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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.
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Solutions to the problems stated in this issue should be posted before
January 15, 2009

• 5032: Proposed by Kenneth Korbin, New York, NY.

Given positive acute angles A,B, C such that

tanA · tanB + tanB · tanC + tanC · tanA = 1.

Find the value of
sin A

cos B · cos C
+

sinB

cos A · cos C
+

sinC

cos A · cos B
.

• 5033: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P is on side AB and point Q is on side CD. Find the coordinates of P and Q if
area 4PCD = area 4QAB = 1

2area quadrilateral ABCD.

• 5034: Proposed by Roger Izard, Dallas, TX.

In rectangle MDCB, MB ⊥ MD. F is the midpoint of BC, and points N,E and G lie
on line segments DC, DM , and MB respectively, such that NC = GB. Let the area of
quadrilateral MGFC be A1 and let the area of quadrilateral MGFE be A2. Determine
the area of quadrilateral EDNF in terms of A1 and A2.

• 5035: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

(aabbcc)2(a−(b+c) + b−(c+a) + c−(a+b))3 ≥ 27.



• 5036: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all triples (x, y, z) of nonnegative numbers such that{
x2 + y2 + z2 = 1
3x + 3y + 3z = 5

• 5037: Ovidiu Furdui, Toledo, OH.

Let k, p be natural numbers. Prove that

1k + 3k + 5k + · · ·+ (2n + 1)k = (1 + 3 + · · ·+ (2n + 1))p

for all n ≥ 1 if and only if k = p = 1.

Solutions

• 5014: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with a = 100, b = 105, and with equal cevians AD and BE. Find
the perimeter of the triangle if AE ·BD = CE · CD.

Solution by David Stone and John Hawkins, Statesboro, GA.

The solution to this problem is more complex than expected. There are infinitely many
triangles satisfying the given conditions, governed in a sense by two types of degeneracy.
The nicest of these solutions is a right triangle with integer sides, dictated by the given
data: 100 = 5(20) and 105 = 5(21) and (20, 21, 29) is a Pythagorean triple.

One type of degeneracy is the usual: if AB = 5 or AB = 205, we have a degenerate
triangle which can be shown to satisfy the conditions of the problem.

The other type of degeneracy is problem specific: when neither cevian intersects the
interior of its targeted side, but lies along a side of the triangle. In these two situations,
the problem’s condition are also met.

Let x = length of CE so 0 ≤ x ≤ 105. The following table summarizes our results.



x = CE cos(C) C AB BD Perimeter AD = BE note

0 21
40 cos−1

(
21
40

)
100 0 305 100 1

21 194
350 cos−1

(
194
350

) √
9385 20 301.88

√
8113 2

1985
41 1 0 5 1900

41 210 2105
41 3

excluded values ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2205
41 −1 180o 205 2100

41 410 6305
41 3

105
41 (

√
178081− 400) 0 90o 145 ≈ 53.65 350 ≈ 114.775 4

105 10
21 cos−1

(
10
21

)
105 100 310 105 5





Notes:
1. Cevian BE is side BC; Cevian AD is side AB. 2. A “nice” value for x. 3.
Degenerate triangle. 4. Right triangle. 5. Cevian BE is side AB; Cevian AD is side
AC.

In short, the perimeter assumes all values in [210, 305] ∪ [310, 410].

Now we support these assertions. Consider 4ABC with cevians BE (from 6 B to side
AC) and AD ( from 6 A to side BC). Let CE = x,AE = 105− x and CD = 100−BD.
To find the perimeter, we only need to compute AB.

We have AE = 105− x, so

AE ·BD = CE · CD

(105− x)BD = x(100−BD)

100x = 105BD

so BD =
20
21

x and CD = 100 − 20
21

x .

Applying the Law of Cosines three times, we have

(1) BE2 = x2 + 1002 − 2(100)x cos C
(2) AD2 = CD2 + 1052 − 2(105)CD cos(C) and
(3) AB2 = 1002 + 1052 − 2 · 100 · 105 cos(C).

Because we must have AD = BE, we combine (1) and (2) to get

CD2 + 1052 − 2(105)CD cos(C) = x2 + 1002 − 2(100)x cos(C) or(
100− 20

21
x

)2

+ 1055 − 210
(

100− 20
21

x

)
cos(C) = x2 + 1002 − 2(100)x cos(C).

Solving for cos(C), we obtain a rational expression in x:

(4) cos(C) =
41x2 + 84000x− 22052

212 · 200(2x− 105)
.

Substituting this value into (3) we have

AB2 = 21025− 2100 · 41x2 + 84000x− 22052

212 · 200(200x− 105)
, so

(5) AB2 =
5
21

41x2 + 92610x + 4410000
105− 2x

.

Thus we can then calculate AB and the perimeter

P = 205 +

√
5
21

41x2 + 92610x + 4410000
105− 2x

.



The graphs of cos(C) and of AB have vertical asymptotes at x =
105
2

, in the center of

our interval [0, 105]. Other than an interval bracketing this singularity, each value of x
produces a solution to the problem.

We explore the endpoints and the “degenerate” solutions, obtaining the values exhibited
in the table above.

I. x = 0: That is CE = 0, so E = C and the cevian from vertex B is actually the side
BC. Therefore, BE = BC = 100. Hence, the condition

AE ·BD = CE · CD becomes
AC ·BD = 0 · CD or
100 ·BD = 0.

Thus BD = 0, so D = B and the cevian from vertex A is actually the side AB;
AD = AB.
Computing by (4) and (5): cos(C) =

21
40

and AB = 100. Thus
AD = AB = 100 = BC = BE, so this triangle satisfies the required conditions. Its
perimeter is 305.

II. x = 105: gives a similar result, a (105, 105, 100) triangle with cevians lying along the
sides and P = 310.

III. The degenerate case C = 0 occurs when cos(C) = 1. By (4), this happens when

x =
1985
41

. Also, C = 0 if and only if AB = 5, which is the smallest possible value (by

the Triangle Inequality).

IV. The degenerate case C = π occurs when cos(C) = −1. By (4) this happens when

x =
2205
41

. Also C = π if and only if AB = 205, which is the largest possible value (by

the Triangle Inequality).

The values of x appearing in III and IV are the endpoints of the interval of excluded

values bracketing
105
2

.

V. The degenerate case C = π/2 occurs when cos(C) = 0. By (4), this happens when x

takes on the ugly irrational
105
41

(√
178081− 400

)
. In this case, AB = 145 and our

triangle is the (20, 21, 29) Pythagorean triangle scaled up by a factor of 5. The common

value of the cevians is AD = BE =
5
41

√
49788121− 352800

√
178081 ≈ 114.775.

VI. Because BD =
20
21

x, some nice results occur when x is a multiple of 21. The table
shows the values for x = 21.

Excel has produced many values of these triangles, letting x range from 0 to 105, except

for the excluded interval
(

1985
41

,
2205
41

)
, but in summary,

– the perimeter assumes all values in [210, 305] ∪ [310, 410].

– side AB assumes all values in [5, 100] ∪ [105, 205].

– 6 C assumes all values in



[
0, cos−1

(
21
40

)]
∪

[
cos−1

(
10
21

, 180o
)]

= [0, 58.33o] ∪ [61.56o, 180o].

– The common cevians achieve the values[
2105
41

, 100
]
∪

[
105,

6305
41

]
≈ [51.34, 100] ∪ [105, 153.78].

Our final comment: AB assumes all integer values in [5, 100] ∪ [105, 205], so the right
triangle described above is not the only solution with all sides integral. For any integer
AB in [5, 100] ∪ [105, 205], we can use (5) to determine the appropriate value of x, C,
etc. Of course, this raises another question: are any of these triangles Heronian?

Also solved by the proposer.

5015: Proposed by Kenneth Korbin, New York, NY.

Part I: Find the value of
10∑

x=1

Arcsin
(

4x2

4x4 + 1

)
.

Part II: Find the value of ∞∑
x=1

Arcsin
(

4x2

4x4 + 1

)
.

Solution by David C. Wilson, Winston-Salem, N.C.

First, let’s look for a pattern.

x = 1 : Arcsin(
4
5
).

x = 2 : Arcsin(
4
5
) + Arcsin(

16
65

) = Arcsin(
12
13

).

Let θ = Arcsin(
4
5
) and φ = Arcsin(

16
65

).

sin θ =
4
5

sinφ =
16
65

cos θ =
3
5

cos φ =
63
65

sin(θ + φ) = sin θ cos φ + cos θ sinφ = (
4
5
)(

63
65

) + (
3
5
)(

16
65

) =
300
325

=
12
13

= Arcsin(
12
13

).

x = 3 : Arcsin(
12
13

) + Arcsin(
36
325

) = Arcsin(
24
25

).

Let θ = Arcsin(
12
13

) and φ = Arcsin(
36
325

).

sin θ =
12
13

sinφ =
36
325

cos θ =
5
13

cos φ =
323
325

sin(θ + φ) = (
12
13

)(
323
325

) + (
5
13

)(
36
325

) =
4056
4225

=
24
25

= Arcsin(
24
25

).

x = 4 : Arcsin(
24
25

) + Arcsin(
64

1025
) = Arcsin(

40
41

).



Let θ = Arcsin(
24
25

) and φ = Arcsin(
64

1025
).

sin θ =
24
25

sinφ =
64

1025

cos θ =
7
25

cos φ =
1023
1025

sin(θ + φ) = (
24
25

)(
1023
1025

) + (
7
25

)(
64

1025
) =

25000
25625

=
40
41

= Arcsin(
40
41

).

Therefore, the conjecture is
n∑

x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)
.

Proof is by induction.

1) For n = 1, we obtain Arcsin(
4
5
) = Arcsin(

4
5
).

2) Assume true for n; i.e.,

n∑
x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)
.

3) For n + 1, we have

n+1∑
x=1

Arcsin
(

4x2

4x4 + 1

)
=

n∑
x=1

Arcsin
(

4x2

4x4 + 1

)
+ Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
=

n∑
x=1

Arcsin
(

2n2 + 2n

2n2 + 2n + 1

)
+ Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
.

Let θ = Arcsin
(

2n2 + 2n
2n2 + 2n + 1

)
and φ = Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
.

sin θ =
2n2 + 2n

2n2 + 2n + 1
sinφ =

4(n + 1)2

4(n + 1)4 + 1

cos θ =
2n + 1

2n2 + 2n + 1
cos φ =

4(n + 1)4 − 1
4(n + 1)4 + 1

sin(θ + φ) = sin θ cos φ + cos θ sinφ

=
(

2n2 + 2n

2n2 + 2n + 1

)[
4(n + 1)4 − 1
4(n + 1)4 + 1

]
+

(
2n + 1

2n2 + 2n + 1

)[
4(n + 1)2

4(n + 1)4 + 1

]
=

8n6 + 40n5 + 80n4 + 88n3 + 58n2 + 22n + 4
(2n2 + 2n + 1)(2n2 + 6n + 5)(2n2 + 2n + 1)

=
(2n2 + 2n + 1)2(2n2 + 6n + 4)
(2n2 + 2n + 1)2(2n2 + 6n + 5)

=
2n2 + 6n + 4
2n2 + 6n + 5

=
2(n + 1)2 + 2(n + 1)

2(n + 1)2 + 2(n + 1) + 1
.

Thus
n+1∑
x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

[
2(n + 1)2 + 2(n + 1)

2(n + 1)2 + 2(n + 1) + 1

]
and this proves the

conjecture.



Part I:
10∑

x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

[
220
221

]
.

Part II:
∞∑

x=1

Arcsin
(

4x2

4x4 + 1

)
=

lim
n →∞

n∑
x=1

Arcsin
[

4x2

4x4 + 1

]

=
lim

n →∞
Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)

= Arcsin
[

lim
n →∞

2n2 + 2n

2n2 + 2n + 1

]
= Arcsin(1) =

π

2
.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Roger
Zarnowski (jointly), San Angelo, TX; Brian D. Beasley, Clinton, SC;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Boris Rays, Chesapeake, VA; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

5016: Proposed by John Nord, Spokane, WA.

Locate a point (p, q) in the Cartesian plane with integral values, such that for any line
through (p, q) expressed in the general form ax + by = c, the coefficients a, b, c form an
arithmetic progression.

Solution 1 by Nate Wynn (student at Saint George’s School), Spokane, WA.

As {a, b, c} is an arithmetic progression, b can be written as a + n and c can be written
as a + 2n. Then using a series of two equations:{

ap + (a + n)q =a+2n
tp + (t + u)q =t+2u

Solving this system gives

(tn− au)q = 2tn− 2au, thus q = 2 .

Placing this value into the first equation and solving gives

ap + 2a + 2n = a + 2n
a(p + 1) = 0

p = −1.

Therefore the point is (−1, 2).

Solution 2 by Eric Malm (graduate student at Stanford University, and an
alumnus of Saint George’s School in Spokane), Stanford, CA.

The only such point is (−1, 2).
Suppose that each line through (p, q) is of the form ax + by = c with (a, b, c) an
arithmetic progression. Then c = 2b− a. Taking a = 0 yields the line by = 2b or y = 2,
so q = 2. Taking a 6= 0, p= must satisfy ap + 2b = 2b− a, so p = −1.



Conversely, any line through (p, q) = (−1, 2) must be of the form
ax + by = ap + bq = 2b− a, in which case the coefficients (a, b, 2b− a) form an arithmetic
progression.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Rachel Demeo,
Matthew Hussey, Allison Reece, and Brian Tencher (jointly, students at
Talyor University, Upland, IN); Michael N. Fried, Kibbutz Revivim, Israel;
Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; Raul A. Simon,
Chile; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

5017: Proposed by M.N. Deshpande, Nagpur, India.

Let ABC be a triangle such that each angle is less than 900. Show that

a

c · sinB
+

1
tanA

=
b

a · sinC
+

1
tanB

=
c

b · sin A
+

1
tanC

where a = l(BC), b = l(AC), and c = l(AB).

Solution by John Boncek, Montgomery, AL.

From the Law of Sines:

a sinB = b sinA → sinB =
b sinA

a

b sinC = c sinB → sinC =
c sinB

b

c sinA = a sinC → sinA =
a sinC

c
,

and from the Law of Cosines, we have

bc cos A =
1
2
(b2 + c2 − a2)

ac cos B =
1
2
(a2 + c2 − b2)

ab cos C =
1
2
(a2 + b2 − c2).

Thus,

a

c sinB
+

1
tanA

=
a2

bc sinA
+

cos A

sinA

=
a2 + bc cos A

bc sinA

=
a2 + b2 + c2

2bc sinA
,

b

a sinC
+

1
tanB

=
b2

ac sin B
+

cos B

sinB



=
b2 + ac cos B

ac sinB

=
a2 + b2 + c2

2ac sinB

=
a2 + b2 + c2

2c(a sinB)

=
a2 + b2 + c2

2bc sinA
,

and

c

b sin A
+

1
tanC

=
c2

ab sinC
+

cos C

sinC

=
c2 + ab cos C

ab sinC

=
a2 + b2 + c2

2ab sinC

=
a2 + b2 + c2

2b(a sinC)

=
a2 + b2 + c2

2bc sinA
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Michael C. Faleski, University Center, MI; Paul
M. Harms, North Newton, KS; Kenneth Korbin, New York, NY; David E.
Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

5018: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Write the polynomial x5020 + x1004 + 1 as a product of two polynomials with integer
coefficients.

Solution by Kee-Wai Lau, Hong Kong, China.

Clearly the polynomial y5 + y + 1 has no linear factor with integer coefficients.
We suppose that for some integers a, b, c, d, e

y5 + y + 1 = (y3 + ay2 + by + c)(y2 + dy + e)

= y5 + (a + d)y4 + (b + e + ad)y3 + (ae + bd + c)y2 + (be + cd)y + ce.

Hence
a + d = b + e + ad = ae + bd + c = 0, be + cd = ce = 1.

It is easy to check that a = −1, b = 0, c = 1, d = 1, e = 1 so that

y5 + y + 1 = (y3 − y2 + 1)(y2 + y + 1)



and
x5020 + x1004 + 1 =

(
x3012 − x2008 + 1

)(
x2008 + x1004 + 1

)
.

Comment by Kenneth Korbin, New York, NY. Note that (y2 + y + 1) is a factor
of (yN + y + 1) for all N congruent to 2(mod3) with N > 1.

Also solved by Landon Anspach, Nicki Reishus, Jessi Byl, and Laura
Schindler (jointly, students at Taylor University), Upland, IN; Brian D.
Beasley, Clinton, SC; John Boncek, Montgomery, AL; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie, San Angelo, TX; Matt DeLong,
Upland, IN; Paul M. Harms, North Newton, KS; Matthew Hussey Rachel
DeMeo, Brian Tencher, and Allison Reece (jointly, students at Taylor
University), Upland IN; Kenneth Korbin, New York, NY; N. J. Kuenzi,
Oshkosh, WI; Carl Libis, Kingston, RI; Eric Malm, Stanford, CA; David E.
Manes, Oneonta, NY; John Nord, Spokane, WA; Harry Sedinger, St.
Bonaventure, NY; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.

5019: Michael Brozinsky, Central Islip, NY.

In a horse race with 10 horses the horse with the number one on its saddle is referred to
as the number one horse, and so on for the other numbers. The outcome of the race
showed the number one horse did not finish first, the number two horse did not finish
second, the number three horse did not finish third and the number four horse did not
finish fourth. However, the number five horse did finish fifth. How many possible orders
of finish are there for the ten horses assuming no ties?

Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

There are 229,080 possible orders of finish.
For k = 0, 1, 2, 3, 4 we perform the following calculations:
a) Choose the k horses numbered 1 through 4 which finish in places 1 through 4.
b) Arrange the k horses in places 1 through 4 and count the permutations with no
“fixed points.”
c) Arrange the remaining (4− k) horses numbered 1 through 4 in places 6 through 10.
d) Arrange the 5 horses numbered 6 through 10 in the remaining 5 places.

Case 1: K=0.

4C0 · 5 · 4 · 3 · 2 · 5! = 120 · 5!

Case 2: K=1.

4C1 · 3 · 5 · 4 · 3 · 5! = 720 · 5!

Case 3: K=2.

4C2 · 7 · 5 · 4 · 5! = 840 · 5!

Case 4: K=3.

4C3 · 11 · 5 · 5! = 220 · 5!

Case 5: K=4.

4C4 · 9 · 5! = 9 · 5!



Solution 2 by Matt DeLong, Upland, IN.

We must count the total number of ways that 10 horses can be put in order subject to
the given conditions. Since the number five horse always finishes fifth, we are essentially
only counting the total number of way that 9 horses can be put in order subject to the
other given conditions. Thus there are at most 9! possibilities.

However, this over counts, since it doesn’t exclude the orderings with the number one
horse finishing first, etc. By considering the number of ways to order the other eight
horses, we can see that there are 8! ways in which the number one horse does finish first.
Likewise, there are 8! ways in which each of the horses numbered two through four
finish in the position corresponding to its saddle number. By eliminating these from
consideration, we see that there are at least 9!-4(8!) possibilities.

However, this under counts, since we twice removed orderings in which both horse one
finished first and horse two finished second etc. There are 6(7!) such orderings, since
there are 6 ways to choose 2 horses from among 4, and once those are chosen the other 7
horses must be ordered. We can add these back in, but then we will again be over
counting. We would need to subtract out those orderings in which three of the first four
horses finish according to their saddle numbers. There are 4(6!) of these, since there are
4 ways to choose 3 horses from among 4, and once those are chosen the other 6 horses
must be ordered. Finally, we would then need to add back in the number of orderings in
which all four horses numbered one through four finish according to their saddle
numbers. There are 5! such orderings.

In sum, we are applying the inclusion-exclusion principle, and the total that we are
interested in is 9!− 4(8!) + 6(7!)− 4(6!) + 5! = 229, 080.

Also solved by Michael C. Faleski, University Center, MI; Paul M. Harms,
North Newton, KS; Nate Kirsch and Isaac Bryan (students at Taylor
University), Upland, IN; N. J. Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong
Kong, China; Carl Libis, Kingston, RI; David E. Manes, Oneonta, NY;
Harry Sedinger, St. Bonaventure, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.


