
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2008

• 5020: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that{
x7 − 13y = 21
13x− y7 = 21

• 5021: Proposed by Kenneth Korbin, New York, NY.

Given
x + x2

1− 34x + x2
= x + 35x2 + · · ·+ anxn + · · ·

Find an explicit formula for an.

• 5022: Proposed by Michael Brozinsky, Central Islip, NY .

Show that
sin

(
x

3

)
sin

(
π + x

3

)
sin

(
2π + x

3

)
is proportional to sin(x).

• 5023: Proposed by M.N. Deshpande, Nagpur, India.

Let A1A2A3 · · ·An be a regular n-gon (n ≥ 4) whose sides are of unit length. From Ak

draw Lk parallel to Ak+1Ak+2 and let Lk meet Lk+1 at Tk. Then we have a “necklace”
of congruent isosceles triangles bordering A1A2A3 · · ·An on the inside boundary. Find
the total area of this necklace of triangles.



• 5024: Proposed by José Luis Dı́az-Barrero and Josep Rubió-Massegú, Barcelona, Spain.

Find all real solutions to the equation√
1 +

√
1− x− 2

√
1−

√
1− x = 4

√
x.

• 5025: Ovidiu Furdui, Toledo, OH.

Calculate the double integral ∫ 1

0

∫ 1

0
{x− y}dxdy,

where {a} = a− [a] denotes the fractional part of a.

Solutions

• 5002: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon with sides 3x, 3x, 3x, 5x, 5x and 5x is inscribed in a unit circle. Find
the value of x.

Solution by David E. Manes, Oneonta, NY.

The value of x is
√

3
7

.

Note that each inscribed side of the hexagon subtends an angle at the center of the
circle that is independent of its position in the circle The sides are subject to the
constraint that the sum of the angles subtended at the center equals 360o. Therefore the
sides of the hexagon can be permuted from 3x, 3x, 3x, 5x, 5x, 5x to 3x, 5x, 3x, 5x, 3x, 5x.
In problem 4974 : (December 2007, Korbin, Lau) it is shown that the circumradius r is
then given by

r =

√
(3x)2 + (5x)2 + (3x)(5x)

3
.

With r = 1, one obtains x =
√

3
7

.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; John Boncek, Montgomery, AL; M.N.
Deshpande, Nagpur, India; José Luis Dı́az-Barrero, Barcelona, Spain; Grant
Evans (student at St George’s School), Spokane, WA; Paul M. Harms, North
Newton, KS; Minerva P. Harwell (student at Auburn University),
Montgomery, AL; Kee-Wai Lau, Hong Kong, China; Peter E. Liley,
Lafayette, IN; Amanda Miller (student at St. George’s School), Spokane,
WA; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5003: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that

3
√

x +
√

x2 − 1 +
3
√

x−
√

x2 − 1 =
7
2

and



3

√
y +

√
y2 − 1 + 3

√
y −

√
y2 − 1 =

√
10

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX.

Let A = 3
√

x +
√

x2 − 1 and B = 3
√

x−
√

x2 − 1. Note that

A3 + B3 = 2x and
AB = 1.

Since A + B =
7
2
,

343
8

= (A + B)3

= A3 + 3A2B + 3AB2 + B3

= A3 + B3 + 3AB(A + B)

= 2x +
21
2

.

Thus, x =
259
16

.

Similarly,
2y + 3

√
10 = 10

√
10

and, thus, y =
7
√

10
2

.

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; M.N. Deshpande, Nagpur, India; José Luis Dı́az-Barrero, Barcelona,
Spain; Grant Evans (student at St. George’s School), Spokane, WA; Paul M.
Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Peter E.
Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Amanda Miller (student
at St. George’s School), Spokane, WA; John Nord, Spokane, WA; Paolo
Perfetti (Department of Mathematics, University of Rome), Italy; Boris
Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5004: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be nonnegative real numbers. Prove that

a

1 + a
+

b

1 + b
+

c

1 + c
≥

√
ab

1 + a + b
+

√
bc

1 + b + c
+

√
ac

1 + c + a

Solution by John Boncek, Montgomery, AL.

We use the arithmetic-geometric inequality: If x, y ≥ 0, then x + y ≥ 2
√

xy. Now

a

1 + a
≥ a

1 + a + b
, and

b

1 + b
≥ b

1 + a + b
, so



a

1 + a
+

b

1 + b
≥ a + b

1 + a + b
≥ 2

√
ab

1 + a + b
.

Similarly,
a

1 + a
+

c

1 + c
≥ 2

√
ac

1 + a + c
, and

b

1 + b
+

c

1 + c
≥ 2

√
bc

1 + b + c
.

Summing up all three inequalities, we obtain

2
(

a

1 + a
+

b

1 + b
+

c

1 + c

)
≥ 2

√
ab

1 + a + b
+

2
√

ac

1 + a + c
+

2
√

bc

1 + b + c
.

Divide both sides of the inequality by 2 to obtain the result.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; M.N. Deshpande, Nagpur, India; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes,
Oneonta, NY; Paolo Perfetti (Department of Mathematics, University of
Rome), Italy; Boris Rays, Chesapeake, VA, and the proposers.

• 5005: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that
√

3
2

(
a + b + c

)1/2

≥ 1
a + b

+
1

b + c
+

1
c + a

.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

Since a + b ≥ 2
√

ab =
2√
c

and so on, and by the Cauchy-Schwarz inequality, we have

1
a + b

+
1

b + c
+

1
c + a

≤
√

c +
√

a +
√

b

2

=
1
2

(
(1)
√

a + (1)
√

b + (1)
√

c

)
≤ 1

2
√

1 + 1 + 1
√

a + b + c

=
√

3
2

(
a + b + c)1/2

as required.

Solution 2 by Charles McCracken, Dayton, OH.

Suppose a=b=c=1. Then the original inequality reduces to
3
2
≥ 3

2
which is certainly

true.



Let L represent the left side of the original inequality and let R represent the right side.
Allow a, b, and c to vary and take partial derivatives.

∂L

∂a
=
√

3
2
· 1
2

(
a + b + c

)−1/2

> 0. Similarly,
∂L

∂b
> 0 and

∂L
∂c

> 0.

∂R

∂a
= −(a + b)−2 − c(a + b)−2 < 0. Similarly,

∂R

∂b
< 0 and

∂R

∂c
< 0.

So any change in a, b or c results in an increase in L and a decrease in R so that L is
always greater than R.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Paolo Perfetti (Department of Mathematics,
University of Rome), Italy, and the proposer.

• 5006: Proposed by Ovidiu Furdui, Toledo, OH.

Find the sum ∞∑
k=2

(−1)k ln
(

1− 1
k2

)
.

Solution 1 by Paul M. Harms, North Newton, KS.

Using ln
(

1− 1
k2

)
= ln

(
k − 1

k

)
+ ln

(
k + 1

k

)
, the summation is

(
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+
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+ · · ·
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(

5
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(
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)
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[
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(
3
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)
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(
3
4

)
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(
5
4

)
+ ln

(
5
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)
+ · · ·

]
= ln

(
1
2

)
+ 2 ln

(
3
2

)(
3
4

)(
5
4

)(
5
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)(
7
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)
· · · .

Wallis’ product for
π

2
is

π

2
=

(
2
1

)(
2
3

)(
4
3

)(
4
5

)(
6
5

)(
6
7

)
· · · .

Dividing both sides by 2 and taking the reciprocal yields

4
π

=
(

3
2

)(
3
4

)(
5
4

)(
5
6

)(
7
6

)(
7
8

)
· · · .

The summation in the problem is then

ln
(

1
2

)
+ 2 ln

(
4
π

)
= ln

[(
1
2

)(
16
π2

)]
= ln

(
8
π2

)
.

Solution 2 by Kee-Wai Lau, Hong Kong, China.



It can be proved readily by induction that for positive intergers n,

2n∑
k=2

(−1)k ln
(

1− 1
k2

)
= 4

(
ln((2n)!)− 2 ln(n!)

)
+ lnn + ln(2n + 1)− 2(4n− 1) ln 2.

By using the Stirling approximation ln(n!) = n lnn− n +
1
2

ln(2πn) + O

(
1
n

)
as n →∞,

we obtain
ln((2n)!)− 2 ln(n!) = 2n ln 2− lnn

2
− lnπ

2
+ O

(
1
n

)
.

It follows that

2n∑
k=2

(−1)k ln
(

1− 1
k2

)
= 3 ln 2− 2 ln π + ln

(
1 +

1
2n

)
+ O

(
1
n

)
= 3 ln 2− 2 ln π + O

(
1
n

)

and that
2n+1∑
k=2

(−1)k ln
(

1− 1
k2

)
= 3 ln 2− 2 ln π + O

(
1
n

)
as well.

This shows that the sum of the problem equal 3 ln 2− 2 ln π = ln
(

8
π2

)
.

Also solved by Brian D. Beasley, Clinton, SC; Worapol Rattanapan (student
at Montfort College (high school)), Chiang Mai, Thailand; Paolo Perfetti
(Department of Mathematics, University of Rome), Italy; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5007: Richard L. Francis, Cape Girardeau, MO.

Is the centroid of a triangle the same as the centroid of its Morley triangle?

Solution by Kenneth Korbin, New York, NY.

The centroids are not the same unless the triangle is equilateral.
For example, the isosceles right triangle with vertices at (−6, 0), (6, 0) and (0, 6) has its
centroid at (0, 2).
Its Morley triangle has verticies at (0, 12− 6

√
3), (−6 + 3

√
3, 3), and (6− 3

√
3, 3) and

has its centroid at (0, 6− 2
√

3).

Also solved by Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY, and the proposer.


