Problems

Ted Eisenberg, Section Editor

```
*********************************************************
```

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before March 15, 2019

5523: Proposed by Kenneth Korbin, New York, NY

For every prime number P, there is a circle with diameter $4 P^{4}+1$. In each of these circles, it is possible to inscribe a triangle with integer length sides and with area $(2 P)(2 P+1)(2 P-1)\left(2 P^{2}-1\right)$. Find the sides of the triangles if $P=2$ and if $P=3$.

5524: Proposed by Michael Brozinsky, Central Islip, NY
A billiard table whose sides obey the law of reflection is in the shape of a right triangle $A B C$ with legs of length a and b where $a>b$ and hypotenuse c. A ball is shot from the right angle and rebounds off the hypotenuse at point P on a path parallel to leg CB that hits let CA at point Q. Find the ratio $\frac{A Q}{Q C}$.

5525: Proposed by Daniel Sitaru, National Economic College "Theodor Costescu", Drobeta Turnu-Severin, Mehedinti, Romania

Find real values for x and y such that:

$$
4 \sin ^{2}(x+y)=1+4 \cos ^{2} x+4 \cos ^{2} y
$$

5526: Proposed by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

The lengths of the sides of a triangle are 12,16 and 20 . Determine the number of straight lines which simultaneously halve the area and the perimeter of the triangle.

5527: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain
Let a, b and c be positive real numbers such that $a+b+c=3$. Prove that for all real $\alpha>0$, holds:

$$
\frac{1}{2}\left(\frac{1-a^{\alpha+1} b^{\alpha}}{a^{\alpha} b^{\alpha}}+\frac{1-b^{\alpha+1} c^{\alpha}}{b^{\alpha} c^{\alpha}}+\frac{1-c^{\alpha+1} a^{\alpha}}{c^{\alpha} a^{\alpha}}\right)
$$

$$
\leq \sqrt{\left(\frac{1-a^{\alpha+1}}{a^{\alpha}}+\frac{1-b^{\alpha+1}}{b^{\alpha}}+\frac{1-c^{\alpha+1}}{c^{\alpha}}\right)\left(\frac{1-a^{\alpha} b^{\alpha} c^{\alpha}}{a^{\alpha} b^{\alpha} c^{\alpha}}\right)} .
$$

5528: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $a>0$. Calculate $\int_{a}^{\infty} \int_{a}^{\infty} \frac{\mathrm{d} x \mathrm{~d} y}{x^{6}\left(x^{2}+y^{2}\right)}$.

Solutions

5505: Proposed by Kenneth Korbin, New York, NY
Given a Primitive Pythagorean Triple (a, b, c) with $b^{2}>3 a^{2}$. Express in terms of a and b the sides of a Heronian Triangle with area $a b\left(b^{2}-3 a^{2}\right)$.
(A Heronian Triangle is a triangle with each side length and area an integer.)

Solution 1 by Stanley Rabinowitz, Chelmsford, MA

One way of doing this would be to form an obtuse triangle $A B C$ as shown with base of length $b^{2}-3 a^{2}$ and altitude of length $2 a b$, so that the area of $\triangle A B C$ is $a b\left(b^{2}-3 a^{2}\right)$ as desired. If the line segment from B to D , the foot of the altitude from C , has length $2 a^{2}$, then hypotenuse $B C$ in $\triangle B D C$ would have length $2 a c$, since this triangle would be similar to an $a-b-c$ right triangle, scaled up by $2 a$. Then $A D$ would have length $b^{2}-a^{2}$, and by the Pythagorean Theorem, $A C$ would have length $a^{2}+b^{2}$.
Thus, $\triangle A B C$ is the desired Heronian Triangle, with sides $b^{2}-3 a^{2}, 2 a \sqrt{a^{2}+b^{2}}$, and $a^{2}+b^{2}$.

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND

Given a primitive Pythagorean triple (a, b, c) with $b^{2}>3 a^{2}$, let

$$
\begin{aligned}
x & =b^{2}-3 a^{2}, \\
y & =2 a \sqrt{a^{2}+b^{2}}, \\
z & =a^{2}+b^{2}
\end{aligned}
$$

Note that $y=2 a c$ and $z=c^{2}$. Since $c^{2}-4 a^{2}=b^{2}-3 a^{2}>0$ we have $c>2 a$.

We calculate

$$
\begin{aligned}
-x+y+z & =-\left(b^{2}-3 a^{2}\right)+2 a c+\left(a^{2}+b^{2}\right) \\
& =4 a^{2}+2 a c>0, \\
x-y+z & =\left(b^{2}-3 a^{2}\right)-2 a c+c^{2} \\
& =\left(b^{2}-3 a^{2}\right)+c(c-2 a)>0,
\end{aligned}
$$

and

$$
\begin{aligned}
x+y-z & =\left(b^{2}-3 a^{2}\right)+2 a c-\left(a^{2}+b^{2}\right) \\
& =2 a(c-2 a)>0 .
\end{aligned}
$$

Thus $x+y>z, x+z>y$, and $y+z>x$ so (x, y, z) gives the sides of a Heronian triangle. Let s be the semiperimeter and A the area of this triangle.
By Heron's formula we have

$$
A^{2}=s(s-x)(s-y)(s-z) .
$$

We have

$$
\begin{aligned}
s & =\frac{x+y+z}{2} \\
& =b^{2}-a^{2}+a c, \\
s-x & =b^{2}-a^{2}+a c-\left(b^{2}-3 a^{2}\right) \\
= & a c+2 a^{2}, \\
s-y & =b^{2}-a^{2}+a c-2 a c \\
& =b^{2}-a^{2}-a c,
\end{aligned}
$$

and

$$
\begin{aligned}
s-z & =b^{2}-a^{2}+a c-\left(a^{2}+b^{2}\right) \\
& =a c-2 a^{2} .
\end{aligned}
$$

So

$$
\begin{aligned}
A^{2} & =\left(b^{2}-a^{2}+a c\right)\left(a c+2 a^{2}\right)\left(b^{2}-a^{2}-a c\right)\left(a c-2 a^{2}\right) \\
& =\left[\left(b^{2}-a^{2}\right)^{2}-(a c)^{2}\right]\left[(a c)^{2}-\left(2 a^{2}\right)^{2}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(b^{2}-a^{2}\right)^{2}-(a c)^{2} & =b^{4}-2 a^{2} b^{2}+a^{4}-a^{2}\left(a^{2}+b^{2}\right) \\
& =b^{4}-3 a^{2} b^{2} \\
& =b^{2}\left(b^{2}-3 a^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(a c)^{2}-\left(2 a^{2}\right)^{2} & =a^{2}\left(c^{2}-4 a^{2}\right) \\
& =a^{2}\left(b^{2}-3 a^{2}\right)
\end{aligned}
$$

so $A^{2}=a^{2} b^{2}\left(b^{2}-3 a^{2}\right)^{2}$.
Thus if (a, b, c) is a primitive Pythagorean triple with $b^{2}>3 a^{2}$ then (x, y, z) with

$$
x=b^{2}-3 a^{2}, \quad y=2 a \sqrt{a^{2}+b^{2}}, \quad z=a^{2}+b^{2}
$$

is a Heronian triangle with area $a b\left(b^{2}-3 a^{2}\right)$.
N.B. For a particular (a, b, c) there can be other Heronian triangles with area $a b\left(b^{2}-3 a^{2}\right)$. For example, for the primitive Pythagorean triple $(5,12,13)$ we are looking for a Heronian triangle with area 4140. The formulas above give the triangle $(69,130,169)$, but $(41,202,207)$ is another triangle with area 4140.

Solution 3 by Trey Smith, Angelo State University, San Angelo, TX

Let $x=b^{2}-3 a^{2}, y=2 a \sqrt{a^{2}+b^{2}}$, and $z=a^{2}+b^{2}$ be the lengths of the three sides of the triangle. We first observe that all of these are positive integers; x and z obviously so, and y since $a^{2}+b^{2}=c^{2}$, so that

$$
2 a \sqrt{a^{2}+b^{2}}=2 a \sqrt{c^{2}}=2 a c .
$$

The perimeter of the triangle is

$$
\begin{aligned}
& x+y+z \\
= & \left(b^{2}-3 a^{2}\right)+\left(2 a \sqrt{a^{2}+b^{2}}\right)+\left(a^{2}+b^{2}\right) \\
= & \left(c^{2}-4 a^{2}\right)+2 a c+c^{2} \\
= & 2 c^{2}+2 a c-4 a^{2} .
\end{aligned}
$$

Then the semiperimeter is $s=c^{2}+a c-2 a^{2}$. Applying Heron's formula to find the area A, we have

$$
\begin{aligned}
& A^{2} \\
= & s(s-x)(s-y)(s-z) \\
= & s\left(s-\left(b^{2}-3 a^{2}\right)\right)\left(s-\left(2 a \sqrt{a^{2}+b^{2}}\right)\right)\left(s-\left(a^{2}+b^{2}\right)\right) \\
= & s\left(s-\left(c^{2}-4 a^{2}\right)\right)(s-2 a c)\left(s-c^{2}\right) \\
= & \left(c^{2}+a c-2 a^{2}\right)\left(\left(c^{2}+a c-2 a^{2}\right)-\left(c^{2}-4 a^{2}\right)\right)\left(\left(c^{2}+a c-2 a^{2}\right)-2 a c\right)\left(\left(c^{2}+a c-2 a^{2}\right)-c^{2}\right) \\
= & \left(c^{2}+a c-2 a^{2}\right)\left(a c+2 a^{2}\right)\left(c^{2}-a c-2 a^{2}\right)\left(a c-2 a^{2}\right) \\
= & {[(c+2 a)(c-a)][a(c+2 a)][(c+a)(c-2 a)][a(c-2 a)] } \\
= & a^{2}\left(c^{2}-a^{2}\right)\left(c^{2}-4 a^{2}\right)^{2} \\
= & a^{2} b^{2}\left(b^{2}-3 a^{2}\right)^{2} .
\end{aligned}
$$

Thus $A=a b\left(b^{2}-3 a^{2}\right)$.
Editor's Comment: David Stone and John Hopkins of Georgia Southern University added the following comment to their solution to this problem: "So how did we find $x, y, z ?$ We first tired the simplest possible example; $(a, b, c)=(3,5,12)$. After some algebra and some computer help, we found the triangle $(x, y, z)=(69,169,130)$ has the appropriate area. From this we conjectured the form for arbitrary x, y, z.

$$
\begin{aligned}
& x=169=13^{2}=c^{2} \\
& y=69=12^{2}-3 \cdot 5^{2}=b^{2}-3 a^{2} \\
& z=130=2 \cdot 5 \cdot 13=2 a c
\end{aligned}
$$

Then it only required simple algebra to verify this construction. Some Excel computations also lead us to the broader result (when $b^{2}<3 a^{2}$). The perfect example of computing power assisting a person!"

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5506: Proposed by Daniel Sitaru, "Theodor Costescu" National Economic College, Drobeta Turnu-Severin, Mehedinti, Romania

Find $\Omega=\operatorname{det}\left[\left(\begin{array}{cc}1 & 5 \\ 5 & 25\end{array}\right)^{100}+\left(\begin{array}{cc}25 & -5 \\ -5 & 1\end{array}\right)^{100}\right]$.

Solution 1 by Michel Bataille, Ronen, France

Let $A=\left(\begin{array}{cc}1 & 5 \\ 5 & 25\end{array}\right), B=\left(\begin{array}{cc}25 & -5 \\ -5 & 1\end{array}\right), O_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
It is readily checked that $A B=B A=O_{2}$ and $A+B=26 I_{2}$.
Since $A B=B A$, the binomial theorem gives

$$
\begin{equation*}
(A+B)^{100}=\sum_{k=0}^{100}\binom{100}{k} A^{k} B^{100-k} \tag{1}
\end{equation*}
$$

Now, if $k \in\{1,2, \ldots, 50\}$, then

$$
A^{k} B^{100-k}=A^{k} B^{k} B^{100-2 k}=(A B)^{k} B^{100-2 k}=O_{2} \cdot B^{100-2 k}=O_{2}
$$

(note that $A^{k} B^{k}=(A B)^{k}$ since $A B=B A$) and similarly, if $k \in\{51,52, \ldots, 99\}$, then $A^{k} B^{100-k}=A^{2 k-100}(A B)^{100-k}=O_{2}$.
As a result, (1) gives $(A+B)^{100}=A^{100}+B^{100}$, that is, $26^{100} I_{2}=A^{100}+B^{100}$. We can conclude:

$$
\Omega=\operatorname{det}\left(26^{100} I_{2}\right)=26^{200}
$$

Solution 2 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND
Observe
$\left(\begin{array}{rr}1 & 5 \\ 5 & 25\end{array}\right)^{100}=\left(\left[\begin{array}{l}1 \\ 5\end{array}\right]\left[\begin{array}{ll}1 & 5\end{array}\right]\right)^{100}=\left[\begin{array}{l}1 \\ 5\end{array}\right]\left(\left[\begin{array}{ll}1 & 5\end{array}\right]\left[\begin{array}{l}1 \\ 5\end{array}\right]\right)^{99}\left[\begin{array}{ll}1 & 5\end{array}\right]=26^{99}\left(\begin{array}{rr}1 & 5 \\ 5 & 25\end{array}\right)$
and

$$
\left(\begin{array}{rr}
25 & -5 \\
-5 & 1
\end{array}\right)^{100}=\left(\left[\begin{array}{r}
5 \\
-1
\end{array}\right]\left[\begin{array}{lr}
5 & -1
\end{array}\right]\right)^{100}=\left[\begin{array}{r}
5 \\
-1
\end{array}\right]\left(\left[\begin{array}{rr}
5 & -1
\end{array}\right]\left[\begin{array}{r}
5 \\
-1
\end{array}\right]\right)^{99}\left[\begin{array}{ll}
5 & -1
\end{array}\right]=26^{99}\left(\begin{array}{rr}
25 & -5 \\
-5 & 1
\end{array}\right)
$$

It follows that

$$
\Omega=\operatorname{det}\left[26^{99}\left(\begin{array}{rr}
1 & 5 \\
5 & 25
\end{array}\right)+26^{99}\left(\begin{array}{rr}
25 & -5 \\
-5 & 1
\end{array}\right)\right]=\operatorname{det}\left[\left(\begin{array}{cc}
26^{100} & 0 \\
0 & 26^{100}
\end{array}\right)\right]=26^{200}
$$

Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX
Let $A=\left(\begin{array}{cc}1 & 5 \\ 5 & 25\end{array}\right)$ and $B=\left(\begin{array}{cc}25 & -5 \\ -5 & 1\end{array}\right)$. Matrices A and B are each symmetric, hence orthogonally diagonalizable.

Solving the equation $\operatorname{det}(\lambda I-A)=0$ yields $\lambda_{1}=0$ and $\lambda_{2}=26$ as the eigenvalues of A.
Solving the equation $(\lambda I-A) \vec{x}=\overrightarrow{0}$ successively for $\lambda=0$ and $\lambda=26$ yields
$\overrightarrow{x_{1}}=\binom{\frac{-5}{\sqrt{26}}}{\frac{1}{\sqrt{26}}}$ and $\overrightarrow{x_{2}}=\binom{\frac{1}{\sqrt{26}}}{\frac{5}{\sqrt{26}}}$ as corresponding unit eigenvectors. So
$A=\left(\begin{array}{cc}\frac{-5}{\sqrt{26}} & \frac{1}{\sqrt{26}} \\ \frac{1}{\sqrt{26}} & \frac{5}{\sqrt{26}}\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ 0 & 26\end{array}\right)\left(\begin{array}{cc}\frac{-5}{\sqrt{26}} & \frac{1}{\sqrt{26}} \\ \frac{1}{\sqrt{26}} & \frac{5}{\sqrt{26}}\end{array}\right)$. Similarly,
$B=\left(\begin{array}{ll}\frac{1}{\sqrt{26}} & \frac{-5}{\sqrt{26}} \\ \frac{5}{\sqrt{26}} & \frac{1}{\sqrt{26}}\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ 0 & 26\end{array}\right)\left(\begin{array}{ll}\frac{1}{\sqrt{26}} & \frac{5}{\sqrt{26}} \\ \frac{-5}{\sqrt{26}} & \frac{1}{\sqrt{26}}\end{array}\right)$.
Since for both A and B the matrix of eigenvectors is orthogonal, we have

$$
\begin{aligned}
A^{100}= & \left(\begin{array}{cc}
\frac{-5}{\sqrt{26}} & \frac{1}{\sqrt{26}} \\
\frac{1}{\sqrt{26}} & \frac{5}{\sqrt{26}}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 26^{100}
\end{array}\right)\left(\begin{array}{cc}
\frac{-5}{\sqrt{26}} & \frac{1}{\sqrt{26}} \\
\frac{1}{\sqrt{26}} & \frac{5}{\sqrt{26}}
\end{array}\right)=\left(\begin{array}{cc}
26^{99} & 5\left(26^{99}\right) \\
5\left(26^{99}\right) & 25\left(26^{99}\right)
\end{array}\right), \text { and } \\
B^{100} & =\left(\begin{array}{cc}
\frac{1}{\sqrt{26}} & \frac{-5}{\sqrt{26}} \\
\frac{5}{\sqrt{26}} & \frac{1}{\sqrt{26}}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 26^{100}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{26}} & \frac{5}{\sqrt{26}} \\
\frac{-5}{\sqrt{26}} & \frac{1}{\sqrt{26}}
\end{array}\right)=\left(\begin{array}{cc}
25\left(26^{99}\right) & -5\left(26^{99}\right) \\
-5\left(26^{99}\right) & 26^{99}
\end{array}\right) .
\end{aligned}
$$

So $\Omega=\operatorname{det}\left[A^{100}+B^{100}\right]=\operatorname{det}\left(\begin{array}{cc}26^{100} & 0 \\ 0 & 26^{100}\end{array}\right)=26^{200}$.

Solution 4 by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

A way to calculate A^{n} for a 2×2 matrix is to use the Hamilton-Cayley Theorem:

$$
A^{2}-\operatorname{Tr}(A) \cdot A+\operatorname{det} A \cdot I_{2}=0
$$

For example, if we have a 2×2 matrix $A=\left(\begin{array}{cc}1 & a \\ a & a^{2}\end{array}\right)$ (or $A=\left(\begin{array}{cc}a^{2} & -a \\ -a & 1\end{array}\right)$) with $\operatorname{det} A=0$ and $\operatorname{Tr}(A)=a^{2}+1$, then the Hamilton-Cayley theorem becomes:

$$
A^{2}=\operatorname{Tr}(A)=\left(a^{2}+1\right)^{2} A
$$

$$
\begin{aligned}
A^{3}= & \left(a^{2}+1\right) A^{2}=\left(a^{2}+1\right)^{2} A, \\
& \cdots \\
A^{n}= & \left(a^{2}+1\right) A^{n-1}=\left(a^{2}+1\right)^{n-1} A .
\end{aligned}
$$

So we have:

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)^{100} & =\left(5^{2}+1\right)^{99}\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)=26^{99}\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right) \\
\left(\begin{array}{cc}
25 & -5 \\
-5 & 1
\end{array}\right)^{100} & =\left(5^{2}+1\right)^{99}\left(\begin{array}{cc}
25 & -5 \\
-5 & 1
\end{array}\right)=26^{99}\left(\begin{array}{cc}
25 & -5 \\
-5 & 1
\end{array}\right), \\
\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)^{100}+\left(\begin{array}{cc}
25 & -5 \\
5 & 1
\end{array}\right)^{100} & =26^{99}\left(\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)+\left(\begin{array}{cc}
25 & -5 \\
5 & 1
\end{array}\right)\right)=26^{100}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

and finally we have:

$$
\Omega=\operatorname{det}\left(\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)^{100}+\left(\begin{array}{cc}
25 & -5 \\
5 & 1
\end{array}\right)^{100}\right)=\operatorname{det}\left(26^{100}\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)^{100}+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=26^{100} .
$$

Solution 5 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy

Let $c=\sqrt{26}$. We know that

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 5 \\
5 & 25
\end{array}\right)=\left(\begin{array}{cc}
-5 / c & 1 / c \\
1 / c & 5 / c
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 26
\end{array}\right)\left(\begin{array}{cc}
-5 / c & 1 / c \\
1 / c & 5 / c
\end{array}\right) \doteq A \Lambda A^{-1} \\
\left(\begin{array}{cc}
25 & -5 \\
-5 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 / c & -5 / c \\
5 / c & 1 / c
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 26
\end{array}\right)\left(\begin{array}{cc}
1 / c & 5 / c \\
-5 / c & 1 / c
\end{array}\right) \doteq B \Lambda B^{-1} \\
\Omega=A \Lambda^{100} A^{-1}+B \Lambda^{100} B^{-1} \\
A \Lambda^{100} A^{-1}=\left(\begin{array}{cc}
26^{99} & 5 \cdot 26^{99} \\
5 \cdot 26^{99} & 25 \cdot 26^{99}
\end{array}\right) \\
B \Lambda^{100} B^{-1}=\left(\begin{array}{cc}
25 \cdot 26^{99} & -5 \cdot 26^{99} \\
-5 \cdot 26^{99} & 26^{99}
\end{array}\right)
\end{gathered}
$$

Thus

$$
\Omega=\operatorname{det}\left(\begin{array}{cc}
26^{99} \cdot 26 & 0 \\
0 & 26^{99} \cdot 26
\end{array}\right)=26^{200} .
$$

Also solved by Arkady Alt, San Jose, CA; Ashland University Undergraduate Problem Solving Group, Ashland University, Ashland, Ohio; Brian D. Beasley, Presbyterian College, Clinton, SC; Anthony J.

Bevelacqua, University of North Dakota, Grand Forks, ND; Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo Sate University, San Angelo, TX; Pat Costello, Eastern Kentucky University, Richmond, KY; David Diminnie, Texas Instruments Inc., Dallas, TX; Michael Faleski, University Center, MI; Bruno Salgueiro Fanego Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Carl Libis, Columbia Southern University, Orange Beach, AL; Ismayil Mammadzada (student), ADA University, Baku, Azerbaijan; Pedro Pantoja, Natal/RN, Brazil; Ravi Prakash, Oxford University Press; New Delhi, India; Neculai Stanciu "George Emil Palade" School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; Henry Ricardo (four different proofs), Westchester Area Math Circle, NY; Trey Smith, Angelo State University, San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA; Marian Ursărescu, "Roman Vodă" College, Roman, Romania; Daniel Văcaru, Pitesti, Romania, and the proposer.

5507: Proposed by David Benko, University of South Alabama, Mobile, AL

A car is driving forward on the real axis starting from the origin. Its position at time $0 \leq t$ is $s(t)$. Its speed is a decreasing function: $v(t), 0 \leq t$. Given that the drive has a finite path (that is $\lim _{t \rightarrow \infty} s<\infty$), that $v(2 t) / v(t)$ has a real limit c as $t \rightarrow \infty$, find all possible values of c.

Solution 1 by Moti Levy, Rehovot, Israel

We will show that the set of all possible values of c, is the interval $\left[0, \frac{1}{2}\right]$, i.e., $0 \leq c \leq \frac{1}{2}$. Let us summarize the conditions on the speed function $v(t)$:

1) $v(t) \geq 0$,
2) $v(t)$ is decreasing function for all $t \geq 0$,
3) $\int_{0}^{\infty} v(t) d t<\infty$
4) $\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=c, c$ is real number.

Since $v(t) \geq 0$, then clearly $c \geq 0$. Since $v(t)$ is decreasing function, then $c \leq 1$. It follows that $0 \leq c \leq 1$.
Now we show that c can attain any value in the interval $\left[0, \frac{1}{2}\right]$.
Let r be a real number and $r>1$. Then $v(t)=\frac{1}{1+t^{r}}$ satisfies all four requirements from the speed function, in particular

$$
\int_{0}^{\infty} \frac{1}{1+t^{r}} d t<\infty, \quad \text { for } \quad r>1
$$

and

$$
\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=\lim _{t \rightarrow \infty} \frac{1+t^{r}}{1+2^{r} t^{r}}=\frac{1}{2^{r}}=c .
$$

It follows that $c \in\left(0, \frac{1}{2}\right)$.
To see that c can attain also the value zero, choose $v(t)=e^{-t}$.
To see that c can attain also the value $\frac{1}{2}$, choose $v(t)= \begin{cases}\frac{1}{2 \ln ^{2} 2}, \text { for } 0 \leq t \leq 2, \\ \frac{1}{t \ln ^{2} t}, & \text { for } 2<t .\end{cases}$

Then $v(t)$ satisfies all the four requirements from the speed function, in particular

$$
\int_{0}^{\infty} v(t) d t=\frac{1}{\ln ^{2} 2}+\frac{1}{\ln 2}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=\lim _{t \rightarrow \infty} \frac{t \ln ^{2} t}{2 t \ln ^{2}(2 t)}=\frac{1}{2}
$$

To finish the proof, we have to show that $c \notin\left(\frac{1}{2}, 1\right]$.
Suppose $\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=c$, then for every $\varepsilon>0$, there is a real number t_{0} such that $t>t_{0}$ implies $\frac{v(2 t)}{v(t)}>c-\varepsilon$.
Now we define a staircase function $s(t)$, as follows:

$$
s(t):=(c-\varepsilon)^{k} v\left(t_{0}\right), \quad \text { for } 2^{k-1 t_{0}} t_{0} \leq t<2^{k} t_{0}, \quad k=1,2, \ldots
$$

Since the function $v(t)$ is positive decreasing function for all $t \geq 0$, then $v(t) \geq s(t)$, hence

$$
\int_{t_{0}}^{\infty} v(t) d t \geq \int_{t_{0}}^{\infty} s(t) d t
$$

Integrating the staircase function, we get

$$
\int_{t_{0}}^{\infty} s(t) d t=v\left(t_{0}\right) \sum_{k=1}^{\infty}(c-\varepsilon)^{k} 2^{k-1}=v\left(t_{0}\right)(c-\varepsilon) \sum_{k=0}^{\infty}(2(c-\varepsilon))^{k}
$$

If $c-\varepsilon \geq \frac{1}{2}$ then $\int_{t_{0}}^{\infty} s(t) d t$ diverges and so $\int_{t_{0}}^{\infty} v(t) d t$ diverges.
We conclude that if $c>\frac{1}{2}$ then $\int_{t_{0}}^{\infty} v(t) d t$ diverges, contradicting property 3) of the speed function.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that

$$
\begin{equation*}
0 \leq c \leq \frac{1}{2} \tag{1}
\end{equation*}
$$

Let $\lim _{t \rightarrow \infty} s(t)=L<\infty$. Then $\lim _{t \rightarrow \infty} s(2 t)=L$ and $0 \leq s(t)<s(2 t)<L$ for $t>0$. Hence, by L'Hôpital's rule, we have

$$
1 \geq \lim _{t \rightarrow \infty} \frac{L-s(2 t)}{L-s(t)}=\lim _{t \rightarrow \infty} \frac{\frac{d s(2 t)}{d t}}{\frac{d s(t)}{d t}}=2 \lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=2 c
$$

Thus (1) holds.
By taking $s(t)=1-e^{-t}, s(t)=1-(t+1)^{\frac{\ln (2 c)}{\ln 2}}, s(t)=1-\frac{1}{\ln (1+e)}$ according as $c=0,0<c<\frac{1}{2}, c=\frac{1}{2}$ we see that each c in (1) is in fact admissible.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We claim that the set C of possible values of c is the closed interval $\left[0, \frac{1}{2}\right]$.

Indeed, if $v(t)=v_{0} e^{-t}$, then $v(t)$ is a decreasing function, $\int_{0}^{\infty} v(t) d t<\infty$, and $\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=0$. So $0 \in C$.
If $a \geq 1$ and $v(t)=\frac{v_{0}}{1+t^{a} \ln ^{2}(1+t)}$ then $v(t)$ is a decreasing function, $\int_{0}^{\infty} v(t) d t<\infty$ and $\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=\lim _{t \rightarrow \infty} \frac{1+t^{a} \ln ^{2}(1+t)}{1+2^{a} t^{a} \ln ^{2}(1+2 t)}=\frac{1}{2^{a}}$. So $\left(0, \frac{1}{2}\right] \subset C$. It remains to prove that if $c>\frac{1}{2}$ then $\mathrm{c} \notin C$.
Suppose if possible that $\lim _{t \rightarrow \infty} \frac{v(2 t)}{v(t)}=c$, where $c>\frac{1}{2}$. Let $\epsilon:=\frac{c-1 / 2}{2}>0$. Then there is a number $T=T(\epsilon)>0$ such that $-\epsilon<\frac{v(2 t)}{v(t)}-c<\epsilon$, whenever $t>T$. We conclude that
$\int_{2 T}^{\infty} v(t) d t=2 \int_{T}^{\infty} v(2 t) d t>2(c-\epsilon) \int_{T}^{\infty} v(t) d t \geq 2(c-\epsilon) \int_{2 T}^{\infty} v(t) d t=(1+2 \epsilon) \int_{2 T}^{\infty} v(t) d t>\int_{2 T}^{\infty} v(t) d t$,
which is a contradiction, and the proof is complete.

Also solved by the proposer.

5508: Proposed by Pedro Pantoja, Natal RN, Brazil

Let a, b, c be positive real numbers such that $a+b+c=1$. Find the minimum value of

$$
f(a, b, c)=\frac{a}{3 a b+2 b}+\frac{b}{3 b c+2 c}+\frac{c}{3 c a+2 a} .
$$

Solution 1 by Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

To begin, we note that since $a, b, c>0$ and $a+b+c=1$, the Arithmetic - Geometric Mean Inequality implies that

$$
\begin{align*}
a^{2}+b^{2}+c^{2} & =(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \\
& =a^{3}+b^{3}+c^{3}+a b^{2}+b c^{2}+c a^{2}+a^{2} b+b^{2} c+c^{2} a \\
& =\left(a^{3}+a b^{2}\right)+\left(b^{3}+b c^{2}\right)+\left(c^{3}+c a^{2}\right)+a^{2} b+b^{2} c+c^{2} a \\
& \geq 2 \sqrt{a^{4} b^{2}}+2 \sqrt{b^{4} c^{2}}+2 \sqrt{c^{4} a^{2}}+a^{2} b+b^{2} c+c^{2} a \\
& =3\left(a^{2} b+b^{2} c+c^{2} a\right) . \tag{1}
\end{align*}
$$

As a result of (1), we have

$$
\begin{align*}
1 & =(a+b+c)^{2} \\
& =a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \\
& \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)+2(a b+b c+c a) \\
& =\left(3 a^{2} b+2 a b\right)+\left(3 b^{2} c+2 b c\right)+\left(3 c^{2} a+2 c a\right) . \tag{2}
\end{align*}
$$

Then, using property (2), the convexity of $g(x)=\frac{1}{x}$ on $(0, \infty)$, and Jensen's Theorem, we obtain

$$
\begin{aligned}
f(a, b, c) & =\frac{a}{3 a b+2 b}+\frac{b}{3 b c+2 c}+\frac{c}{3 c a+2 a} \\
& =a g(3 a b+2 b)+b g(3 b c+2 c)+c g(3 c a+2 a) \\
& \geq g[a(3 a b+2 b)+b(3 b c+2 c)+c(3 c a+2 a)] \\
& =g\left[\left(3 a^{2} b+2 a b\right)+\left(3 b^{2} c+2 b c\right)+\left(3 c^{2} a+2 c a\right)\right] \\
& =\frac{1}{\left(3 a^{2} b+2 a b\right)+\left(3 b^{2} c+2 b c\right)+\left(3 c^{2} a+2 c a\right)} \\
& \geq 1 \\
& =f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) .
\end{aligned}
$$

It follows that under the conditions $a, b, c>0$ and $a+b+c=1$, the minimum value of $f(a, b, c)$ is $f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1$.

Solution 2 by David E. Manes, Oneonta, NY

We will show that the minimum value of f is 1 .
By the Arithmetic Mean-Geometric Mean inequality, we get

$$
f(a, b, c) \geq 3 \sqrt[3]{\frac{a}{b(3 a+2)} \cdot \frac{b}{c(3 b+2)} \cdot \frac{c}{a(3 c+2)}}=\frac{3}{\sqrt[3]{(3 a+2)(3 b+2)(3 c+2)}}
$$

We again use the AM-GM inequality to obtain

$$
\begin{aligned}
\sqrt[3]{(3 a+2)(3 b+2)(3 c+2)} & \leq \frac{(3 a+2)+(3 b+2)+(3 c+2)}{3}=\frac{3(a+b+c)+6}{3} \\
& =3
\end{aligned}
$$

Hence,

$$
\frac{1}{\sqrt[3]{(3 a+2)(3 b+2)(3 c+2)}} \geq \frac{1}{3}
$$

so that

$$
f(a, b, c) \geq \frac{3}{\sqrt[3]{(3 a+2)(3 b+2)(3 c+2)}} \geq 3 \cdot(1 / 3)=1
$$

with equality if and only if $a=b=c=\frac{1}{3}$.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

From Bergström's and the Arithmetic mean -Geometric mean inequalities,
$f(a, b, c)=\frac{\left(\sqrt{\frac{a}{b}}\right)^{2}}{3 a+2}+\frac{\left(\sqrt{\frac{b}{c}}\right)^{2}}{3 b+2}+\frac{\left(\sqrt{\frac{c}{a}}\right)^{2}}{3 c+2} \geq \frac{\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\right)^{2}}{3 a+2+3 b+2+3 c+2}=\left(\frac{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}}{3}\right)^{2}$

$$
\geq \sqrt[3]{\sqrt{\frac{a}{b}} \sqrt{\frac{b}{c}} \sqrt{\frac{c}{a}}}=1
$$

Equality is attained iff it occurs in those two inequalities, that is, iff
$\frac{\sqrt{\frac{a}{b}}}{3 a+2}=\frac{\sqrt{\frac{b}{c}}}{3 b+2}=\frac{\sqrt{\frac{c}{b a}}}{3 c+2}$ and $\frac{a}{b}=\frac{b}{c}=\frac{c}{a}$. These last identities are true if and only if $a=b=c$, that is, if and only if $a=b=c=\frac{1}{3}$. In this case equality is also obtained in Bergström's inequality. So, the minimum value of $f(a, b, c)$ is 1 , and this occurs if and only if $a=b=c=\frac{1}{3}$.

Solution 4 by Arkady Alt, San Jose, CA

Since $\left(\frac{a}{3 a+2}-\frac{b}{3 b+2}\right)\left(\left(-\frac{1}{a}\right)-\left(-\frac{1}{b}\right)\right)=\frac{2(a-b)^{2}}{a b(3 b+2)(3 a+2)} \geq 0$ then triples $\left(\frac{a}{3 a+2}, \frac{b}{3 b+2}, \frac{c}{3 c+2}\right),\left(-\frac{1}{a},-\frac{1}{b},-\frac{1}{c}\right)$ are agreed in order and, therefore, by the Rearrangement Inequality $\sum_{c y c} \frac{a}{3 a+2} \cdot\left(-\frac{1}{a}\right) \geq \sum_{c y c} \frac{a}{3 a+2} \cdot\left(-\frac{1}{b}\right) \Longleftrightarrow$

$$
\sum_{c y c} \frac{a}{(3 a+2) b} \geq \sum_{c y c} \frac{a}{3 a+2} \cdot \frac{1}{a}=\sum_{c y c} \frac{1}{3 a+2} .
$$

Also, by Cauchy Inequality $\sum_{\text {cyc }}(3 a+2) \cdot \sum_{c y c} \frac{1}{3 a+2} \geq 9 \Longleftrightarrow 9 \cdot \sum_{\text {cyc }} \frac{1}{3 a+2} \geq 9 \Longleftrightarrow$ $\sum_{\text {cyc }} \frac{1}{3 a+2} \geq 1$.Thus, $f(a, b, c) \geq 1$ and since $f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1$ we may conclude that $\min f(a, b, c)=1$.

Solution 5 by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

Since $c=1-a-b$, then we have:

$$
f(a, b, c)=\frac{a}{3 a b+2 b}+\frac{b}{3 b(1-a-b)+2(1-a-b)}+\frac{1-a-b}{3(1-a-b) a+2 a} .
$$

That means that we may assume the function:

$$
g(a, b)=\frac{a}{3 a b+2 b}-\frac{b}{(3 b+2)(a+b-1)}+\frac{a+b+-1}{a(3 a+3 b-5)} .
$$

To find the stationary points of $g(a, b)$, work out $\frac{\partial g}{\partial a}$ and $\frac{\partial g}{\partial b}$ and set both to zero . This gives two equations for two unknowns a and b. We may solve these equations for a and b (often there is more than one solution). Let (x, y) be a stationary point. If $g_{a a}>0$ and $g_{b b}>0$ at (x, y) then (x, y) is a minimum point. So,

$$
\frac{\partial g}{\partial a}=-\frac{(a+b-1)(6 a+3 b-5)}{a^{2}(3 a+3 b-5)^{2}}-\frac{3 a}{b(3 a+2)^{2}}+\frac{b}{(3 b+2)(a+b-1)^{2}}+\frac{1}{3 a b+2 b}+\frac{1}{a(3 a+3 b-5)}
$$

$$
\frac{\partial g}{\partial b}=-\frac{a}{\left(b^{2}(3 a+2)\right.}+\frac{b(3 a+6 b-1)}{(3 b+2)^{2}(a+b-1)^{2}}-\frac{1}{(3 b+2)(a+b-1)}+\frac{1}{a(3 a+3 b-5)}-\frac{3(a+b-1)}{a(3 a+3 b-5)^{2}},
$$

and for $(a, b)=\left(\frac{1}{3}, \frac{1}{3}\right)$, we have:

$$
\min g(a, b)=\min \left[\frac{a}{3 a b+2 b}-\frac{b}{(3 b+2)(a+b-1)}+\frac{a+b-1}{a(3 a+3 b-5)}\right]=1 .
$$

and for $(a, b)=\left(\frac{1}{3}, \frac{1}{3}\right)$, we have:

$$
\min g(a, b)=\min \left[\frac{a}{3 a b+2 b}-\frac{b}{(3 b+2)(a+b-1}+\frac{a+b-1}{a(3 a+3 b-5)}\right]=1 .
$$

Solution 6 by Albert Stadler, Herrliberg, Switzerland

We will prove that the minimum value equals 1 and the minimum is assumed if and only if $a=b=c=1 / 3$. To that end we must prove that

$$
f(a, b, c)=\frac{a(a+b+c)}{3 a b+2 b(a+b+c)}+\frac{a(a+b+c)}{3 a b+2 b(a+b+c)}+\frac{a(a+b+c)}{3 a b+2 b(a+b+c)} \geq 1 .
$$

We clear denominators and get the equivalent inequality
$10 \sum_{\text {cycl }} a^{4} b^{2}+24 \sum_{\text {cycl }} a^{3} b^{3}+18 \sum_{\text {cycl }} a^{4} c^{2}+4 \sum_{\text {cycl }} a^{5} c \geq 2 \sum_{\text {cycl }} a^{4} b c+15 \sum_{\text {cycl }} a^{3} b^{2} c+11 \sum_{\text {cycl }} a^{3} b c^{2}+28 \sum_{c y c l} a^{2} b^{2} c^{2}$.
By the (weighted)AM-GM inequality,

$$
\begin{gathered}
\sum_{c y c l} a^{4} b^{2}+\sum_{c y c l} a^{4} c^{2} \geq 2 \sum_{c y c l} a^{4} b c, \\
15 \sum_{c y c l} a^{3} b^{3}=15 \sum_{c y c l}\left(\frac{2}{3} a^{3} b^{3}+\frac{1}{3} c^{3} a^{3}\right) \geq 15 \sum_{c y c l} a^{3} b^{2} c, \\
11 \sum_{\text {cycl }} a^{4} c^{2}=11 \sum_{\text {cycl }}\left(\frac{2}{3} a^{4} c^{2}+\frac{1}{6} b^{4} a^{2}+\frac{1}{6} c^{4} b^{2}\right) \geq 11 \sum_{\text {cycl }} a^{3} b c^{2}, \\
9 \sum_{\text {cycl }} a^{4} b^{2} \geq 27 a^{2} b^{2} c^{2}, \\
9 \sum_{\text {cycl }} a^{3} b^{3} \geq 27 a^{2} b^{2} c^{2}, \\
6 \sum_{\text {cycl }} a^{4} c^{2} \geq 18 a^{2} b^{2} c^{2}, \\
4 \sum_{\text {cycl }} a^{5} c \geq 12 a^{2} b^{2} c^{2},
\end{gathered}
$$

and (1) follows if we add the last seven inequalities. In all seven inequalities equality holds if and only if $a=b=c$.

Comment by Stanley Rabinowitz of Chelmsford, MA. Problems such as this are easily solvable by computer algebra systems these days. For example; the Mathematica command
Minimize $[\{\mathrm{a} /(3 \mathrm{a} * \mathrm{~b}+2 \mathrm{~b})+\mathrm{b} /(3 \mathrm{~b} * \mathrm{c}+2 \mathrm{c})+\mathrm{c} /(3 \mathrm{c} * \mathrm{a}+2 \mathrm{a}), \mathrm{a}>0 \& \& \mathrm{~b}>0 \& \& \mathrm{c}>0 \& \&$ $a+b+c=1\},\{a, b, c\}]$ responds by saying that the minimum value is 1 and occurs when $a=b=c=\frac{1}{3}$.

Also solved by Konul Aliyeva (student), ADA University, Baku, Azerbaijan; Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL; Tran Hong (student), Cao Lanh School, Dong Thap, Vietnam; Sanong Huayrerai, Rattanakosinsomphothow School, Nakon, Pathom, Thailand; Seyran Ibrahimov, Baku State University, Maasilli, Azerbaijan; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy; Stanley Rabinowitz of Chelmsford, MA; Neculai Stanciu "George Emil Palade" School, Buză, Romania and Titu Zvonaru, Comănesti, Romania; Daniel Văcaru, Pitesti, Romania; Nicusor Zlota "Traian Vuia Technical College, Focsani, Romania, and the proposer.

5509: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain
Let x, y, z be positive real numbers that add up to one and such that $0<\frac{x}{y}, \frac{y}{z}, \frac{z}{x}<\frac{\pi}{2}$. Prove that

$$
\sqrt{x \cos \left(\frac{y}{z}\right)}+\sqrt{y \cos \left(\frac{z}{x}\right)}+\sqrt{z \cos \left(\frac{x}{y}\right)}<\frac{3}{5} \sqrt{5} .
$$

Solution 1 by Michel Bataille, Rouen, France

The Cauchy-Schwarz inequality provides

$$
\sqrt{x} \sqrt{\cos \left(\frac{y}{z}\right)}+\sqrt{y} \sqrt{\cos \left(\frac{z}{x}\right)}+\sqrt{z} \sqrt{\cos \left(\frac{x}{y}\right)} \leq(x+y+z)^{1 / 2}\left(\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)\right)^{1 / 2} .
$$

Since $x+y+z=1$, it follows that the left-hand side L of the proposed inequality satisfies

$$
L \leq\left(\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)\right)^{1 / 2} .
$$

Thus, it suffices to show that

$$
\begin{equation*}
\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)<\frac{9}{5} . \tag{1}
\end{equation*}
$$

Now, Jensen's inequality applied to the cosine function, which is concave on $\left(0, \frac{\pi}{2}\right)$, yields

$$
\begin{equation*}
\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right) \leq 3 \cos \left(\frac{y / z+z / x+x / y}{3}\right) . \tag{2}
\end{equation*}
$$

But we have $1=\sqrt[3]{\frac{y}{z} \cdot \frac{z}{x} \cdot \frac{x}{y}} \leq \frac{y / z+z / x+x / y}{3}$ (by AM-GM) and $0<\frac{y / z+z / x+x / y}{3}<\frac{3 \cdot \frac{\pi}{2}}{3}=\frac{\pi}{2}$, hence

$$
\cos \left(\frac{y / z+z / x+x / y}{3}\right) \leq \cos (1)
$$

(since the cosine function is decreasing on $\left(0, \frac{\pi}{2}\right)$).
Then (2) gives $\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right) \leq 3 \cos (1)$. There just remains to remark that $\cos (1)<0.6=\frac{3}{5}$ to obtain the desired inequality (1).

Solution 2 by Tran Hong (student), Cao Lanh School, Dong Thap, Vietnam

$$
\begin{aligned}
& \text { LHS } \stackrel{B C S}{\leq} \sqrt{x+y+z} \sqrt{\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)} \\
&=\sqrt{1} \cdot \sqrt{\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)} \\
& \text { Let } f(t)=\cos t, t \in\left(0, \frac{\pi}{2}\right) \Rightarrow f^{\prime \prime}(t)=-\cos t<0
\end{aligned}
$$

Using Jensen's we have:

$$
\begin{gathered}
\begin{aligned}
& f\left(\frac{y}{z}\right)+f\left(\frac{z}{x}\right)+f\left(\frac{x}{y}\right) \leq 3 \cdot f\left(\frac{\frac{y}{z}+\frac{z}{x}+\frac{x}{y}}{3}\right) \\
&=3 \cos \left(\frac{\frac{y}{z}+\frac{z}{x}+\frac{x}{y}}{3}\right) \leq 3 \cos (1) . \\
& \Rightarrow\left\{(1) \leq \sqrt{3 \cos (1)} \approx 1,2731<3 \cdot \frac{\sqrt{5}}{5} \approx 1,3416 .\right.
\end{aligned} . . \begin{array}{l}
\end{array} .
\end{gathered}
$$

Solution 3 by David E. Manes, Oneonta, NY

Let $J=\sqrt{x \cos \left(\frac{y}{z}\right)}+\sqrt{y \cos \left(\frac{z}{x}\right)}+\sqrt{z \cos \left(\frac{x}{y}\right)}$. We will show that $J \leq \sqrt{3 \cos 1}<\frac{3}{5} \sqrt{5}$.
By the Cauchy-Schwarz inequality, one obtains

$$
\begin{aligned}
J=\sqrt{x \cos \left(\frac{y}{z}\right)}+\sqrt{y \cos \left(\frac{z}{x}\right)}+\sqrt{z \cos \left(\frac{x}{y}\right)} & \leq \sqrt{x+y+z} \sqrt{\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)} \\
& =\sqrt{\cos \left(\frac{y}{z}\right)+\cos \left(\frac{z}{x}\right)+\cos \left(\frac{x}{y}\right)}
\end{aligned}
$$

At the risk of being redundant, note that

$$
\begin{aligned}
J \leq \sqrt{\sum_{\text {cyc }} \cos \left(\frac{y}{z}\right)} & =\sqrt{(x+y+z) \sum_{c y c} \cos \left(\frac{y}{z}\right)} \\
& =\sqrt{(x+y+z) \cos \left(\frac{y}{z}\right)+(x+y+z) \cos \left(\frac{z}{x}\right)+(x+y+z) \cos \left(\frac{x}{y}\right)} .
\end{aligned}
$$

Since the cosine function is concave on the interval $(0, \pi / 2)$, it follows by Jensen's inequality that for each of the following terms in the cyclic sum under the square root sign, we get

$$
\begin{aligned}
& x \cos \left(\frac{y}{z}\right)+y \cos \left(\frac{z}{x}\right)+z \cos \left(\frac{x}{y}\right) \leq \cos \left(\frac{x y}{z}+\frac{y z}{x}+\frac{x z}{y}\right) \\
& y \cos \left(\frac{y}{z}\right)+z \cos \left(\frac{z}{x}\right)+x \cos \left(\frac{x}{y}\right) \leq \cos \left(\frac{y^{2}}{z}+\frac{z^{2}}{x}+\frac{x^{2}}{y}\right) \\
& z \cos \left(\frac{y}{z}\right)+x \cos \left(\frac{z}{x}\right)+y \cos \left(\frac{x}{y}\right) \leq \cos (y+z+x)=\cos 1 .
\end{aligned}
$$

Therefore, $J \leq \sqrt{\cos \left(\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}\right)+\cos \left(\frac{y^{2}}{z}+\frac{z^{2}}{x}+\frac{x^{2}}{y}\right)+\cos 1}$. For the first term, $\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}$, in parentheses above, observe that using the Arithmetic Mean-Geometric Mean inequality, one obtains

$$
\begin{aligned}
\frac{1}{2}\left(\frac{x y}{z}+\frac{y z}{x}\right) & \geq \sqrt{\frac{x y^{2} z}{x z}}=y, \\
\frac{1}{2}\left(\frac{y z}{x}+\frac{z x}{y}\right) & \geq \sqrt{\frac{x y z^{2}}{x y}}=z, \\
\frac{1}{2}\left(\frac{z x}{y}+\frac{x y}{z}\right) & \geq \sqrt{\frac{x^{2} y z}{y z}}=x .
\end{aligned}
$$

Summing the above terms yields

$$
\begin{equation*}
\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y} \geq x+y+z=1 . \tag{1}
\end{equation*}
$$

Using the Cauchy-Schwarz inequality in the Engel-Titu form for the second term in parentheses in J above, one immediately obtains

$$
\begin{equation*}
\frac{y^{2}}{z}+\frac{z^{2}}{x}+\frac{x^{2}}{y} \geq \frac{(y+z+x)^{2}}{z+x+y}=1 . \tag{2}
\end{equation*}
$$

Since the cosine function is decreasing on the interval $[0, \pi / 2]$ and as a result of inequalities (1) and (2), it follows that $\cos \left(\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}\right) \leq \cos 1$ and $\cos \left(\frac{y^{2}}{z}+\frac{z^{2}}{x}+\frac{x^{2}}{y}\right) \leq \cos 1$. Therefore,

$$
J=\sqrt{x \cos \left(\frac{y}{z}\right)}+\sqrt{y \cos \left(\frac{z}{x}\right)}+\sqrt{z \cos \left(\frac{x}{y}\right)} \leq \sqrt{3 \cos 1}
$$

Finally, note that for each of the above steps the inequalities become equalities if and only if $x=y=z=\frac{1}{3}$.

Solution 4 by Daniel Văcaru, Pitesti, Romania

One has
$\sqrt{x \cos \frac{y}{z}}+\sqrt{y \cos \frac{z}{x}}+\sqrt{z \cos \frac{x}{y}} \leq \underbrace{\sqrt{x+y+z}} \cdot \sqrt{\cos \frac{y}{z}+\cos \frac{z}{x}+\cos \frac{x}{y}}=\sqrt{\cos \frac{y}{z}+\cos \frac{z}{x}+\cos \frac{x}{y}}=$

$$
\begin{aligned}
\sqrt{\sin \left(\frac{\pi}{2}-\frac{y}{z}\right)+\sin \left(\frac{\pi}{2}-\frac{z}{x}\right)+\sin \left(\frac{\pi}{2}-\frac{x}{y}\right)} & \overbrace{<} \sqrt{\left(\frac{\pi}{2}-\frac{y}{z}\right)+\left(\frac{\pi}{2}-\frac{z}{x}\right)+\left(\frac{\pi}{2}-\frac{x}{y}\right)} \\
& =\sqrt{3 \frac{\pi}{2}-\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}\right)} .
\end{aligned}
$$

The inequality under the brace is true because $\sin x<x, \forall x \in\left(0, \frac{\pi}{2}\right)$. On the other hand, one knows that $\frac{y}{z}+\frac{z}{x}+\frac{x}{y} \geq 3$ by the MA-MG inequality. Therefore one has
$\sqrt{x \cos \frac{y}{z}}+\sqrt{\cos \frac{z}{x}}+\sqrt{\cos \frac{x}{y}}<\sqrt{3 \frac{\pi}{2}-3}=\sqrt{3 \cdot\left(\frac{\pi}{2}-1\right)}<\sqrt{3 \cdot\left(\frac{32}{20}-1\right)}=\sqrt{\frac{3 \cdot 12}{20}}=\frac{3}{\sqrt{(5}}=\frac{3}{5} \sqrt{5}$.
Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland and the proposer.

5510: Proposed by Ovidiu Furdui and Alina Sintămărian both at the Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate

$$
\sum_{n=1}^{\infty}\left[4^{n}(\zeta(2 n)-1)-1\right]
$$

where ζ denotes the Riemann zeta function.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(4^{n}(\zeta(2 n)-1)-1\right)=\sum_{n=1}^{\infty}\left(4^{n}\left(\sum_{m=2}^{\infty} \frac{1}{m^{2 n}}\right)-1\right)=\sum_{n=1}^{\infty} \sum_{m=3}^{\infty}\left(\frac{2}{m}\right)^{2 n}= \\
=\sum_{m=3}^{\infty} \sum_{n=1}^{\infty}\left(\frac{2}{m}\right)^{2 n}=\sum_{m=3}^{\infty} \frac{\left(\frac{2}{m}\right)^{2}}{1-\left(\frac{2}{m}\right)^{2}}=\sum_{m=3}^{\infty} \frac{4}{m^{2}-4}=\sum_{m=3}^{\infty}\left(\frac{1}{m-2}-\frac{1}{m+2}\right)= \\
=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{25}{12} .
\end{gathered}
$$

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[4^{n}(\zeta(2 n)-1)-1\right]=\sum_{n=1}^{\infty}\left[4^{n} \sum_{k=2}^{\infty} \frac{1}{k^{2 n}}-1\right]=\sum_{n=1}^{\infty} \sum_{k=3}^{\infty} \frac{4^{n}}{k^{2 n}}= \\
& =\sum_{k=3}^{\infty} \sum_{n=1}^{\infty} \frac{4^{n}}{k^{2 n}}=\sum_{k=3}^{\infty} \frac{4}{k^{2}} \frac{1}{\left(1-\frac{4}{k^{2}}\right)}=\sum_{k=3}^{\infty} \frac{4}{k^{2}-4}= \\
& =\lim _{n \rightarrow \infty} \sum_{k=3}^{n}\left[\frac{1}{k-2}-\frac{1}{k-1}\right]+\lim _{n \rightarrow \infty} \sum_{k=3}^{n}\left[\frac{1}{k-1}-\frac{1}{k}\right]+\lim _{n \rightarrow \infty} \sum_{k=3}^{n}\left[\frac{1}{k}-\frac{1}{k+1}\right]+ \\
& +\lim _{n \rightarrow \infty} \sum_{k=3}^{n}\left[\frac{1}{k+1}-\frac{1}{k+2}\right]=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{25}{12}
\end{aligned}
$$

Solution 3 by Moti Levy, Rehovot, Israel

Let

$$
S:=\sum_{n=1}^{\infty}\left(4^{n}(\zeta(2 n)-1)-1\right), \quad S_{N}:=\sum_{n=1}^{N}\left(4^{n}(\zeta(2 n)-1)-1\right) .
$$

Then

$$
\begin{aligned}
S_{N} & =\sum_{n=1}^{N}\left(\left(2^{2 n} \sum_{k=2}^{\infty} \frac{1}{k^{2 n}}\right)-1\right)=\left(\sum_{n=1}^{N} \sum_{k=2}^{\infty} \frac{2^{2 n}}{k^{2 n}}\right)-N \\
& =\sum_{k=3}^{\infty} \sum_{n=1}^{N} \frac{2^{2 n}}{k^{2 n}}=\sum_{k=3}^{\infty} \frac{4}{k^{2}-4}\left(1-\left(\frac{2}{k}\right)^{2 N}\right) \\
S & =\lim _{N \rightarrow \infty} S_{N}=\sum_{k=3}^{\infty} \frac{4}{k^{2}-4}=\sum_{k=3}^{\infty}\left(\frac{1}{k-2}-\frac{1}{k+2}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{k}-\sum_{k=5}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{25}{12} .
\end{aligned}
$$

Now, as a bonus, let us evaluate parametrized version of the above sum:

$$
S(t):=\sum_{n=1}^{\infty}\left(t^{2 n}(\zeta(2 n)-1)-\frac{t^{2 n}}{2^{2 n}}\right), \quad S_{N}(t):=\sum_{n=1}^{N}\left(t^{2 n}(\zeta(2 n)-1)-\frac{t^{2 n}}{2^{2 n}}\right)
$$

Then

$$
\begin{aligned}
& S(t)_{N}= \sum_{n=1}^{N}\left(\left(t^{2 n} \sum_{k=2}^{\infty} \frac{1}{k^{2 n}}\right)-\frac{t^{2 n}}{2^{2 n}}\right)=\left(\sum_{n=1}^{N} \sum_{k=2}^{\infty} \frac{t^{2 n}}{k^{2 n}}\right)-\sum_{n=1}^{N} \frac{t^{2 n}}{2^{2 n}} \\
&=\left(\sum_{k=2}^{\infty} \sum_{n=1}^{N} \frac{t^{2 n}}{k^{2 n}}\right)-\sum_{n=1}^{N} \frac{t^{2 n}}{2^{2 n}}=\sum_{k=3}^{\infty} \sum_{n=1}^{N} \frac{t^{2 n}}{k^{2 n}}=\sum_{k=3}^{\infty} \frac{t^{2}}{k^{2}-t^{2}}\left(1-\left(\frac{t}{k}\right)^{2 N}\right) \\
& S(t)=\lim _{N \rightarrow \infty} S(t)_{N}=\sum_{k=3}^{\infty} \frac{t^{2}}{k^{2}-t^{2}}
\end{aligned}
$$

Let us assume that t is not a positive integer and satisfies the inequality $t>-1$, then

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}-t^{2}}=\frac{\psi(t+1)-\psi(-t+1)}{2 t}
$$

where $\psi(t)$ is the Digamma function.

$$
\begin{gathered}
\psi(-z+1)=\psi(z)+\pi \cot (\pi z) \\
\sum_{k=1}^{\infty} \frac{1}{k^{2}-t^{2}}=\frac{1}{2 t}\left(\frac{1}{t}-\cot (\pi t)\right) \\
S(t)=t^{2} \frac{1}{2 t}\left(\frac{1}{t}-\pi \cot (\pi t)\right)-\frac{t^{2}}{1^{2}-t^{2}}-\frac{t^{2}}{2^{2}-t^{2}} \\
=\frac{5 t^{4}-15 t^{2}+4-\pi t\left(t^{4}-5 t^{2}+4\right) \cot (\pi t)}{2\left(t^{4}-5 t^{2}+4\right)} .
\end{gathered}
$$

We summarize our result as follows,

$$
S(t)=\left\{\begin{array}{c}
\frac{5 t^{4}-15 t^{2}+4-\pi t\left(t^{4}-5 t^{2}+4\right) \cot (\pi t)}{2\left(t^{4}-5 t^{2}+4\right)}, \quad|t|<3 \\
\lim _{t \rightarrow 1} \frac{5 t^{4}-15 t^{2}+4-\pi t\left(t^{4}-5 t^{2}+4\right) \cot (\pi t)}{2\left(t^{4}-5 t^{2}+4\right)}=\frac{5}{12}, \quad|t|=1, \\
\lim _{t \rightarrow 2} \frac{5 t^{4}-15 t^{2}+4-\pi t\left(t^{4}-5 t^{2}+4\right) \cot (\pi t)}{2\left(t^{4}-5 t^{2}+4\right)}=\frac{25}{12}, \quad|t|=2 .
\end{array}\right.
$$

Remark: The function $S(t)$, as defined above, is continuous in the interval $|t|<3$.

Reference:

Borwein, Jonathan; Bradley, David M.; Crandall, Richard (2000). " Computational
Strategies for the Riemann Zeta Function". J. Comp. App. Math. 121 (1-2): 247-296.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Denote the sum of the problem by S so that $S=\sum_{n=1}^{\infty} \sum_{k=3}^{\infty}\left(\frac{2}{k}\right)^{2 n}$.
Since the summands are positive, so interchanging the order of summation, we have

$$
S=\sum_{k=3}^{\infty} \sum_{n=1}^{\infty}\left(\frac{2}{k}\right)^{2 n}=4 \sum_{k=3}^{\infty} \frac{1}{k^{2}-4} .
$$

For any integer $M \geq 3$, we have

$$
4 \sum_{k=3}^{\infty} \frac{1}{k^{2}-4}=\sum_{k=3}^{M}\left(\frac{1}{k-2}-\frac{1}{k+2}\right)=\frac{25}{12}-\sum_{k=M-1}^{M+2} \frac{1}{k} .
$$

It follows that $S=\frac{25}{12}$.

Comment by Editor : Ed Gray of Highland Beach, FL wrote: "I didn't know any recursive formula that would help, so I did the sum by brute force, computing the sum of the first 10 terms, getting a result of $2.0828 \ldots .$. .This aroused my curiosity, so I went to Wolfram-alpha and sought the sum for a great number of terms, like 100 and 300. It became clear that the answer is $2.0833333333 \cdots$ forever. Converting this to a fraction, we get a beautiful answer of $25 / 24$ ". He continued on saying that he did not actually solve the problem. This is being mentioned here as a very useful heuristic for getting a feel for the problem, and as a caveat that there are an infinite number of different ways to express a closed form representation for a specific decimal.

Also solved by Michel Bataille, Rouen, France; Bruno Salgueiro Fanego, Viveiro, Spain; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece, and the proposer.

Mea Culpa

Mary Wagner-Krankel of St. Mary's University in San Antonio, TX should have been credited with having solved problem 5500.

