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*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2008

• 4984: Proposed by Kenneth Korbin, New York, NY.
Prove that

1√
1 +
√

3
+

1√
5 +
√

7
+ · · ·+ 1√

2009 +
√

2011
>
√

120.

• 4985: Proposed by Kenneth Korbin, New York, NY.
A Heron triangle is one that has both integer length sides and integer area. Assume
Heron triangle ABC is such that 6 B = 26 A and with (a,b,c)=1.

PartI : Find the dimensions of the triangle if side a = 25.
PartII : Find the dimensions of the triangle if 100 < a < 200.

• 4986: Michael Brozinsky, Central Islip, NY.
Show that if 0 < a < b and c > 0, that√

(a+ c)2 + d2 +
√

(b− c)2 + d2 ≤
√

(a− c)2 + d2 +
√

(b+ c)2 + d2.

• 4987: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be the sides of a triangle ABC with area S. Prove that

(a2 + b2)(b2 + c2)(c2 + a2) ≤ 64S3 csc 2A csc 2B csc 2C.



• 4988: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

3x
2−x−z + 3y

2−y−x + 3z
2−z−y = 1.

• 4989: Proposed by Tom Leong, Scotrun, PA.
The numbers 1, 2, 3, · · · , 2n are randomly arranged onto 2n distinct points on a circle.
For a chord joining two of these points, define its value to be the absolute value of the
difference of the numbers on its endpoints. Show that we can connect the 2n points in
disjoint pairs with n chords such that no two chords intersect inside the circle and the
sum of the values of the chords is exactly n2.

Solutions

• 4960: Proposed by Kenneth Korbin, New York, NY.

Equilateral triangle ABC has an interior point P such that

AP =
√

5, BP =
√

12, and CP =
√

17.

Find the area of 4APB.

Solution by Scott H. Brown, Montgomery, AL.

First rotate 4ABC about point C through a counter clockwise angle of 60o. This will
create equilateral triangle CBB′ and interior point P ′. Since triangle ABC is equialteral
and m6 ACB = 60o, AC falls on BC, and CP ′ =

√
17, B′P ′ =

√
12, BP ′ =

√
5. Now

4CPA ∼= 4CP ′B and m6 ACP = m6 BCP ′, so m6 PCP ′ = 60o.

Second, draw PP ′, forming isosceles triangle PCP ′. Since m6 PCP ′ = 60o, triangle
PCP ′ is equilateral. We find PP ′ =

√
17, PA = P ′B =

√
5 and PB =

√
12. So triangle

PBP ′ is a right triangle.

Third, m6 APB′ = 120o and m6 PBP ′ = 90o. We find m6 PBA+m6 P ′BB′ = 30o.
Since m6 P ′BB′ = m6 PAB, then by substitution, m6 PBA+m6 PAB = 30o. Thus
m6 APB = 150o.

Finally, we find the area of triangle APB=
1
2

(
√

5)(
√

12) sin(150o) =
√

15
2

square units.

(Reference: Challenging Problems in Geometry 2, Posamentier & Salkind, p. 39.)

Also solved by Mark Cassell (student, Saint George’s School), Spokane, WA;
Matt DeLong, Upland, IN; Grant Evans (student, Saint George’s School),
Spokane, WA; Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; David E. Manes, Oneonta, NY; John Nord, Spokane, WA; Boris Rays
and Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4961: Proposed by Kenneth Korbin, New York, NY.
A convex hexagon is inscribed in a circle with diameter d. Find the area of the hexagon
if its sides are 3, 3, 3, 4, 4 and 4.

Solution 1 by John Nord, Spokane, WA.



For cyclic quadrilateral ABCD with sides a, b, c, and d, two different formulations of the
area are given, Brahmagupta’s formula and Bretschneider’s formula.

A =
√

(s− a)(s− b)(s− c)(s− d) where s =
a+ b+ c+ d

2
(1)

A =
√

(ac+ bd)(ad+ bc)(ab+ cd)
4R

where R is the circumradius (2)

In order to employ the cyclic quadrilateral theorems, place a diagonal into the hexagon
to obtain two inscribed quadrilaterals. The first has side lengths of 3,3,3, and x and the
second has side lengths of 4,4,4 and x.

Equating (1) and (2) and solving for R yields

R =
1
4

√
(ac+ bd)(ad+ bc)(ab+ cd)
(s− a)(s− b)(s− c)(s− d)

(3)

Both quadrilaterals are inscribed in the same circle so (3) can be used for both
quadrilaterals and they can be set equal to each other. Solving for x is surprisingly
simple and the area computations can be calculated using (1) directly. The area of the

inscribed hexagon with sides 3,3,3,4,4, and 4 is
73
√

3
4

.

Solution 2 by Jonathan Schrock, Seth Bird, and Jim Moore (jointly, students
at Taylor University), Upland, IN.

Since the hexagon is convex and cyclic, a radius of the circumscribing circle can be
drawn to each vertex producing six isosceles triangles. The formula for the height of one

of these triangles is
1
2

√
4r2 − c2 where c is the length of the base of the triangle and r is

the radius of the circle. Since 2r = d (the diameter of the circle), the area of any one of
these triangles will therefore be

c

4

√
d2 − c2. The total area of the hexagon is the sum of

the areas of the triangles. There are three triangles for which c = 3 and three for which

c = 4. So the total area of the hexagon in terms of d is 3
√
d2 − 16 +

9
4

√
d2 − 9.

We can determine d by rearranging the hexagon so that the side lengths alternate as
3,4,3,4,3,4. This creates three congruent quadrilaterals. Consider just one of these
quadrilaterals and label it ABCO, where A, B, and C lie on the circle and O is the
center of the circle. Since the interior angle for a circle is 360o and there are three
quadrilaterals, 6 AOC = 120o. By constructing a line from A to C we can see by the
symmetry of the rearranged hexagon, that 6 ABC = 120o. Using the law of cosines,

AC
2 = AB

2 +BC
2 − 2

(
AB

)(
BC

)
cos(120o),

which can be written as AC2 = 32 + 42 − 2(3)(4) cos(120o). That is, AC =
√

37.
To determine d we use the law of cosines again. Here,

AC
2 = AO

2 + CO
2 − 2

(
AO

)(
CO

)
cos(120o),

which can be written as 37 =
d2

2
− d2

2
cos(120o). Solving for d gives d = 2

√
37
3

.

Substituting this value of d into the formula 3
√
d2 − 16 +

9
4

√
d2 − 9 gives the area of the

hexagon as
73
√

3
4

.



Comment by editor: David Stone and John Hawkins of Statesboro GA
generalized the problem for any convex, cyclic hexagon with side lengths a, a, a, b, b, b
(with 0 < a ≤ b) and with d as the diameter of the circumscribing circle. They showed
that d is uniquely determined by the values of a and b, d =

√
4
3(a2 + ab+ b2). Then

they asked the question: What fraction of the circle’s area is covered by the hexagon?
They found that in general, the fraction of the circle’s area covered by the hexagon is:
√

3
4

(a2 + 4ab+ b2)
π

3
(a2 + ab+ b2)

=
3
√

3(a2 + 4ab+ b2)
4π(a2 + ab+ b2)

=
3
√

3
4π

(a+ b)2 + 2ab
(a+ b)2 − ab

=
(

3
√

3
4π

)
1 + 2c
1− c

where c =
ab

(a+ b)2
.

They continued on by stating that in fact, c takes on the values 0 < c ≤ 1/4, thus

forcing 1 <
1 + 2c
1− c

≤ 2. So by appropriate choices of a and b, the hexagon can cover

from
3
√

3
4π
≈ 0.4135 of the circle up to

3
√

3
4π
· 2 ≈ 0.827 of the circle. A regular hexagon,

where a = b and c = 1/4, would achieve the upper bound and cover the largest possible
fraction of the circle.

For instance, we can force the hexagon to cover exactly one half the circle by making(
3
√

3
4π

)
1 + 2c
1− c

=
1
2

. This would require c =
2π − 3

√
3

2
(

3
√

3 + π

) ≈ 0.0651875. Setting this

equal to
ab

(a+ b)2
, we find that

a

b
=

(
6
√

3− π
)
±
√

3(27− π2)

2π − 3
√

3
.

That is, if b = 13.2649868a, the hexagon will cover half of the circle.

Also solved by Matt DeLong, Upland, IN; Peter E. Liley, Lafayette, IN;
Mandy Isaacson, Julia Temple, and Adrienne Ramsay (jointly, students at
Taylor University), Upland, IN; Paul M. Harms, North Newton, KS; Boris
Rays and Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA , and
the proposer.

• 4962: Proposed by Kenneth Korbin, New York, NY.
Find the area of quadrilateral ABCD if the midpoints of the sides are the vertices of a
square and if AB =

√
29 and CD =

√
65.

Solution by proposer.

Conclude that AC ⊥ BD and that AC = BD. Then, there are positive numbers
(w, x, y, z) such that

w + x = AC,
y + z = BD,

w2 + y2 = 29, and
x2 + z2 = 65.

Then, (w, x, y, z) = (
11√
10
,

19√
10
,

13√
10
,

17√
10

) and AC = BD =
30√
10

. The area of the



quadrilateral then equals 1
2(AC)(BD) =

1
2

(
30√
10

)(
30√
10

)
= 45.

Also solved by Peter E. Liley, Lafayette, IN, and by Boris Rays and
Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA.

• 4963: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

∑
1≤i<j≤n

1
3i+j

.

Solution 1 by Ken Korbin, New York, NY.

∑
1≤i<j≤n

1
3i+j

=
(

1
33

+
1
34

)
+
(

2
35

+
2
36

)
+
(

3
37

+
3
38

)
+
(

4
39

+
4

310

)
+ · · ·

=
4
34

+
8
36

+
12
38

+
16
310

+ · · ·

=
4
34

[
1 +

2
32

+
3
34

+
4
36

+ · · ·
]

=
4
34

[
1 +

1
32

+
1
34

+
1
36

+ · · ·
]2

=
4
34

[
1

1− 1
32

]2

=
4
34

[
9
8

]2
=

1
16
.

Solutions 2 and 3 by Pat Costello, Richmond, KY.

2) When n = 2 we have
1

31+2
.

When n = 3 we have
1

31+3
+

1
32+3

.

When n = 4 we have
1

31+4
+

1
32+4

+
1

33+4
.

Adding down the columns we obtain:

∞∑
k=3

1
3k

+
∞∑
k=5

1
3k

+
∞∑
k=7

1
3k

+ · · ·

=
(1/3)3

1− 1/3
+

(1/3)5

1− 1/3
+

(1/3)7

1− 1/3
+ · · ·

=
3
2

(
1
3

)3

(1 + (1/3)2 + (1/3)4 + · · ·)

=
3
2

(
1
3

)3(
1 + (1/9) + (1/9)2 + · · ·

)
=

3
2

(
1
3

)3( 1
1− 1/9

)
=

1
16
.



3) Another way to see that the value is 1/16 is to write the limit as the double sum

∞∑
n=2

n−1∑
i=2

1
3n+i

=
∞∑
n=2

1
3n

n−1∑
i=2

1
3i

=
∞∑
n=2

1
3n

(
(1/3)− (1/3)n

1− (1/3)

)

=
3
2

∞∑
n=2

1
3n

(
(1/3)− (1/3)n

)

=
3
2

(
(1/3)

∞∑
n=2

1
3n
−
∞∑
n=2

1
9n

)

=
3
2

(
(
1
3

)
1/9

1− 1/3
− 1/(81)

1− 1/9

)

=
3
2

(
1
18
− 1

72

)
=

1
16
.

Also solved by Bethany Ballard, Nicole Gottier, Jessica Heil (jointly,
students at Taylor University), Upland, IN; Matt DeLong, Upland, IN; Paul
M. Harms, North Newton, KS; Carl Libis, Kingston, RI; David E. Manes,
Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 4964: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let x, y be real numbers and we define the law of composition

x ⊥ y = x
√

1 + y2 + y
√

1 + x2.

Prove that (R,+) and (R,⊥) are isomorphic and solve the equation x ⊥ a = b.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

Define f : (R,+)→ (R,⊥) by f(x) = sinhx.
Then f is one-to-one and onto, and

f(a+ b) = sinh(a+ b)
= sinh a cosh b+ cosh a sinh b

= sinh a
√

1 + sinh2 b+ sinh b
√

1 + sinh2 a

= f(a) ⊥ f(b)

Therefore (R,+) and (R,⊥) are isomorphic abelian groups.
Note that: 

i) f(0) = 0 and that f(−a) = −f(a).
ii) In (R,⊥)

0 ⊥ a = 0
√

1 + a2 + a
√

1 + 02 = a and
a ⊥ (−a) = a

√
1 + a2 − a

√
1 + a2 = 0.

If x ⊥ a = b, then x = b ⊥ (−a) = b
√

1 + a2 − a
√

1 + b2.



Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta,
NY, and the proposer.

• 4965: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let ha, hb, hc be the heights of triangle ABC. Let P be any point inside 4ABC. Prove
that

(a)
ha
da

+
hb
db

+
hc
dc
≥ 9, (b)

d2
a

h2
a

+
d2
b

h2
b

+
d2
c

h2
c

≥ 1
3
,

where da, db, dc are the distances from P to the sides BC,CA and AB respectively.

Solution to part (a) by Scott H. Brown, Montgomery, AL.

Suppose P is any point inside triangle ABC. Let AP,BP, and CP be the line segments
whose distances from the vertices are x, y, and z respectively. Let AP,BP, and CP
intersect the sides BC,CA, and AB, at points L,M, and N respectively. Denote
PL,PM, and PN by u, v, and w respectively.
In reference [1] it is shown that

x

u
+
y

v
+
z

w
≥ 6, (1)

with equality holding only if P in the centroid of triangle ABC.
Considering the heights ha, hb, and hc, and the distances respectively to the sides from
P as da, db, and dc in terms of u, v, w, x, y, and z gives:

ha
da

=
x+ u

u
,

hb
db

=
y + v

v
,

hc
dc

=
z + w

w
. (2)

Applying inequality (1) gives:
ha
da

+
hb
db

+
hc
dc
≥ 9,

with equality holding only if P is the centroid of triangle ABC.

Reference [1]. Some Inequalities For A Triangle, L. Carlitz,
American Mathematical Monthly, 1964, pp. 881-885.

Solution to part (b) by the proposers.

For the triangles BPC,APC,APB we have,

[BPC] = da ×
BC

2
=
da
ha
× haBC

2
=
da
ha
× [ABC]

[APC] = db ×
AC

2
=
db
hb
× hbAC

2
=
db
hb
× [ABC]

[APB] = dc ×
AB

2
=
dc
hc
× hcABC

2
=
dc
hc
× [ABC]

Adding up the preceding expressions yields,(
da
ha

+
db
hb

+
dc
hc

)
[ABC] = [ABC]



and
da
ha

+
db
hb

+
dc
hc

= 1

Applying AM-QM inequality, we get√√√√ d2a
h2

a
+ d2

b

h2
b

+ d2c
h2

c

3
≥ 1

3

(
da
ha

+
db
hb

+
dc
hc

)
=

1
3

from which the inequality claimed immediately follows. Finally, notice that equality
holds when da/ha = db/hb = dc/hc = 1/3. That is, when 4ABC is equilateral and P is
its centroid.

• 4966: Proposed by Kenneth Korbin, New York, NY.
Solve:

16x+ 30
√

1− x2 = 17
√

1 + x+ 17
√

1− x

with 0 < x < 1.

Solution 1 by Elsie Campbell, Dionne Bailey, & Charles Diminnie, San
Angelo, TX.

Let x = cos θ where θ ∈ (0, π2 ). Then,

16x+ 30
√

1− x2 = 17
√

1 + x+ 17
√

1− x

becomes

16 cos θ + 30
√

1− cos2 θ = 17
√

1 + cos θ + 17
√

1− cos θ

= 17
√

2

√1 + cos θ
2

+

√
1− cos θ

2


= 34

(
1√
2

cos
θ

2
+

1√
2

sin
θ

2

)
= 34

(
cos

π

4
cos

θ

2
+ sin

π

4
sin

θ

2

)
= 34 cos(

π

4
− θ

2
). (1)

Let cos θ0 = 8
17 . Then by (1),

cos(
π

4
− θ

2
) =

8
17

cos θ +
15
17

sin θ

= cos θ0 cos θ + sin θ0 sin θ
= cos(θ0 − θ).

Therefore,

θ0 − θ = π
4 −

θ
2

⇒ θ = 2θ0 − π
2

⇒ x = 240
289

or
θ0 − θ = −(π4 −

θ
2)

⇒ θ = 2
3θ0 + π

6
⇒ x = cos(2

3 cos−1 8
17 + π

6 ).

Remark: This solution is an adaptation of the solution on pp.13-14 from Mathematical
Miniatures by Savchev and Andreescu.



Solution 2 by Brian D. Beasley, Clinton, SC.

Since 0 < x < 1, each side of the given equation will be positive, so we may square both
sides without introducing any extraneous solutions. After simplifying, this yields

(480x− 289)
√

1− x2 = 161(2x2 − 1).

For each side of this equation to have the same sign (or zero), we require
x ∈ (0, 289/480] ∪ [

√
2/2, 1). We now square again, checking for actual as well as

extraneous solutions. This produces

(1156x3 − 867x+ 240)(289x− 240) = 0,

so one potential solution is x = 240/289. The cubic formula yields three more, namely

x ∈ {− cos(
1
3

cos−1(
240
289

)), sin(
1
3

sin−1(
240
289

)), cos(
1
3

cos−1(−240
289

))}.

Of these four values, only two are in x ∈ (0, 289/480] ∪ [
√

2/2, 1):

x =
240
289

and x = sin(
1
3

sin−1(
240
289

)).

Addendum. The given equation generalizes nicely to

2ax+ 2b
√

1− x2 = c
√

1 + x+ c
√

1− x,

where a2 + b2 = c2 with a < b. The technique outlined above produces

(4c2x3 − 3c2x+ 2ab)(c2x− 2ab) = 0,

so one solution (which checks in the original equation) is x = 2ab/c2. Another solution

(does it always check in the original equation?) is x = sin(
1
3

sin−1(
2ab
c2

)), which is

connected to the right triangle with side lengths (b2 − a2, 2ab, c2) in the following way:

If we let 3θ be the angle opposite the side of length 2ab in this triangle, then we have
2ab/c2 = sin(3θ) = −4 sin3 θ + 3 sin θ, which brings us right back to
4c2x3 − 3c2x+ 2ab = 0 for x = sin θ.

Similarly, we may show that the other two solutions are x = − cos(
1
3

cos−1(
2ab
c2

)) and

x = cos(
1
3

cos−1(−2ab
c2

)); the first of these is never in (0, 1), but will the second ever be a
solution of the original equation?

Also solved by John Boncek, Montgomery, AL; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Charles McCracken, Dayton,
OH; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4967: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with an interior point P such that AP2 + BP2 = CP2,
and with an exterior point Q such that AQ2 + BQ2 = CQ2, where points C, P, and Q
are in a line. Find the lengths of AQ and BQ if AP =

√
21 and BP =

√
28.

Solution by Paul M. Harms, North Newton, KS.

Put the equilateral triangle on a coordinate system with A at (0, 0), B at (a,
√

3a) and C
at (2a, 0) where a > 0. The point P is at the intersection of the circles

x2 + y2 = 21



(x− a)2 + (y −
√

3a)2 = 28 and
(x− 2a)2 + y2 = 28 + 21 = 49.

Using x2 + y2 = 21 in the last two circles we obtain

−2ax− 2
√

3ay + 4a2 = 28− 21 = 7 and
−4ax+ 4a2 = 49− 21 = 28.

From the last equation x =
a2 − 7
a

and, using the linear equation, we get y =
2a2 + 7
2
√

3a
.

Putting these x, y values into x2 + y2 = 21 yields the quadratic in
a2, 16a4 − 392a2 + 637 = 0. From this equation a2 = 22.75 or a2 = 1.75. From the
distances given in the problem, a2 must be 22.75. The coordinates of P are x = 3.3021
and y = 3.1774. The line through C and P is y = −0.5094x+ 4.85965.

Let Q have coordinates (x1, y1). An equation for AQ2 +BQ
2 = CQ

2 can be found using
the coordinates Q(x1, y1), A(0, 0), B(4.7697, 8.2614), and C(9.5394, 0). An equation is

x2
1 + y2

1 + (x1 − 4.7697)2 + (y1 − 8.2614)2 = (x1 − 9.5394)2 + y2
1.

Simplifying and replacing y1 by −0.5094x1 + 4.85965 yields the quadratic equation
1.2595x2

1 + 13.0052x1 − 56.6783 = 0. In order that Q is exterior to the triangle we need
the solution x1 = −13.6277. Then y1 = −0.5094x1 + 4.85965 = 11.8020. The distance
from A to Q is

√
325 = 18.0278 and the distance from B to Q is

√
351 = 18.7350.

Also solved by Zhonghong Jiang, New York, NY, and the proposer.

• 4968: Proposed by Kenneth Korbin, New York, NY.

Find two quadruples of positive integers (a, b, c, d) such that

a+ i

a− i
· b+ i

b− i
· c+ i

c− i
· d+ i

d− i
=
a− i
a+ i

· b− i
b+ i

· c− i
c+ i

· d− i
d+ i

with a < b < c < d and i =
√
−1.

Solution 1 by Brian D. Beasley, Clinton, SC.

We need ((a+ i)(b+ i)(c+ i)(d+ i))2 = ((a− i)(b− i)(c− i)(d− i))2, so

(a+ i)(b+ i)(c+ i)(d+ i) = ±(a− i)(b− i)(c− i)(d− i).
Then either

(ab− 1)(c+ d) + (a+ b)(cd− 1) = 0 or (ab− 1)(cd− 1)− (a+ b)(c+ d) = 0.

But (ab− 1)(c+ d) > 0 and (a+ b)(cd− 1) > 0, so the first case cannot occur. In the
second case, since d = (ab+ ac+ bc− 1)/(abc− a− b− c) > 0, we have abc > a+ b+ c.
Then d ≥ 4 implies

3 ≤ c ≤ ab+ 4a+ 4b− 1
4ab− a− b− 4

,

where we note that 1 ≤ a < b implies 4ab > a+ b+ 4. Thus 2 ≤ b ≤ (7a+ 11)/(11a− 7),
so a ≤ 5/3. Thus a = 1, which yields b ∈ {2, 3, 4}.

If (a, b) = (1, 2), then d = (3c+ 1)/(c− 3), so c < d forces c ∈ {4, 5, 6}. Only c ∈ {4, 5}
will yield integral values for d, producing the two solutions (1, 2, 4, 13) and (1, 2, 5, 8) for
(a, b, c, d).



If (a, b) = (1, 3), then d = (2c+ 1)/(c− 2), so 3 < c < d forces c = 4. But this yields
d = 9/2.

If (a, b) = (1, 4), then d = (5c+ 3)/(3c− 5), but 4 < c < d forces the contradiction c ≤ 3.

Hence the only two solutions for (a, b, c, d) are (1, 2, 4, 13) and (1, 2, 5, 8).

Solution 2 by Dionne Bailey, Elsie Campbell, & Charles Diminnie, San
Angelo, TX.

By using the following properties of complex numbers,

(z1z2) = z̄1z̄2,
(
z1
z2

)
= z1

z2
, z = z,

we see that the left and right sides of the equation are conjugates and hence, the
equation reduces to

Im

(
a+ i

a− i
· b+ i

b− i
· c+ i

c− i
· d+ i

d− i

)
= 0. (1)

If z = (a+ i) (b+ i) (c+ i) (d+ i) = A+Bi, then (1) becomes

Im

(
z

z

)
= 0,

which reduces to AB = 0 or equivalently, A = 0 or B = 0. With some labor, we get

A = 1− (ab+ ac+ ad+ bc+ bd+ cd) + abcd

= (ab− 1) (cd− 1)− (a+ b) (c+ d) and
B = (abc+ abd+ acd+ bcd)− (a+ b+ c+ d)

= (a+ d) (bc− 1) + (b+ c) (ad− 1) .

Therefore, a, b, c, d must satisfy

(ab− 1) (cd− 1) = (a+ b) (c+ d) (2)

or
(a+ d) (bc− 1) + (b+ c) (ad− 1) = 0. (3)

Immediately, the condition 1 ≤ a < b < c < d rules out equation (3) and we may restrict
our attention to equation (2).
Since c ≥ 3 and d ≥ 4, we obtain

(cd− 1)− (c+ d) = (c− 1) (d− 1)− 2 > 0

and hence,
c+ d < cd− 1.

Using this and the fact that (ab− 1) > 0, equation (2) implies that

(ab− 1) (c+ d) < (ab− 1) (cd− 1) = (a+ b) (c+ d) ,

or
ab− 1 < a+ b.

This in turn implies that
0 ≤ (a− 1) (b− 1) < 2.



Then, since 1 ≤ a < b, we must have a = 1 and equation (2) becomes

(b− 1) (cd− 1) = (b+ 1) (c+ d) . (4)

Finally, b ≥ 2 implies that

cd− 1 =
b+ 1
b− 1

(c+ d) =
(

1 +
2

b− 1

)
(c+ d) ≤ 3 (c+ d)

or
0 ≤ (c− 3) (d− 3) ≤ 10. (5)

To complete the solution, we solve each of the 11 possibilities presented by (5) and then
substitute back into (4) to solve for the remaining variable. It turns out that the only
situation which yields feasible answers for b, c, d is the case where (c− 3) (d− 3) = 10.
We show this case and two others to indicate the reasoning applied.
Case 1. If

(c− 3) (d− 3) = 0,

then since 1 = a < b < c < d, we must have c = 3 and b = 2. When these are substituted
into (4), we get

3d− 1 = 3 (3 + d)

which is impossible.
Case 2. If

(c− 3) (d− 3) = 6,

then since c < d, we must have c− 3 = 1, d− 3 = 6 or c− 3 = 2, d− 3 = 3. These yield
c = 4, d = 9 or c = 5, d = 6. However, neither pair gives an integral answer for b when
these are substituted into (4).
Case 3. If

(c− 3) (d− 3) = 10,

then since c < d, we must have c− 3 = 1, d− 3 = 10 or c− 3 = 2, d− 3 = 5. These yield
c = 4, d = 13 or c = 5, d = 8. When substituted into (4), both pairs give the answer
b = 2.
Therefore, the only solutions for which a, b, c, d are integers, with
1 ≤ a < b < c < d, are (a, b, c, d) = (1, 2, 4, 13) or (1, 2, 5, 8).

Also solved by Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Raul A. Simon, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

.

• 4969: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers such that abc = 1. Prove that

1

a2

(
1
a

+
1
c

) +
1

b2
(

1
b

+
1
a

) +
1

c2
(

1
c

+
1
b

) ≥ 3
2

Solution by Kenneth Korbin, New York, NY.



Let x =
1
a
, y =

1
b
, z =

1
c

. Then, K =
x2

x+ z
+

y2

y + x
+

z2

z + y
.

Let U1 =
x√
x+ z

, U2 =
y√
y + x

, U3 =
z√
z + y

. Then, K = (U1)2 + (U2)2 + (U3)2.

Let V1 =
√
x+ z, V2 =

√
y + x, V3 =

√
z + y. Then, by the Cauchy inequality,

K = (U1)2 + (U2)2 + (U3)2

≥ (U1V1 + U2V2 + U3V3)2

(V1)2 + (V2)2 + (V3)2

=
(x+ y + z+)2

2(x+ y + z)
=
x+ y + z

2

Then, by the AM-GM inequality,

K ≥ x+ y + z

2

≥ 1
2

(3)( 3
√
xyz)

=
3
2

(1) =
3
2
.

Note: abc = 1 implies xyz = 1.

Comment by editor: John Boncek of Montgomery, AL noted that this problem is a
variant of an exercise given in Andreescu and Enescu’s Mathemical Olympiad Treasures,
(Birkhauser, 2004, problem 6, page 108.)

Also solved by John Boncek; David E. Manes, Oneonta, NY, and the
proposer.

• 4970: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let f : [0, 1] −→ R be a contintuous convex function. Prove that

3
4

∫ 1/5

0
f(t)dt+

1
8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

By the convexity of f we have

3
4
f

(
s

5

)
+

1
4
f

(
2s
5

)
≥ f

(
(
3
4

)(
s

5
) + (

1
4

)(
2s
5

)
)

= f

(
s

4

)
for 0 ≤ s ≤ 1. Hence,

3
4

∫ 1

0
f

(
s

5

)
ds+

1
4

∫ 1

0
f

(
2s
5

)
ds ≥

∫ 1

0
f

(
s

4

)
ds.

By substituting s = 5t in the first integral, s =
5t
2

in the second at the left and s = 4t in
the integral at the right, we obtain the inequality of the problem.



Solution 2 by David Stone and John Hawkins, Statesboro, GA.

Note 1. Consider the behavior in the extreme case: if f is a linear function, then
equality holds:

3
4

∫ 1/5

0
(mt+b)dt+

1
8

∫ 2/5

0
(mt+b)dt =

3
4

[
m

2

(
1
5

)2

+b
1
5

]
+

1
8

[
m

2

(
2
5

)2

+b
2
5

]
=

1
40
m+

1
5
b,

and
4
5

∫ 1/4

0
(mt+ b)dt =

4
5

[
m

2

(
1
4

)2

+ b
1
4

]
=

1
40
m+

1
5
b.

We rewrite the inequality in an equivalent form by clearing fractions and splitting the
integrals so that they are taken over non-overlapping intervals:

3
4

∫ 1/5

0
f(t)dt+

1
8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt ⇐⇒

30
∫ 1/5

0
f(t)dt+ 5

[ ∫ 1/5

0
f(t)dt+

∫ 1/4

1/5
f(t)dt+

∫ 2/5

1/4
f(t)dt

]
≥ 32

[ ∫ 1/5

0
f(t)dt+

∫ 1/4

1/5
f(t)dt

]
⇐⇒

3
∫ 1/5

0
f(t)dt+ 5

∫ 2/5

1/4
f(t)dt ≥ 27

∫ 1/4

1/5
f(t)dt. (1)

So we see that the interval of interest,
[
0,

2
5

]
, has been partitioned into three

subintervals
[
0,

1
5

]
,

[
1
5
,
1
4

]
and

[
1
4
,
2
5

]
.

Consider the secant line through the two points
(

1
5
, f

(
1
5

))
and

(
1
4
, f

(
1
4

))
. The

linear function giving this line is s(t) = 20
[
f

(
1
4

)
− f

(
1
5

)]
t+

[
5f
(

1
5

)
− 4f

(
1
4

)]
. It is

straightforward to use the convexity condition to show that this line lies above f(t) on

the middle interval
[

1
5

]
, and lies below f(t) on the outside intervals

[
0,

1
5

]
and

[
1
4
,
2
5

]
.

That is

s(t) ≥ f(t) on
[

1
5
,
1
4

]
and (2)

s(t) ≤ f(t) on
[
0,

1
5

]
, and

[
1
4
,
2
5

]
(3).

Considering the sides of (1),

3
∫ 1/5

0
f(t)dt+ 5

∫ 2/5

1/4
f(t)dt ≥ 3

∫ 1/5

0
s(t)dt+ 5

∫ 2/5

1/4
s(t)dt by (3).

and

3
∫ 1/5

0
s(t)dt+ 5

∫ 2/5

1/4
s(t)dt = 27

∫ 1/4

1/5
s(t)dt by (Note 1),

and

27
∫ 1/4

1/5
s(t)dt ≥ 27

∫ 1/4

1/5
f(t)dt by (2).

Therefore (1) is true.

Also solved by John Boncek, Montgomery, AL and the proposers.



• 4971: Proposed by Howard Sporn, Great Neck, NY and Michael Brozinsky, Central Islip,
NY.
Let m ≥ 2 be a positive integer and let 1 ≤ x < y. Prove:

xm − (x− 1)m < ym − (y − 1)m.

Solution 1 by Brian D. Beasley, Clinton, SC.

We let f(x) = xm − (x− 1)m for x ≥ 1 and show that f is strictly increasing on [1,∞).
Since f ′(x) = mxm−1 −m(x− 1)m−1, we have f ′(x) > 0 if and only if
xm−1 > (x− 1)m−1. Since x ≥ 1 and m ≥ 2, this latter inequality holds, so we are done.

Solution 2 by Matt DeLong, Upland, IN.

Let X = x− 1 and Y = y − 1. Then 0 ≤ X < Y, x = X + 1, and y = Y + 1. Expanding
(X + 1)m −Xm and (Y + 1)m − Y m we see that

(X + 1)m −Xm = mXm−1 +
m(m− 1)

2
Xm−2 + · · ·+mX + 1

and
(Y + 1)m − Y m = mY m−1 +

m(m− 1)
2

Y m−2 + · · ·+mY + 1.

Since 0 ≤ X < Y , we can compare these two sums term-by-term and conclude that each
term involving Y is larger than the corresponding term involving X. Therefore,

(X + 1)m −Xm < (Y + 1)m − Y m.

Since x = X + 1 and y = Y + 1, we have shown that

xm − (x− 1)m < ym − (y − 1)m.

.

Solution 3 by José Luis Dı́az-Barrero, Barcelona, Spain.

We will argue by induction. The case when m = 2 trivially holds because
x2 − (x− 1)2 = 2x− 1 < 2y − 1 = y2 − (y − 1)2. Suppose that

xm − (x− 1)m < ym − (y − 1)m

holds and we have to see that

xm+1 − (x− 1)m+1 < ym+1 − (y − 1)m+1

holds. In fact, multiplying by m+ 1 both sides of xm − (x− 1)m < ym − (y − 1)m yields

(m+ 1)(xm − (x− 1)m) < (m+ 1)(ym − (y − 1)m)

and ∫ x

1
(m+ 1)(xm − (x− 1)m) dx <

∫ y

1
(m+ 1)(ym − (y − 1)m) dy

from which immediately follows

xm+1 − (x− 1)m+1 < ym+1 − (y − 1)m+1



Therefore, by the PMI the statement is proved and we are done.

Solution 4 by Kenneth Korbin, New York, NY.

Let m ≥ 2 be a positive integer, and let 1 ≤ x < y. Then,

(y − 1)m < ym, and
(y − 1)m−1(x− 1) < ym−1(x), and

(y − 1)m−2(x− 1)2 < ym−2(x2), and
.
.
.

y0 = 1 ≤ xm.

Adding gives[
(y − 1)m + (y − 1)m−1(x− 1) + · · ·+ 1

]
<

[
ym + ym−1x+ ym−2x2 + · · ·+ xm

]
.

Multiplying both sides by [(y − 1)− (x− 1)] = [y − x] gives

(y − 1)m − (x− 1)m < ym − xm.

Therefore
xm − (x− 1)m < ym − (y − 1)m.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; Raul A. Simon,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
various teams of students at Taylor University in Upland, IN:

Bethany Ballard, Nicole Gottier, and Jessica Heil;
Mandy Isaacson, Julia Temple, and Adrienne Ramsay;
Jeremy Erickson, Matthew Russell, and Chad Mangum;

Seth Bird, Jim Moore, and Jonathan Schrock;

and the proposers.


