
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2008

• 5026: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P has coordinates (x, 3). Find the value of x if

area 4PAD + area 4PBC = area 4PAB + area 4PCD.

• 5027: Proposed by Kenneth Korbin, New York, NY.

Find the x and y intercepts of

y = x7 + x6 + x4 + x3 + 1.

• 5028: Proposed by Michael Brozinsky, Central Islip, NY .

If the ratio of the area of the square inscribed in an isosceles triangle with one side on the
base to the area of the triangle uniquely determine the base angles, find the base angles.

• 5029: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x > 1 be a non-integer number. Prove that(
x + {x}

[x]
− [x]

x + {x}

)
+

(
x + [x]
{x}

− {x}
x + [x]

)
>

9
2
,

where [x] and {x} represents the entire and fractional part of x.



• 5030: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let A1, A2, · · · , An ∈ M2(C), (n ≥ 2 ), be the solutions of the equation Xn =
(

2 1
6 3

)
.

Prove that
n∑

k=1

Tr(Ak) = 0.

• 5031: Ovidiu Furdui, Toledo, OH.

Let x be a real number. Find the sum
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solutions

• 5008: Proposed by Kenneth Korbin, New York, NY.

Given isosceles trapezoid ABCD with 6 ABD = 60o, and with legs BC = AD = 31.
Find the perimeter of the trapezoid if each of the bases has positive integer length with
AB > CD.

Solution by David C. Wilson, Winston-Salem, N.C.

Let the side lengths of AB= x, BC=31, CD= y, DA=31, and BD=z.
By the law of cosines

312 = x2 + z2 − 2xz cos 60o and
312 = y2 + z2 − 2yz cos 60o =⇒
961 = z2 + x2 − xz and
961 = y2 + z2 − yz =⇒

0 = (y2 − x2)− yz + xz =⇒
0 = (y − x)(y + x)− z(y − x) = (y − x)(y + x− z) =⇒

y − x = 0 or y + x− z = 0.

But AB > CD =⇒ x > y =⇒ y − x 6= 0. Thus, y + x− z = 0 =⇒ z = x + y. Thus,

961 = (x + y)2 + x2 − x(x + y) = x2 + 2xy + y2 + x2 − x2 − xy = x2 + xy + y2.

Consider x = 30, 29, · · · , 18. After trial and error with a calculator, when x = 24 then
y = 11 =⇒ z = 35 and these check. Thus, the perimeter of ABCD is 35 + 31 + 31 = 97.

Also solved by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Lauren Christenson,
Taylor Brennan, Ross Hayden, and Meaghan Haynes (jointly; students at
Taylor University), Upland, IN; Charles McCracken, Dayton, OH; Amanda
Miller (student, St.George’s School), Spokane, WA; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5009: Proposed by Kenneth Korbin, New York, NY.



Given equilateral triangle ABC with a cevian CD such that AD and BD have integer
lengths. Find the side of the triangle AB if CD = 1729 and if (AB, 1729) = 1.

Solution by David Stone and John Hawkins, Statesboro, GA.

The answer: AB = 1775, 1840, 1961, 1984 .
Let x =AD and y =BD, with s = x + y = the side length AB. Applying the Law of
cosines in each “subtriangle,” we have

17292 = s2 + x2 − 2sx cos
π

3
= s2 + x2 − sx and

17292 = s2 + y2 − 2sy cos
π

3
= s2 + y2 − sy.

After adding equations and doing some algebra, we obtain the equation

y2 + xy + x2 = 17292.

Solving for y by the Quadratic Formula, we obtain

y =
−x±

√
4 · 17292 − 3x2

2
=
−x± z

2

where z =
√

4 · 17292 − 3x2 must be an integer.

Because y must be positive, we have to choose y =
−x + z

2
.

Now we let Excel calculate, trying x = 1, 2, · · · , 1729. We have 13 “solutions”, but only
four of them have s = AB relatively prime to 1729; hence only equilateral triangles of
side length AB = 1775, 1840, 1961, and 1984 admit the cevian described in the problem.

x z =
√

345862 − 3x2 y = (−x + z)/2 s = x + y gcd(1729, s)

96 3454 1679 1775 1
209 3439 1615 1824 19
249 3431 1591 1840 1
299 3419 1560 1859 13
361 3401 1520 1881 19
455 3367 1456 1911 91
504 3346 1421 1925 7
651 3269 1309 1960 7
656 3266 1305 1961 1
741 3211 1235 1976 247
799 3169 1185 1984 1
845 3133 1144 1989 13
931 3059 1064 1995 133


Note that we could let x run further, but the problem is symmetric in x and y, so we’d
just recover these same solutions with x and y interchanged.

Comment by Kenneth Korbin, the proposer.

In the problem CD = (7)(13)(19) and there were exactly 4 possible answers. If CD
would have been equal to (7)(13)(19)(31)then there would have been exactly 8 possible
solutions.



Similarly, there are exactly 4 primitive Pythagorean triangles with hypotenuse
(5)(13)(17) and there exactly 8 primitive Pythagorean triangles with hypotenuse
(5)(13)(17)(29). And so on.

Also solved by Charles McCracken, Dayton, OH; David E. Manes, Oneonta,
NY; David C. Wilson, Winston-Salem, NC, and the proposer.

• 5010: Proposed by José Gibergans-Báguena and José Luis Dı́az-Barrero, Barcelona,
Spain.

Let α, β, and γ be real numbers such that 0 < α ≤ β ≤ γ < π/2. Prove that

sin 2α + sin 2β + sin 2γ

(sinα + sin β + sin γ)(cos α + cos β + cos γ)
≤ 2

3
.

Solution by Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy.

Proof After some simple simplification the inequality is

sin 2α + sin 2β + sin 2γ ≤ sin(α + β) + sin(β + γ) + sin(γ + α)

The concavity of sin(x) in the interval [0, π] allows us to write
sin(x + y) ≥ (sin(2x) + sin(2y))/2 thus

sin(α + β) + sin(β + γ) + sin(γ + α) ≥ sin 2α + sin 2β + sin 2γ

concluding the proof.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeak, VA, and the proposers.

• 5011: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = a1 = 2 and for n ≥ 2, an = 2an−1−
1
2
an−2.

Prove that
2pap+q + aq−p = 2papaq

where p ≤ q are nonnegative integers.

Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

Solving the characteristic equation

r2 − 2r +
1
2

= 0

and using the intitial conditions, we obtain the solution

an =
(

2 +
√

2
2

)n

+
(

2−
√

2
2

)n

.

Note that

2pap+q =
(2 +

√
2)p+q + (2−

√
2)p+q

2q
and



aq−p =
(2 +

√
2)q−p + (2−

√
2)q−p

2q−p
while

2papaq =
(2 +

√
2)p+q + (2−

√
2)p+q + 2p[(2 +

√
2)q−p + (2−

√
2)q−p]

2q

= 2pap+q + aq−p.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

By induction, we obtain readily that for n ≥ 0,

an =
(

2 +
√

2
2

)n

+
(

2−
√

2
2

)n

.

Hence

apaq =
((

2 +
√

2
2

)p

+
(

2−
√

2
2

)p)((
2 +

√
2

2

)q

+
(

2−
√

2
2

)q)

=
((

2 +
√

2
2

)p+q

+
(

2−
√

2
2

)p+q)
+

(
2 +

√
2

2

)p(2−
√

2
2

)q

+
(

2−
√

2
2

)p(2 +
√

2
2

)q

= ap+q +
(

2 +
√

2
2

)p(2−
√

2
2

)q((
2−

√
2

2

)q−p

+
(

2 +
√

2
2

)q)

= ap+q +
1
2p

aq−p,

and the identity of the problem follows.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Jose Hernández Santiago
(student, UTM), Oaxaca, México; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5012: Richard L. Francis, Cape Girardeau, MO.

Is the incenter of a triangle the same as the incenter of its Morley triangle?

Solution 1 by Kenneth Korbin, New York, NY.

The incenters are not the same unless the triangle is equilateral. For example, the
isosceles right triangle with vertices at (−6, 0), (6, 0) and (0, 6) has its incenter at
(0, 6

√
2− 6).

Its Morely triangle has vertices at (0, 12− 6
√

3), (−6 + 3
√

3, 3), and (6− 3
√

3, 3) and has
its incenter at (0, 6− 2

√
3).

Solution 2 by Kee-Wai Lau, Hong-Kong, China.

We show that the incenter I of a triangle ABC is the same as the incenter IM of its
Morley triangle if and only if ABC is equilateral.



In homogeneous trilinear coordinates, I is 1 : 1 : 1 and IM is

cos
(

A

3

)
+2 cos

(
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3

)
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(
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: cos
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Clearly if ABC is equilateral, then I = IM . Now suppose that I = IM so that

cos
(

A

3

)
+ 2 cos

(
B

3

)
cos

(
C

3

)
= cos

(
B

3

)
+ 2 cos

(
C

3

)
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(
A

3

)
(1)

cos
(

B

3

)
+ 2 cos

(
C

3

)
cos

(
A

3

)
= cos

(
C

3

)
+ 2 cos

(
A

3

)
cos

(
B

3

)
. (2)

From (1) we obtain

(
cos

(
A

3

)
− cos

(
B

3

))(
1− 2 cos

(
C

3

))
= 0.

Since 0 < C < π, so

1− 2 cos
(

C

3

)
< 0.

Thus,

cos
(

A

3

)
= cos

(
B

3

)
or A = B.

Similarly from (2) we obtain B = C. It follows that ABC is equilateral and this
completes the solution.

Also solved by David E. Manes, Oneonta, NY, and the proposer.

• 5013: Proposed by Ovidiu Furdui, Toledo, OH.

Let k ≥ 2 be a natural number. Find the sum

∑
n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
.

Solution by Kee-Wai Lau, Hong Kong, China.

For positive integers M1,M2, · · · ,Mk, we have

M1∑
n1=1

M2∑
n2=1

· · ·
Mk∑

nk=1

(−1)n1+n2+···+nk

n1 + n2 · · ·+ nk

=
M1∑

n1=1

M2∑
n2=1

· · ·
Mk∑

nk=1

(−1)n1+n2+···+nk

∫ 1

0
xn1+n2+···+nk−1dx

=
∫ 1

0

( M1∑
n1=1

(−1)n1xn1

)( M2∑
n2=1

(−1)n2xn2

)
· · ·

( Mk∑
nk=1

(−1)nkxnk

)
x−1dx

=
∫ 1

0

(−x(1− (−x)M1)
1 + x

)(−x(1− (−x)M2)
1 + x

)(−x(1− (−x)Mk)
1 + x

)
x−1dx



= (−1)k
∫ 1

0

xk−1(1− (−x)M1)(1− (−x)M2) · · · (1− (−x)Mk))
(1 + x)k

dx

= (−1)k
∫ 1

0

xk−1

(1 + x)k
dx + O

( ∫ 1

0
xM1 + xM2 + · · ·+ xMk

)
dx

= (−1)k
∫ 1

0

xk−1

(1 + x)k
dx + O

(
1

M1
+

1
M2

+ · · ·+ 1
Mk

)

as M1,M2, · · · ,Mk tend to infinity. Here the constants implied by the O′s depend at
most on k.
It follows that the sum of the problem equals

(−1)k
∫ 1

0

xk−1

1 + x)k
dx = (−1)kIk, say.

Integrating by parts, we have for k ≥ 3,

Ik =
1

1− k

∫ 1

0
xk−1d((1 + x)1−k)

=
−1

(k − 1)2k−1
+ Ik−1.

Since I2 = ln 2− 1
2
, we obtain readily by induction that for k ≥ 2.

Ik = ln 2−
k∑

j=2

1
(j − 1)2j−1

.

we now conclude that for k ≥ 2,

∑
n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
= (−1)k

(
ln 2−

k−1∑
j=1

1
j(2j)

)
.

Also solved by Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy; Paul M. Harms, North Newton, KS; Boris Rays,
Chesapeake, VA, and the proposer.


