.

a− 2007 b− 2007 a b a + b

1 4, 028, 050 2, 008 4, 030, 057 4, 032, 065
2 2, 014, 025 2, 009 2, 016, 032 2, 018, 041
5 805, 610 2, 012 807, 617 809, 629
10 402, 805 2, 017 404, 812 406, 829
13 309, 850 2, 020 311, 857 313, 877
25 161, 122 2, 032 163, 129 165, 161
26 154, 925 2, 033 156, 932 158, 965
50 80, 561 2, 057 82, 568 84, 625
65 61, 970 2, 072 63, 977 66, 049
130 30, 985 2, 137 32, 992 35, 129
325 12, 394 2, 332 14, 401 16, 733
650 6, 197 2, 657 8, 204 10, 861

Thus, the minimum value is 10, 861, and the maximum value is 4, 032, 065.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; John Nord, Spokane, WA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.



• 4943: Proposed by Kenneth Korbin, New York, NY.
Given quadrilateral ABCD with AB = 19, BC = 8, CD = 6, and AD = 17. Find the
area of the quadrilateral if both AC and BD also have integer lengths.
Solution by Brian D. Beasley, Clinton, SC.

Let x = AC and y = BD, where both x and y are positive integers. Let A1 be the area
of triangle ABC, A2 be the area of triangle of ADC, A3 be the area of triangle BAD,
and A4 be the area of triangle BCD. Then by Heron’s formula, we have

A1 =
√

s(s− 19)(s− 8)(s− x) A2 =
√

t(t− 17)(t− 6)(t− x),

where s = (19 + 8 + x)/2 and t = (17 + 6 + x)/2. Similarly,

A3 =
√

u(u− 19)(u− 17)(u− y) A4 =
√

v(v − 8)(v − 6)(v − y),

where u = (19+17+ y)/2 and v = (8+6+ y)/2. Also, the lengths of the various triangle
sides imply x ∈ {12, 13, · · · , 22} and y ∈ {3, 4, · · · , 13}. We consider three cases for the
area T of ABCD:
Case 1: Assume ABCD is convex. Then T = A1 + A2 = A3 + A4. But a search among
the possible values for x and y yields no solutions in this case.
Case 2: Assume ABCD is not convex, with triangle BAD containing triangle BCD (i.e.,
C is interior to ABD). Then T = A1 +A2 = A3−A4. Again, a search among the possible
values for x and y yields no solutions in this case.
Case 3: Assume ABCD is not convex, with triangle ABC containing triangle ADC (i.e.,
D is interior to ABC ). Then T = A1 −A2 = A3 + A4. In this case, a search among the
possible values for x and y yields the unique solution x = 22 and y = 4; this produces
T =

√
1815 = 11

√
15.

Due to the lengths of the quadrilateral, these are the only three cases for ABCD. Thus
the unique value for its area is 11

√
15.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins, Statesboro, GA, and the proposer.

• 4944: Proposed by James Bush, Waynesburg, PA.
Independent random numbers a and b are generated from the interval [−1, 1] to fill the

matrix A =
(

a2 a2 + b
a2 − b a2

)
. Find the probability that the matrix A has two real

eigenvalues.
Solution by Paul M. Harms, North Newton, KS.

The characteristic equation is (a2−λ)2−(a4−b2) = 0. The solutions for λ are a2+
√

a4 − b2

and a2−
√

a4 − b2. There are two real eigenvalues when a4−b2 > 0 or a2 > |b|. The region
in the ab coordinate system which satisfies the inequality is between the parabolas b = a2

and b = −a2 and inside the square where a and b are both in [−1, 1]. From the symmetry
of the region we see that the probability is the area in the first quadrant between the

a-axis and b = a2 from a = 0 to a = 1. Integrating gives a probability of
1
3
.

Also solved by Tom Leong, Scotrun, PA; John Nord, Spokane, WA; David
Stone and John Hawkins (jointly), Statesboro, GA; Boris Rays, Chesapeake,
VA, and the proposer.



• 4945: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Prove that

17 +
√

2
n∑

k=1

(
L4

k + L4
k+1 + L4

k+2

)1/2
= L2

n + 3L2
n+1 + 5LnLn+1

where Ln is the nth Lucas number defined by L0 = 2, L1 = 1 and for all n ≥ 2, Ln =
Ln−1 + Ln−2.

Solution by Tom Leong, Scotrun, PA.

Using the identity a4 + b4 + (a + b)4 = 2(a2 + ab + b2)2 we have

17 +
√
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)1/2
= 17 +

√
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)
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k+1 +
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(Lk + Lk+1)
2

= 17 +
n∑

k=1

L2
k +

n∑
k=1

L2
k+1 +

n∑
k=1

L2
k+2

= 17 + L2
n+2 + 2L2

n+1 − L2
2 − 2L2

1 + 3
n∑

k=1

L2
k

= 17 + (Ln + Ln+1)
2 + 2L2

n+1 − 32 − 2 · 12 + 3
n∑

k=1

L2
k

= L2
n + 3L2

n+1 + 2LnLn+1 + 6 + 3
n∑

k=1

L2
k

= L2
n + 3L2

n+1 + 2LnLn+1 + 6 + 3 (LnLn+1 − 2)
= L2

n + 3L2
n+1 + 5LnLn+1

where we used the identity
n∑

k=1

L2
k = LnLn+1 − 2 which is easily proved via induction.

Comment: Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie started
off their solution with

2(L4
k + L4

k+1 + L4
k+2) = (L2

k + L2
k+1 + L2

k+2)
2

and noted that this is a special case of Candido’s Identity 2(x4+y4+(x+y)4) = (x2+y2+
(x + y)2)2, for which Roger Nelsen gave a proof without words in Mathematics Magazine
(vol. 78,no. 2). Candido used this identity to establish that 2(F 4

n + F 4
n+1 + F 4

n+2) =
(F 2

n + F 2
n+1 + F 2

n+2), where Fn denotes the nth Fibonacci number.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS, and the proposer.

• 4946: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.



Let z1, z2 be nonzero complex numbers. Prove that(
1
|z1|

+
1
|z2|

) (∣∣∣∣z1 + z2

2
+
√

z1z2

∣∣∣∣ +
∣∣∣∣z1 + z2

2
−
√

z1z2

∣∣∣∣) ≥ 4.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA.

We note that for a, b > 0,

a2 − 2ab + b2 = (a− b)2 ≥ 0
so a2 + 2ab + b2 ≥ 4ab
so (a + b)(a + b) ≥ 4ab

so
(a + b)

ab
(a + b) ≥ 4

or
(

1
a

+
1
b

)
(a + b) ≥ 4

Therefore, (1)
(

1
|z1|

+
1
|z2|

)
(|z1|+ |z2|) ≥ 4.

For two complex numbers w = a + bi and v = c + di, we have

|(w − v)2|+ |(w + v)2| = |w − v|2 + |w + v|2 = (a− c)2 + (b− d)2 + (a + c)2 + (b + d)2

= 2(a2 + b2 + c2 + d2) = 2(|w|2 + |v|2)

so, (2) |(w − v)2|+ |(w + v)|2 = 2(|w2|+ |v2|).
Let w be such that w2 = z1 and v be such that v2 = z2. Substituting this into (2), we
get |w2 − 2wv + v2|+ |w2 + 2wv + v2| = 2(|z1|+ |z2|), hence∣∣∣∣z1 + z2

2
− wv

∣∣∣∣ +
∣∣∣∣z1 + z2

2
+ wv

∣∣∣∣ = |z1|+ |z2|.

Since (wv)2 = z1z2, wv must equal
√

z1z2 or −√z1z2. Thus the preceding equation
becomes ∣∣∣∣z1 + z2

2
−
√

z1z2

∣∣∣∣ +
∣∣∣∣z1 + z2

2
+
√

z1z2

∣∣∣∣ = |z1|+ |z2|.

Multiplying by
1
|z1|

+
1
|z2|

, we get

(
1
|z1|

+
1
|z2|

)(∣∣∣∣z1 + z2

2
−
√

z1z2

∣∣∣∣ +
∣∣∣∣z1 + z2

2
+
√

z1z2

∣∣∣∣) =
(

1
|z1|

+
1
|z2|

)
(|z1|+ |z2|) ≥ 4

by inequality (1).

Also solved by Tom Leong Scotrun, PA, and the proposers.

• 4947: Proposed by Tom Leong, Brooklyn, NY.
Define a set S of positive integers to be among composites if for any positive integer n,
there exists an x ∈ S such that all of the 2n integers x± 1, x± 2, . . . , x±n are composite.
Which of the following sets are among composites? (a) The set {a + dk|k ∈ N} of terms
of any given arithmetic progression with a, d ∈ N, d > 0. (b) The set of squares. (c) The
set of primes. (d)∗ The set of factorials.
Remarks and solution by the proposer, (with a few slight changes made in the
comments by the editor).



This proposal arose after working Richard L. Francis’s problems 4904 and 4905; it can be
considered a variation on the idea in problem 4904. My original intention was to propose
parts (c) and (d) only; however, I couldn’t solve part (d) and, after searching the MAA
journals, I later found that the question posed by part (c) is not original at all. An article
in (The Two-Year College Mathematics Journal, Vol. 12, No. 1, Jan 1981, p. 36) solves
part (c). However it appears that the appealing result of part (c) is not well-known and
the solution I offer differs from the published one. Parts (a) and (b), as far as I know, are
original.

Solution. The sets in (a), (b) and (c) are all among composites. In the solutions below,
let n be any positive integer.

(a) Choose m ≥ n and m > d. Clearly the consecutive integers (3m)! + 2, (3m)! +
3, . . . , (3m)! + 3m are all composite. Furthermore since d ≤ m − 1, one of the integers
(3m)! + m + 2, (3m)! + m + 3, . . . , (3m)! + 2m belongs to the arithmetic progression and
we are done.

(b) By Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many
primes congruent to 1 mod 4. Let p > n be prime with p ≡ 1 (mod 4). From the
theory of quadratic residues, we know −1 is a quadratic residue mod p, that is, there is a
positive integer r such that r2 ≡ −1 (mod p). Also by Wilson’s theorem, (p− 1)! ≡ −1
(mod p). Put x = [r(p − 1)!]2. Then x ± 2, x ± 3, . . . , x ± (p − 1) are all composite.
Furthermore, x − 1 = [r(p − 1)!]2 − 1 = [r(p − 1)! + 1][r(p − 1)! − 1] is composite and
x ≡ r2[(p− 1)!]2 ≡ −1(−1)2 ≡ −1 (mod p), that is, x + 1 is composite.

(c) Let p > n + 1 be an odd prime. First note p! and (p − 1)! − 1 are relatively prime.
Indeed, the prime divisors of p! are all primes not exceeding p while none of those primes
divide (p−1)!−1 (clearly primes less than p do not divide (p−1)!−1, while (p−1)!−1 ≡ −2
(mod p) by Wilson’s theorem). Appealing to Dirichlet’s theorem again, there are infinitely
many primes x of the form x = kp! + (p − 1)! − 1. So x − 1, x − 2, . . . , x − (p − 2) and
x+1, x+3, x+4, . . . , x+p are all composite. By Wilson’s theorem, (p−1)!+1 is divisible
by p; hence x + 2 is divisible by p, that is, composite.

Remarks. (b) In fact, it can similarly be shown that the set of nth powers for any
positive integer n is among composites.

(d) For any prime p, let x = (p− 1)!. Then x± 2, x± 3, . . . , x± (p− 1) are all composite
and by Wilson’s theorem, x + 1 is also composite. It remains: is x − 1 = (p − 1)! − 1
composite? I don’t know; however it’s unlikely to be prime for all primes p.


