
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2007

• 4978: Proposed by Kenneth Korbin, New York, NY.
Given equilateral triangle ABC with side AB = 9 and with cevian CD. Find the length
of AD if 4ADC can be inscribed in a circle with diameter equal to 10.

• 4979: Proposed by Kenneth Korbin, New York, NY.
Part I: Find two pairs of positive numbers (x, y) such that

x√
1 + y −

√
1− y

=
√

65
2

,

where x is an integer.

Part II: Find four pairs of positive numbers (x, y) such that

x√
1 + y −

√
1− y

=
65
2

,

where x is an integer.

• 4980: J.P. Shiwalkar and M.N. Deshpande, Nagpur, India.
An unbiased coin is sequentially tossed until (r + 1) heads are obtained. The resulting
sequence of heads (H) and tails (T) is observed in a linear array. Let the random variable
X denote the number of double heads (HH’s, where overlapping is allowed) in the resulting
sequence. For example: Let r = 6 so the unbiased coin is tossed till 7 heads are obtained
and suppose the resulting sequence of H’s and T’s is as follows:

HHTTTHTTTTHHHTTH



Now in the above sequence, there are three double heads (HH’s) at toss number (1, 2), (11, 12)
and (12, 13). So the random variable X takes the value 3 for the above observed sequence.
In general, what is the expected value of X?

• 4981: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

5x + 3x + 2x − 28x + 18 = 0.

• 4982: Proposed by Juan José Egozcue and José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

1
n + 1

 ∑
1≤i1≤n+1

1
i1

+
∑

1≤i1<i2≤n+1

1
i1i2

+ · · ·+
∑

1≤i1<...<in≤n+1

1
i1i2 . . . in

 .

• 4983: Proposed by Ovidiu Furdui, Kalamazoo, MI.
Let k be a positive integer. Evaluate

1∫
0

{
k

x

}
dx,

where {a} is the fractional part of a.

Solutions

• 4948: Proposed by Kenneth Korbin, New York, NY.
The sides of a triangle have lengths x1, x2, and x3 respectively. Find the area of the
triangle if

(x− x1)(x− x2)(x− x3) = x3 − 12x2 + 47x− 60.

Solution by Jahangeer Kholdi and Robert Anderson (jointly), Portsmouth,
VA.

The given equation implies that

x1 + x2 + x3 = 12
x1x2 + x1x3 + x2x3 = 47

x1x2x3 = 60

from which by inspection, x1 = 3, x2 = 4 and x3 = 5.

Editor’s comment: At the time this problem was sent to the technical editor, the
Journal was in a state of transition. A new editor- in-chief was coming on board and there
was some question as to the future of the problem solving column. As such, I sent an
advanced copy of the problem solving column to many of the regular contributors. In that
advanced copy this polynomial was listed as (x−x1)(x−x2)(x−x3) = x3−12x2+47x−59,
and not with the constant term as listed above. Well, many of those who sent in solutions
solved the problem in one of two ways: as above, obtaining the perimeter x1 + x2 + x3 =
12; and then finding the area with Heron’s formula. A =

√
6(6− x1)(6− x2)(6− x3).



Substituting 6 into (x−x1)(x−x2)(x−x3) = x3−12x2+47x−59 gives (6−x1)(6−x2)(6−
x3) = 7. So, A =

√
(6)(7) =

√
42. But others noted that the equation x3−12x2+47x−59

has only one real root, and this gives the impossible situation of having a triangle with
the lengths of two of its sides being complex numbers. The intention of the problem was
that a solution should exist, and so the version of this problem that was posted on the
internet had a constant term of -60. In the end I counted a solution as being correct if
the solution path was correct, with special kudos going to those who recognized that the
advanced copy version of this problem was not solvable.

Also solved by Brian D. Beasley, Clinton, SC; Mark Cassell (student, St.
George’s School), Spokane, WA; Pat Costello, Richmond, KY; Elsie M. Camp-
bell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; José
Luis Dı́az-Barrero, Barcelona, Spain; Grant Evans (student, St. George’s
School), Spokane, WA; Paul M. Harms, North Newton, KS; Peter E. Liley,
Lafayette, IN; David E. Manes, Oneonta, NY; Charles McCracken (two solu-
tions as outlined above), Dayton, OH; John Nord (two solutions as outlined
above), Spokane, WA; Boris Rays, Chesapeake, VA; R. P. Sealy, Sackville,
New Brunswick, Canada; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 4949: Proposed by Kenneth Korbin, New York, NY.
A convex pentagon is inscribed in a circle with diameter d. Find positive integers a, b,
and d if the sides of the pentagon have lengths a, a, a, b, and b respectively and if a > b.
Express the area of the pentagon in terms of a, b, and d.

Solution by David Stone and John Hawkins, Statesboro, GA.

Note, that any solution can be scaled upward by any integer factor to produce infinitely
many similar solutions.

We have three isosceles triangles with base a and equal sides
d

2
, and two isosceles triangles

with base b and equal sides
d

2
. Let α be the measure of the angle opposite base a, and let

β be the measure of the angle opposite the base b. Then 3α + 2β = 2π.

For each triangle with base a, the perimeter is d + a, and Heron’s formula gives

An =

√(
d + a

2

)(
d− a

2

)(
a

2

)
=

a

4

√
d2 − a2.

We can also use the Law of Cosines to express the cosine of α as cos α =
a2 − 2

(
d

2

)2

−2
(

d

2

)2 =
d2 − 2a2

d2
.

From the Pythagorean Identity, it follows that

sinα =

√
1−

(
d2 − 2a2

d2

)2

=
1
d2

√
d4 − d4 + 4a2d2 − 4a4 =

2a

d2

√
d2 − a2.

Because the triangle is isosceles, with equal sides forming the angle α, an altitude through

angle α divides the triangle into two equal right triangles. Therefore, cos
α

2
=

1
d

√
d2 − a2

and sin
α

2
=

a

d
.



For the triangles with base b, we can similarly obtain Ab =
b

4

√
d2 − b2 and cos β =

d2 − 2b2

d2
.

The area for the convex polygon is then

Apolygon = 3Aa + 2Ab

=
3a

4

√
d2 − a2 +

b

2

√
d2 − b2

=
1
4

(
3a
√

d2 − a2 + 2b
√

d2 − b2

)
in terms of a, b, and d.

Solving 3α + 2β = 2π, we find β =
2π − 3α

2
= π − 3α

2
.

Therefore,

cos β = cos
(

π − 3α

2

)
= − cos

(
3α

2

)
= − cos

(
α +

α

2

)
= − cos

α

2
cos α + sin

α

2
sinα.

Replacing the trig functions in this formula with the values computed above gives

d2 − 2b2

d2
= −

√
d2 − a2

d

(
d2 − 2a2

d2

)
+

a

d

(
2a

d2

)√
d2 − a2 =

√
d2 − a2

d

(
4a2 − d2

)
.

Solving for b2 in terms of a and d gives

b2 =
d3 −

√
d2 − a2

(
4a2 − d2

)
2d

, or b =

√√√√√d3 −
√

d2 − a2

(
4a2 − d2

)
2d

.

Note also that (1) 2b2 = d2 −

√
d2 − a2

(
4a2 − d2

)
d

.

We can use this expression for b to compute the area of the polygon solely in terms of a
and d.

Apolygon =
3a

4

√
d2 − a2 +

b

2

√
d2 − b2 =

3a

4

√
d2 − a2 +

a|3d2 − 4a2|
4d

.

To find specific values which satisfy the problem, we use equation (1).

If d2 − a2 = m2, then (1) becomes (2) 2b2 = d2 −
m

(
4a2 − d2

)
d

= d2 −
m

(
3a2 −m2

)
d

.

Then(a,m, d) is a Pythagorean triple, and thus a scalar multiple of a primitive Pythagorean
triple (A,B, C). Using the standard technique, this triple is generated by two parameters,
s and t: 

A = 2st
B = s2 − t2

C = s2 + t2
,



where s > t, s and t are relatively prime and have opposite parity. There are the two
possibilities, where k is some scalar:

a = kA = 2kst, m = kB = k

(
s2 − t2

)
, and d = kC = k

(
s2 + t2

)
or

m = kA = 2kst, a = kB = k

(
s2 − t2

)
, and d = kC = d

(
s2 + t2

)
.

We’ll find solutions satisfying the first set of conditions, recognizing that this will probably
not produce all solutions of the problem. Substituting these in (2),we find

2b2 = d2 − m(3a2 −m2)
d

= k

(
s2 + t2

)2

−
k(s2 − t2)

(
3(2ks)2 − k2

(
s2 − t2

)2)
k(s2 + t2)

.

Simplifying, we find that b2 =
k2s2

(
s2 − 3t2

)2

s2 + t2
, and we want this b to be an integer.

The simplest possible choice is to let k2 = s2 + t2 (so that (s, t, k) is itself a Pythagorean

triple); this forces b = s

(
s2 − 3t2

)
. We then have

a = 2kst = 2st
√

s2 + t2, m =
√

s2 + t2
(

s2−t2
)

, d = k(s2+t2) = k3 =
(

s2+t2
)3/2

and

b = s

(
s2 − 3t2

)
.

That is, if (s, t, k) is a Pythagorean triple with s2 − 3t2 > 0, we have
a = 2kst

b = s

(
s2 − 3t2

)
d = k3.

The restriction that a > b imposes further conditions on s and t (roughly, s < 3.08t).

Some results, due to Excel:

s t k b a d Area
12 5 13 828 1, 560 2, 197 1, 024, 576
15 8 17 495 4, 080 4, 913 3, 396, 630
35 12 37 27, 755 31, 080 50, 653 604, 785, 405
80 39 89 146, 960 555, 360 704, 969 85, 620, 163, 980
140 51 149 1, 651, 580 2, 127, 720 3, 307, 949 2, 530, 718, 023, 785
117 44 125 922, 077 1, 287, 000 1, 953, 125 829, 590, 714, 707
168 95 193 193, 032 6, 160, 560 7, 189, 057 6, 053, 649, 964, 950
208 105 233 2, 119, 312 10, 177, 440 12, 649, 337 25, 719, 674, 553, 300
187 84 205 2, 580, 787 6, 440, 280 8, 615, 125 14, 516, 270, 565, 027
252 115 277 6, 004, 908 16, 054, 920 21, 253, 933 86, 507, 377, 177, 725
209 120 241 100, 529 12, 088, 560 13, 997, 521 21, 678, 178, 927, 350
247 96 265 8, 240, 167 12, 567, 360 18, 609, 625 77, 495, 769, 561, 288
352 135 377 24, 368, 608 35, 830, 080 53, 582, 633 647, 598, 434, 135, 400

Also solved by the proposer



• 4950: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers such that abc = 1. Prove that

a + b
4
√

a3 + 4
√

b3
+

b + c
4
√

b3 + 4
√

c3
+

c + a
4
√

c3 + 4
√

a3
≥ 3.

Solution by Kee-Wai Lau, Hong Kong, China

Since

a + b =
( 4
√

a + 4
√

b)( 4
√

a3 + 4
√

b3) + ( 4
√

a− 4
√

b)2(
√

a + 4
√

a 4
√

b +
√

b)
2

≥ ( 4
√

a + 4
√

b)( 4
√

a3 + 4
√

b3)
2

with similar results for b+c and c+a, so by the arithmetic mean-geometric mean inequality,
we have

a + b
4
√

a3 + 4
√

b3
+

b + c
4
√

b3 + 4
√

c3
+

c + a
4
√

c3 + 4
√

a3

≥ 4
√

a + 4
√

b + 4
√

c

≥ 3 12
√

abc

= 3 as required.

Also solved by Michael Brozinsky (two solutions), Central Islip, NY; Dionne
Bailey, Elsie Campbell, and Charles Diminnie (jointly), San Angelo, TX, and
the proposer.

• 4951: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let α, β, and γ be the angles of an acute triangle ABC. Prove that

π sin

√
α2 + β2 + γ2

π
≥ α sin

√
α + β sin

√
β + γ sin

√
γ.

Solution by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie (jointly),
San Angelo, TX.

Since α, β, and γ are the angles of an acute triangle,

α, β, γ ∈ (0,
π

2
) and

α

π
+

β

π
+

γ

π
= 1

Let f(x) = sin
√

x on (0,
π

2
). Then, since

f ′′(x) = −
√

x sin
√

x + cos
√

x

4x3/2
< 0

on (0,
π

2
) , it follows that f(x) is concave down on (0,

π

2
). Hence, by Jensen’s Inequality

and (1)

α

π
sin

√
α +

β

π
sin
√

β +
γ

π
sin

√
γ ≤ sin

√
α

π
· α +

β

π
· β +

γ

π
· γ



= sin

√
α2 + β2 + γ2

π
,

with equality if and only if α = β = γ =
π

3
.

Also solved by the proposer

• 4952: Proposed by Michael Brozinsky, Central Islip, NY & Robert Holt, Scotch Plains,
NJ.
An archeological expedition discovered all dwellings in an ancient civilization had 1, 2, or
3 of each of k independent features. Each plot of land contained three of these houses
such that the k sums of the number of each of these features were all divisible by 3.
Furthermore, no plot contained two houses with identical configurations of features and
no two plots had the same configurations of three houses. Find a) the maximum number
of plots that a house with a given configuration might be located on, and b) the maximum
number of distinct possible plots.

Solution by Paul M. Harms, North Newton, KS

Let

(
n

r

)
be the combination of n things taken r at a time. With k independent features

there are

(
k

1

)
= k number of different “groups” containing one feature,

(
k

2

)
different

“groups” containing two features, etc. To have the sum of independent features in a plot
of three houses be divisible by three, there are four possibilities. I. Each house in a plot
has one feature. II. Each house in a plot has two features. III. Each house in a plot has
three features. IV. One house in a plot has one feature, another house has two features,
and the third house has three features.

The maximum number of distinct plots can be found by summing the number of plots for
each of the four possibilities above. The sum is((k

1

)
3

)
+

((k
2

)
3

)
+

((k
3

)
3

)
+

(
k

1

)(
k

2

)(
k

3

)

This is the result for part b).

For part a), first consider a house with one fixed feature. There are plots in possibilities
I and IV. In possibility I the other two houses can have any combination of the other

(k − 1) single features so there are

(
k − 1

2

)
plots. In possibility IV the number of plots

with a house with one fixed feature is

(
k

1

)(
k

2

)(
k

3

)
. The number of plots with houses

with different features is the following: For a house with one fixed feature there are(
k − 1

2

)
+

(
k

2

)(
k

3

)
plots. For a house with two fixed features there are

((k
2)−1
2

)
+
(k
1

)(k
3

)
plots. For a house with three fixed features there are

((k
2

)
− 1
2

)
+

(
k

1

)(
k

2

)
plots.

Also solved by the proposer.



• 4953: Proposed by Tom Leong, Brooklyn, NY.
Letπ(x) denote the number of primes not exceeding x. Fix a positive integer n and define
sequences by a1 = b1 = n and

ak+1 = ak − π(ak) + n, bk+1 = π(bk) + n + 1 for k ≥ 1.

a) Show that lim
k→∞

ak is the nth prime.

b) Show that lim
k→∞

bk is the nth composite.

Solution by Paul M. Harms, North Newton, KS.

Any positive integer m is less than the mth prime since 1 is not a prime. In part a)
with a1 = n, we have π(n) primes less than or equal to n. We need n − π(n) more
primes than n has in order to get to the nth prime. Note that a2 is greater than a1 by
n − π(n). If all of the integers from a1 + 1 to a2 are prime, then a2 is the nth prime. If
not all of the integers indicated in the last sentence are primes, we see that a3 is greater
than a2 by the number of non-primes from a1 + 1 to a2. This is true in general from
ak to ak+1 since ak+1 = ak + (n − π(ak)). If ak is not the nth prime, then ak+1 will
increase by the quantity of integers to get to the nth prime provided all integers ak+1 will
increase by the quantity of integers to get to the nth prime provided all integers ak + 1,to
ak+1. We see that the sequence increases until some am = N , the nth prime. Then
am+1 = am + (n − π(am)) = am + 0 = am. In this same way it is seen that ak = am for
all k greater that m. Thus the limit for the sequence in part a) is the nth prime.

For part b) note that n is less than the nth composite. Since the integer 1 and integers
π(n) are not composite, the nth composite must be at least 1+π(n) greater than n. With
b1 = n we see that b2 = n + (1 + π(n)). Then b2 will be the nth composte provided all
integers n + 1, n + 2, · · · , n + 1 + π(n) are composites. If some of the integers in the last
sentence are prime, then b3 is greater than b2 by the number of primes in the integers
from b1 + 1 to b2. In general, bk+1 is greater than bk by the number of primes in the
integers from bk−1 + 1 to bk and the sequence will be an increasing sequence until the nth

composite is reached. If bm = N , the nth composite, then all integers from bm−1 + 1 to
bm are composite. Then π(bm−1) = π(bm) and bm+1 = π(bm−1) + 1 + n = bm = N . We
see that bk = N for all k at least as great as m. Thus the limit of the sequence in part
b) is the nth composite.

Also solved by David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 4954: Proposed by Kenneth Korbin, New York, NY.
Find four pairs of positive integers (a, b) that satisfy

a + i

a− i
· b + i

b− i
=

111 + i

111− i

with a < b.

Solution by David E. Manes, Oneonta, NY.

The only solutions (a, b) with a < b are (112, 12433), (113, 6272), (172, 313), and (212, 233).

Expanding the given equation and clearing fractions, one obtains [2(111)(a + b)− 2(ab−

1)]i = 0. Therefore,
ab− 1
a + b

= 111. Let b = a + k for some positive integer k. Then the



above equation reduces to a quadratic in a; namely a2 + (k− 222)a− (111k + 1) = 0 with
roots given by

a =
(222− k)±

√
k2 + 49288

2
.

Since a is a positive integer, it follows that k2 + 49288 = n2 or

n2 − k2 = (n + k)(n− k) = 49288 = 23 · 61 · 101.

Therefore, n + k and n− k are positive divisors of 49288. The only such divisors yielding
solutions are

n + k n− k
24644 2
12322 4
404 122
244 202

Solving these equations simultaneously gives the following values for(n, k) :

(12323, 12321), (6163, 6159), (263, 141), and (223, 21)

from which the above cited solutions for a and b are found.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Daniel Copeland (stu-
dent at St. George’s School), Spokane, WA; Jeremy Erickson, Matthew Rus-
sell, and Chad Mangum (jointly; students at Taylor University), Upland, IN;
Grant Evans (student at St. George’s School), Spokane, WA; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; John Nord, Spokane, WA;
Homeira Pajoohesh, David Stone, and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 4955: Proposed by Kenneth Korbin, New York, NY.
Between 100 and 200 pairs of red sox are mixed together with between 100 and 200 pairs
of blue sox. If three sox are selected at random, then the probability that all three are
the same color is 0.25. How many pairs of sox were there altogether?

Solution by Brian D. Beasley, Clinton, SC.

Let R be the number of pairs of red sox and B be the number of pairs of blue sox. Then
200 ≤ R + B ≤ 400 and

2R(2R− 1)(2R− 2) + 2B(2B − 1)(2B − 2)
(2R + 2B)(2R + 2B − 1)(2R + 2B − 2)

=
1
4
.

Thus 4[R(2R − 1)(R − 1) + B(2B − 1)(B − 1)] = (R + B)(2R + 2B − 1)(R + B − 1), or
equivalently

4(2R2 + 2B2 −R−B − 2RB)(R + B − 1) = (2R2 + 2B2 −R−B + 4RB)(R + B − 1).

This yields 6R2 + 6B2 − 3R − 3B − 12RB = 0 and hence 2(R − B)2 = R + B. Letting
x = R−B, we obtain R = x2 + 1

2x and B = x2− 1
2x, so x is even. In addition, the size of

R + B forces |x| ∈ {10, 12, 14}. A quick check shows that only |x| = 12 produces values
for R and B between 100 and 200, giving the unique solution {R,B} = {138, 150}. Thus
R + B = 288.



Also solved by Pat Costello, Richmond, KY; Paul M. Harms, North Newton,
KS, and the proposer.

• 4956: Proposed by Kenneth Korbin, New York, NY.
A circle with radius 3

√
2 is inscribed in a trapezoid having legs with lengths of 10 and

11. Find the lengths of the bases.

Solution by Eric Malm, Stanford, CA.

There are two different solutions: one when the trapezoid is shaped like /O\, and the
other when it is configured like /O/. In fact, by reflecting the right-hand half of the plane
about the x-axis, we can interchange between these two cases. Anyway, in the first case,
the lengths of the bases are 7−

√
7 and 14 +

√
7, and in the second case they are 7 +

√
7

and 14−
√

7.

Also solved by Michael Brozinsky, Central Islip, NY; Daniel Copeland (stu-
dent at St. George’s School), Spokane, WA; Paul M. Harms, North Newton,
KS; Peter E. Liley, Lafayette, IN; Charles McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; Nate Wynn (student at St. George’s School), Spokane,
WA, and the proposer.

• 4957: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3

n = an−1an−2an−3. Find lim
n→∞

an.

Solution by Michael Brozinsky, Central Islip, NY.

If we write an = 2bn we have bn =
bn−1 + bn−2 + bn−3

3
where b0 = 0, b1 = 1, and b2 = 0.

The characteristic equation is

x3 =
x2

3
+

x

3
+

1
3

with roots

r1 = 1, r2 =
−1 + i

√
2

3
, and r3 =

−1− i
√

2
3

.

The generating function f(n) for {bn} is (using the initial conditions) found to be

f(n) = A + B

(−1 + i
√

2
3

)n

+ C

(−1− i
√

2
3

)n

where

A =
1
3
, B = −1

6
− 5i

√
2

12
, and C = −1

6
+

5i
√

2
12

.

Since |r2| = |r3| =
√

6
4

< 1 we have the last two terms in the expression for f(n) approach

0 as n approaches infinity, and hence lim
n→∞

bn =
1
3

and so lim
n→∞

an = 3
√

2.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays and Jahangeer Khold
(jointly), Chesapeake, VA & Portsmouth, VA; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins, Statesboro, GA, and
the proposer.

• 4958: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.



Let f : [a, b] → R (0 < a < b) be a continuous function on [a, b] and derivable in (a, b).
Prove that there exists a c ∈ (a, b) such that

f ′(c) =
1

c
√

ab
· ln(ab/c2)
ln(c/a) · ln(c/b)

.

Solution by the proposer.
Consider the function F : [a, b] → R defined by

F (x) = (lnx− ln a)(lnx− ln b) exp
[√

ab f(x)
]

Since F is continuous function on [a, b], derivable in (a, b) and F (a) = F (b) = 0, then by
Rolle’s theorem there exists c ∈ (a, b) such that F ′(c) = 0. We have

F ′(x) =
[
1
x

(lnx− ln b) +
1
x

(lnx− ln a)

+
√

ab(lnx− ln a)(lnx− ln b)f ′(x)
]
exp

[√
ab f(x)

]
and

1
c

ln

(
c2

ab

)
+
√

ab ln
(

c

a

)
ln
(

c

b

)
f ′(c) = 0

From the preceding immediately follows

√
ab ln(c/a) ln(c/b) f ′(c) =

1
c

ln(ab/c2)

and we are done.

• 4959: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.
Find all numbers N = ab, were a, b = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that

[S(N)]2 = S(N2),

where S(N)=a+b is the sum of the digits. For example:

N = 12 N2 = 144
S(N) = 3 S(N2) = 9 and [S(N)]2 = S(N2).

Solution by Jeremy Erickson, Matthew Russell, and Chad Mangum (jointly,
students at Taylor University), Upland, IN.

We start by considering the possibilities that exist for N . Since there are 10 possibilities
for a and for b, there are 100 possibilities for N . It would not be incorrect to check all
100 cases, however we need not do so.
We can eliminate the majority of these 100 cases without directly checking them. If we
assume that S(N) ≥ 6, then [S(N)] ≥ 36, which means that for the property to hold,
S(N2) ≥ 36 as well. This would require N2 ≥ 9999. However, this leads us to a contradic-
tion because the largest possible value for N by our definition is 99, andN2 in that case is
only N2 = 992 = 9801 < 9999. Therefore, we need not check any number N such S(N) >
6. More precisely, any number N in the intervals[6, 9]; [15, 19]; [24, 29]; [33, 39]; [42, 49]; [51, 99]
need not be checked. This leaves us with 21 cases that can easily be checked.



After checking each of these cases separately, we find that for 13 of them, the property
[S(N)]2 = S(N2) does in fact hold. These 13 solutions are

N = 00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 30, 31.

We show the computation for N = 31 as an example:

N = 31 N2 = 312 = 961
S(N) = 3 + 1 = 4 S(N2) = 9 + 6 + 1 = 16

[S(N)]2 = 42 = 16
[S(N)]2 = S(N2) = 16 for N = 31.

The other 12 solutions can be checked similarly.

Also solved by Paul M. Harms, North Newton, KS; Jahangeer Kholdi, Robert
Anderson and Boris Rays (jointly), Portsmouth, Portsmouth, & Chesapeake,
VA; Peter E. Liley, Lafayette, IN; Jim Moore, Seth Bird and Jonathan Schrock
(jointly, students at Taylor University), Upland, IN; R. P. Sealy, Sackville,
New Brunswick, Canada; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

Late Solutions

Late solutions by David E. Manes of Oneonta, NY were received for problems 4942
and 4944.
—————-


