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Solutions to the problems stated in this issue should be posted before
March 15, 2019

5523: Proposed by Kenneth Korbin, New York, NY

For every prime number P , there is a circle with diameter 4P 4 + 1. In each of these
circles, it is possible to inscribe a triangle with integer length sides and with area
(2P )(2P + 1)(2P − 1)(2P 2 − 1). Find the sides of the triangles if P = 2 and if P = 3.

5524: Proposed by Michael Brozinsky, Central Islip, NY

A billiard table whose sides obey the law of reflection is in the shape of a right triangle
ABC with legs of length a and b where a > b and hypotenuse c. A ball is shot from the
right angle and rebounds off the hypotenuse at point P on a path parallel to leg CB that

hits let CA at point Q. Find the ratio
AQ

QC
.

5525: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”,
Drobeta Turnu-Severin, Mehedinti, Romania

Find real values for x and y such that:

4 sin2(x+ y) = 1 + 4 cos2 x+ 4 cos2 y.

5526: Proposed by Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece

The lengths of the sides of a triangle are 12, 16 and 20. Determine the number of
straight lines which simultaneously halve the area and the perimeter of the triangle.

5527: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b and c be positive real numbers such that a+ b+ c = 3. Prove that for all real
α > 0, holds:

1

2

(
1− aα+1bα

aαbα
+

1− bα+1cα

bαcα
+

1− cα+1aα

cαaα

)

1



≤

√(
1− aα+1

aα
+

1− bα+1

bα
+

1− cα+1

cα

)(
1− aαbαcα
aαbαcα

)
.

5528: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a > 0. Calculate

∫ ∞
a

∫ ∞
a

dxdy

x6(x2 + y2)
.

Solutions

5505: Proposed by Kenneth Korbin, New York, NY

Given a Primitive Pythagorean Triple (a, b, c) with b2 > 3a2. Express in terms of a and
b the sides of a Heronian Triangle with area ab(b2 − 3a2).

(A Heronian Triangle is a triangle with each side length and area an integer.)

Solution 1 by Stanley Rabinowitz, Chelmsford, MA

One way of doing this would be to form an obtuse triangle ABC as shown with base of
length b2 − 3a2 and altitude of length 2ab, so that the area of 4ABC is ab(b2 − 3a2) as
desired. If the line segment from B to D, the foot of the altitude from C, has length 2a2,
then hypotenuse BC in 4BDC would have length 2ac, since this triangle would be
similar to an a–b–c right triangle, scaled up by 2a. Then AD would have length b2 − a2,
and by the Pythagorean Theorem, AC would have length a2 + b2.
Thus, 4ABC is the desired Heronian Triangle, with sides b2 − 3a2, 2a

√
a2 + b2, and

a2 + b2.

A
B

C

D
b2 − 3a2

2ac
a
2 + b

2

2a2

2ab

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Given a primitive Pythagorean triple (a, b, c) with b2 > 3a2, let

x = b2 − 3a2,

y = 2a
√
a2 + b2,

z = a2 + b2.

Note that y = 2ac and z = c2. Since c2 − 4a2 = b2 − 3a2 > 0 we have c > 2a.
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We calculate

−x+ y + z = −(b2 − 3a2) + 2ac+ (a2 + b2)

= 4a2 + 2ac > 0,

x− y + z = (b2 − 3a2)− 2ac+ c2

= (b2 − 3a2) + c(c− 2a) > 0,

and

x+ y − z = (b2 − 3a2) + 2ac− (a2 + b2)

= 2a(c− 2a) > 0.

Thus x+ y > z, x+ z > y, and y + z > x so (x, y, z) gives the sides of a Heronian
triangle. Let s be the semiperimeter and A the area of this triangle.
By Heron’s formula we have

A2 = s(s− x)(s− y)(s− z).

We have

s =
x+ y + z

2
= b2 − a2 + ac,

s− x = b2 − a2 + ac− (b2 − 3a2)

= ac+ 2a2,

s− y = b2 − a2 + ac− 2ac

= b2 − a2 − ac,

and

s− z = b2 − a2 + ac− (a2 + b2)

= ac− 2a2.

So

A2 = (b2 − a2 + ac)(ac+ 2a2)(b2 − a2 − ac)(ac− 2a2)

= [(b2 − a2)2 − (ac)2][(ac)2 − (2a2)2].

Now

(b2 − a2)2 − (ac)2 = b4 − 2a2b2 + a4 − a2(a2 + b2)

= b4 − 3a2b2

= b2(b2 − 3a2)

and

(ac)2 − (2a2)2 = a2(c2 − 4a2)

= a2(b2 − 3a2)
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so A2 = a2b2(b2 − 3a2)2.

Thus if (a, b, c) is a primitive Pythagorean triple with b2 > 3a2 then (x, y, z) with

x = b2 − 3a2, y = 2a
√
a2 + b2, z = a2 + b2

is a Heronian triangle with area ab(b2 − 3a2).

N.B. For a particular (a, b, c) there can be other Heronian triangles with area
ab(b2 − 3a2). For example, for the primitive Pythagorean triple (5, 12, 13) we are looking
for a Heronian triangle with area 4140. The formulas above give the triangle
(69, 130, 169), but (41, 202, 207) is another triangle with area 4140.

Solution 3 by Trey Smith, Angelo State University, San Angelo, TX

Let x = b2 − 3a2, y = 2a
√
a2 + b2, and z = a2 + b2 be the lengths of the three sides of

the triangle. We first observe that all of these are positive integers; x and z obviously so,
and y since a2 + b2 = c2, so that

2a
√
a2 + b2 = 2a

√
c2 = 2ac.

The perimeter of the triangle is

x+ y + z

= (b2 − 3a2) + (2a
√
a2 + b2) + (a2 + b2)

= (c2 − 4a2) + 2ac+ c2

= 2c2 + 2ac− 4a2.

Then the semiperimeter is s = c2 + ac− 2a2. Applying Heron’s formula to find the area
A, we have

A2

= s(s− x)(s− y)(s− z)

= s(s− (b2 − 3a2))(s− (2a
√
a2 + b2))(s− (a2 + b2))

= s(s− (c2 − 4a2))(s− 2ac)(s− c2)

= (c2 + ac− 2a2)((c2 + ac− 2a2)− (c2 − 4a2))((c2 + ac− 2a2)− 2ac)((c2 + ac− 2a2)− c2)

= (c2 + ac− 2a2)(ac+ 2a2)(c2 − ac− 2a2)(ac− 2a2)

= [(c+ 2a)(c− a)][a(c+ 2a)][(c+ a)(c− 2a)][a(c− 2a)]

= a2(c2 − a2)(c2 − 4a2)2

= a2b2(b2 − 3a2)2.
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Thus A = ab(b2 − 3a2).

Editor′s Comment : David Stone and John Hopkins of Georgia Southern University
added the following comment to their solution to this problem: “So how did we find
x, y, z? We first tired the simplest possible example; (a, b, c) = (3, 5, 12). After some
algebra and some computer help, we found the triangle (x, y, z) = (69, 169, 130) has the
appropriate area. From this we conjectured the form for arbitrary x, y, z.

x = 169 = 132 = c2

y = 69 = 122 − 3 · 52 = b2 − 3a2

z = 130 = 2 · 5 · 13 = 2ac.

Then it only required simple algebra to verify this construction. Some Excel
computations also lead us to the broader result (when b2 < 3a2). The perfect example of
computing power assisting a person!”

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed
Gray, Highland Beach, FL; Ioannis D. Sfikas, National and Kapodistrian
University of Athens, Greece; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

5506: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Severin, Mehedinti, Romania

Find Ω = det

[(
1 5
5 25

)100

+

(
25 −5
−5 1

)100
]

.

Solution 1 by Michel Bataille, Ronen, France

Let A =

(
1 5
5 25

)
, B =

(
25 −5
−5 1

)
, O2 =

(
0 0
0 0

)
, I2 =

(
1 0
0 1

)
.

It is readily checked that AB = BA = O2 and A+B = 26I2.
Since AB = BA, the binomial theorem gives

(A+B)100 =

100∑
k=0

(
100

k

)
AkB100−k. (1)

Now, if k ∈ {1, 2, . . . , 50}, then

AkB100−k = AkBkB100−2k = (AB)kB100−2k = O2 ·B100−2k = O2

(note that AkBk = (AB)k since AB = BA) and similarly, if k ∈ {51, 52, . . . , 99},
then AkB100−k = A2k−100(AB)100−k = O2.

As a result, (1) gives (A+B)100 = A100 +B100, that is, 26100I2 = A100 +B100. We can
conclude:

Ω = det(26100I2) = 26200.

Solution 2 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Observe(
1 5
5 25

)100

=

([
1
5

] [
1 5

])100

=

[
1
5

]([
1 5

] [ 1
5

])99 [
1 5

]
= 2699

(
1 5
5 25

)
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and(
25 −5
−5 1

)100

=

([
5
−1

] [
5 −1

])100

=

[
5
−1

]([
5 −1

] [ 5
−1

])99 [
5 −1

]
= 2699

(
25 −5
−5 1

)
.

It follows that

Ω = det

[
2699

(
1 5
5 25

)
+ 2699

(
25 −5
−5 1

)]
= det

[(
26100 0

0 26100

)]
= 26200.

Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX

Let A =

(
1 5
5 25

)
and B =

(
25 −5
−5 1

)
. Matrices A and B are each symmetric, hence

orthogonally diagonalizable.

Solving the equation det (λI −A) = 0 yields λ1 = 0 and λ2 = 26 as the eigenvalues of A.

Solving the equation (λI −A)−→x =
−→
0 successively for λ = 0 and λ = 26 yields

−→x1 =

( −5√
26
1√
26

)
and −→x2 =

(
1√
26
5√
26

)
as corresponding unit eigenvectors. So

A =

( −5√
26

1√
26

1√
26

5√
26

)(
0 0
0 26

)( −5√
26

1√
26

1√
26

5√
26

)
. Similarly,

B =

(
1√
26

−5√
26

5√
26

1√
26

)(
0 0
0 26

)( 1√
26

5√
26

−5√
26

1√
26

)
.

Since for both A and B the matrix of eigenvectors is orthogonal, we have

A100 =

( −5√
26

1√
26

1√
26

5√
26

)(
0 0
0 26100

)( −5√
26

1√
26

1√
26

5√
26

)
=

(
2699 5

(
2699

)
5
(
2699

)
25
(
2699

)) , and

B100 =

(
1√
26

−5√
26

5√
26

1√
26

)(
0 0
0 26100

)( 1√
26

5√
26

−5√
26

1√
26

)
=

(
25
(
2699

)
−5
(
2699

)
−5
(
2699

)
2699

)
.

So Ω = det
[
A100 +B100

]
= det

(
26100 0

0 26100

)
= 26200.

Solution 4 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

A way to calculate An for a 2× 2 matrix is to use the Hamilton-Cayley Theorem:

A2 − Tr(A) ·A+ detA · I2 = 0.

For example, if we have a 2× 2 matrix A =

(
1 a
a a2

)
(or A =

(
a2 −a
−a 1

)
) with

detA = 0 and Tr(A) = a2 + 1, then the Hamilton-Cayley theorem becomes:

A2 = Tr(A) = (a2 + 1)2A.
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A3 = (a2 + 1)A2 = (a2 + 1)2A,

· · ·

An = (a2 + 1)An−1 = (a2 + 1)n−1A.

So we have:

(
1 5
5 25

)100

= (52 + 1)99
(

1 5
5 25

)
= 2699

(
1 5
5 25

)
,

(
25 −5
−5 1

)100

= (52 + 1)99
(

25 −5
−5 1

)
= 2699

(
25 −5
−5 1

)
,

(
1 5
5 25

)100

+

(
25 −5
5 1

)100

= 2699
((

1 5
5 25

)
+

(
25 −5
5 1

))
= 26100

(
1 0
0 1

)
,

and finally we have:

Ω = det

((
1 5
5 25

)100

+

(
25 −5
5 1

)100
)

= det

(
26100

(
1 5
5 25

)100

+

(
1 0
0 1

))
= 26100.

Solution 5 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Let c =
√

26. We know that(
1 5
5 25

)
=

(
−5/c 1/c
1/c 5/c

)(
0 0
0 26

)(
−5/c 1/c
1/c 5/c

)
.
= AΛA−1

(
25 −5
−5 1

)
=

(
1/c −5/c
5/c 1/c

)(
0 0
0 26

)(
1/c 5/c
−5/c 1/c

)
.
= BΛB−1

Ω = AΛ100A−1 +BΛ100B−1

AΛ100A−1 =

(
2699 5 · 2699

5 · 2699 25 · 2699

)
BΛ100B−1 =

(
25 · 2699 −5 · 2699

−5 · 2699 2699

)
Thus

Ω = det

(
2699 · 26 0

0 2699 · 26

)
= 26200.

Also solved by Arkady Alt, San Jose, CA; Ashland University
Undergraduate Problem Solving Group, Ashland University, Ashland, Ohio;
Brian D. Beasley, Presbyterian College, Clinton, SC; Anthony J.
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Bevelacqua, University of North Dakota, Grand Forks, ND; Dionne Bailey,
Elsie Campbell and Charles Diminnie, Angelo Sate University, San Angelo,
TX; Pat Costello, Eastern Kentucky University, Richmond, KY; David
Diminnie, Texas Instruments Inc., Dallas, TX; Michael Faleski, University
Center, MI; Bruno Salgueiro Fanego Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel;
Carl Libis, Columbia Southern University, Orange Beach, AL; Ismayil
Mammadzada (student), ADA University, Baku, Azerbaijan; Pedro Pantoja,
Natal/RN, Brazil; Ravi Prakash, Oxford University Press; New Delhi, India;
Neculai Stanciu “George Emil Palade” School, Buzău, Romania and Titu
Zvonaru, Comănesti, Romania; Henry Ricardo (four different proofs),
Westchester Area Math Circle, NY; Trey Smith, Angelo State University,
San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; David Stone and
John Hawkins, Georgia Southern University, Statesboro, GA; Marian
Ursărescu, “Roman Vodă” College, Roman, Romania; Daniel Văcaru,
Pitesti, Romania, and the proposer.

5507: Proposed by David Benko, University of South Alabama, Mobile, AL

A car is driving forward on the real axis starting from the origin. Its position at time
0 ≤ t is s(t). Its speed is a decreasing function: v(t), 0 ≤ t. Given that the drive has a
finite path (that is lim

t→∞
s <∞), that v(2t)/v(t) has a real limit c as t→∞, find all

possible values of c.

Solution 1 by Moti Levy, Rehovot, Israel

We will show that the set of all possible values of c, is the interval
[
0, 12
]
, i.e., 0 ≤ c ≤ 1

2 .

Let us summarize the conditions on the speed function v (t):
1) v (t) ≥ 0,
2) v (t) is decreasing function for all t ≥ 0,
3)
∫∞
0 v (t) dt <∞

4) limt→∞
v(2t)
v(t) = c, c is real number.

Since v(t) ≥ 0, then clearly c ≥ 0. Since v (t) is decreasing function, then c ≤ 1. It
follows that 0 ≤ c ≤ 1.

Now we show that c can attain any value in the interval
[
0, 12
]
.

Let r be a real number and r > 1. Then v (t) = 1
1+tr satisfies all four requirements from

the speed function, in particular∫ ∞
0

1

1 + tr
dt <∞, for r > 1,

and

lim
t→∞

v (2t)

v (t)
= lim

t→∞

1 + tr

1 + 2rtr
=

1

2r
= c.

It follows that c ∈
(
0, 12
)
.

To see that c can attain also the value zero, choose v (t) = e−t.

To see that c can attain also the value 1
2 , choose v (t) =

{ 1
2 ln2 2

, for 0 ≤ t ≤ 2,
1

t ln2 t
, for 2 < t.
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Then v (t) satisfies all the four requirements from the speed function, in particular∫ ∞
0

v (t) dt =
1

ln2 2
+

1

ln 2
,

and

lim
t→∞

v (2t)

v (t)
= lim

t→∞

t ln2 t

2t ln2 (2t)
=

1

2
.

To finish the proof, we have to show that c /∈
(
1
2 , 1
]
.

Suppose limt→∞
v(2t)
v(t) = c, then for every ε > 0, there is a real number t0 such that t > t0

implies v(2t)
v(t) > c− ε.

Now we define a staircase function s (t), as follows:

s (t) := (c− ε)k v (t0) , for 2k−1t0t0 ≤ t < 2kt0, k = 1, 2, . . .

Since the function v (t) is positive decreasing function for all t ≥ 0, then v (t) ≥ s (t),
hence ∫ ∞

t0

v (t) dt ≥
∫ ∞
t0

s (t) dt.

Integrating the staircase function, we get∫ ∞
t0

s (t) dt = v (t0)
∞∑
k=1

(c− ε)k 2k−1 = v (t0) (c− ε)
∞∑
k=0

(2 (c− ε))k .

If c− ε ≥ 1
2 then

∫∞
t0
s (t) dt diverges and so

∫∞
t0
v (t) dt diverges.

We conclude that if c > 1
2 then

∫∞
t0
v (t) dt diverges, contradicting property 3) of the

speed function.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that

0 ≤ c ≤ 1

2
(1)

Let lim
t→∞

s(t) = L <∞. Then lim
t→∞

s(2t) = L and 0 ≤ s(t) < s(2t) < L for t > 0. Hence,

by L’Hôpital’s rule, we have

1 ≥ lim
t→∞

L− s(2t)
L− s(t)

= lim
t→∞

ds(2t)

dt
ds(t)

dt

= 2 lim
t→∞

v(2t)

v(t)
= 2c.

Thus (1) holds.

By taking s(t) = 1− e−t, s(t) = 1− (t+ 1)
ln(2c)
ln 2 , s(t) = 1− 1

ln(1 + e)
according as

c = 0, 0 < c <
1

2
, c =

1

2
we see that each c in (1) is in fact admissible.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We claim that the set C of possible values of c is the closed interval

[
0,

1

2

]
.
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Indeed, if v(t) = v0e
−t, then v(t) is a decreasing function ,

∫ ∞
0

v(t)dt <∞, and

lim
t→∞

v(2t)

v(t)
= 0. So 0 ∈ C.

If a ≥ 1 and v(t) =
v0

1 + ta ln2(1 + t)
then v(t) is a decreasing function,

∫ ∞
0

v(t)dt <∞

and

lim
t→∞

v(2t)

v(t)
= lim

t→∞

1 + ta ln2(1 + t)

1 + 2ata ln2(1 + 2t)
=

1

2a
. So

(
0,

1

2

]
⊂ C. It remains to prove that if

c >
1

2
then c/∈ C.

Suppose if possible that lim
t→∞

v(2t)

v(t)
= c, where c >

1

2
. Let ε :=

c− 1/2

2
> 0. Then there

is a number T = T (ε) > 0 such that −ε < v(2t)

v(t)
− c < ε, whenever t > T . We conclude

that∫ ∞
2T

v(t)dt = 2

∫ ∞
T

v(2t)dt > 2(c−ε)
∫ ∞
T

v(t)dt ≥ 2(c−ε)
∫ ∞
2T

v(t)dt = (1+2ε)

∫ ∞
2T

v(t)dt >

∫ ∞
2T

v(t)dt,

which is a contradiction, and the proof is complete.

Also solved by the proposer.

5508: Proposed by Pedro Pantoja, Natal RN, Brazil

Let a, b, c be positive real numbers such that a+ b+ c = 1. Find the minimum value of

f(a, b, c) =
a

3ab+ 2b
+

b

3bc+ 2c
+

c

3ca+ 2a
.

Solution 1 by Solution by Dionne Bailey, Elsie Campbell, and Charles
Diminnie, Angelo State University, San Angelo, TX

To begin, we note that since a, b, c > 0 and a+ b+ c = 1, the Arithmetic - Geometric
Mean Inequality implies that

a2 + b2 + c2 = (a+ b+ c)
(
a2 + b2 + c2

)
= a3 + b3 + c3 + ab2 + bc2 + ca2 + a2b+ b2c+ c2a

=
(
a3 + ab2

)
+
(
b3 + bc2

)
+
(
c3 + ca2

)
+ a2b+ b2c+ c2a

≥ 2
√
a4b2 + 2

√
b4c2 + 2

√
c4a2 + a2b+ b2c+ c2a

= 3
(
a2b+ b2c+ c2a

)
. (1)

As a result of (1), we have

1 = (a+ b+ c)2

= a2 + b2 + c2 + 2 (ab+ bc+ ca)

≥ 3
(
a2b+ b2c+ c2a

)
+ 2 (ab+ bc+ ca)

=
(
3a2b+ 2ab

)
+
(
3b2c+ 2bc

)
+
(
3c2a+ 2ca

)
. (2)
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Then, using property (2), the convexity of g (x) =
1

x
on (0,∞), and Jensen’s Theorem,

we obtain

f (a, b, c) =
a

3ab+ 2b
+

b

3bc+ 2c
+

c

3ca+ 2a

= ag (3ab+ 2b) + bg (3bc+ 2c) + cg (3ca+ 2a)

≥ g [a (3ab+ 2b) + b (3bc+ 2c) + c (3ca+ 2a)]

= g
[(

3a2b+ 2ab
)

+
(
3b2c+ 2bc

)
+
(
3c2a+ 2ca

)]
=

1

(3a2b+ 2ab) + (3b2c+ 2bc) + (3c2a+ 2ca)

≥ 1

= f

(
1

3
,
1

3
,
1

3

)
.

It follows that under the conditions a, b, c > 0 and a+ b+ c = 1, the minimum value of

f (a, b, c) is f

(
1

3
,
1

3
,
1

3

)
= 1.

Solution 2 by David E. Manes, Oneonta, NY

We will show that the minimum value of f is 1.
By the Arithmetic Mean-Geometric Mean inequality, we get

f(a, b, c) ≥ 3 3

√
a

b(3a+ 2)
· b

c(3b+ 2)
· c

a(3c+ 2)
=

3
3
√

(3a+ 2)(3b+ 2)(3c+ 2)
.

We again use the AM-GM inequality to obtain

3
√

(3a+ 2)(3b+ 2)(3c+ 2) ≤ (3a+ 2) + (3b+ 2) + (3c+ 2)

3
=

3(a+ b+ c) + 6

3
= 3.

Hence,
1

3
√

(3a+ 2)(3b+ 2)(3c+ 2)
≥ 1

3

so that

f(a, b, c) ≥ 3
3
√

(3a+ 2)(3b+ 2)(3c+ 2)
≥ 3 · (1/3) = 1

with equality if and only if a = b = c =
1

3
.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

From Bergström’s and the Arithmetic mean -Geometric mean inequalities,

f(a, b, c) =

(√
a

b

)2

3a+ 2
+

(√
b

c

)2

3b+ 2
+

(√
c

a

)2

3c+ 2
≥

(√
a

b
+

√
b

c
+

√
c

a

)2

3a+ 2 + 3b+ 2 + 3c+ 2
=


√
a

b
+

√
b

c
+

√
c

a

3


2

11



≥ 3

√√
a

b

√
b

c

√
c

a
= 1.

Equality is attained iff it occurs in those two inequalities, that is, iff√
a

b

3a+ 2
=

√
b

c
3b+ 2

=

√
c

ba

3c+ 2
and

a

b
=
b

c
=
c

a
. These last identities are true if and only if

a = b = c, that is, if and only if a = b = c =
1

3
. In this case equality is also obtained in

Bergström’s inequality. So, the minimum value of f(a, b, c) is 1, and this occurs if and

only if a = b = c =
1

3
.

Solution 4 by Arkady Alt, San Jose,CA

Since

(
a

3a+ 2
− b

3b+ 2

)((
−1

a

)
−
(
−1

b

))
=

2 (a− b)2

ab (3b+ 2) (3a+ 2)
≥ 0 then triples(

a

3a+ 2
,

b

3b+ 2
,

c

3c+ 2

)
,

(
−1

a
,−1

b
,−1

c

)
are agreed in order and, therefore, by the

Rearrangement Inequality
∑
cyc

a

3a+ 2
·
(
−1

a

)
≥
∑
cyc

a

3a+ 2
·
(
−1

b

)
⇐⇒∑

cyc

a

(3a+ 2) b
≥
∑
cyc

a

3a+ 2
· 1

a
=
∑
cyc

1

3a+ 2
.

Also, by Cauchy Inequality
∑
cyc

(3a+ 2) ·
∑
cyc

1

3a+ 2
≥ 9 ⇐⇒ 9 ·

∑
cyc

1

3a+ 2
≥ 9 ⇐⇒∑

cyc

1

3a+ 2
≥ 1.Thus, f(a, b, c) ≥ 1 and since f(

1

3
,
1

3
,
1

3
) = 1 we may conclude that

min f(a, b, c) = 1.

Solution 5 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Since c = 1− a− b, then we have:

f(a, b, c) =
a

3ab+ 2b
+

b

3b(1− a− b) + 2(1− a− b)
+

1− a− b
3(1− a− b)a+ 2a

.

That means that we may assume the function:

g(a, b) =
a

3ab+ 2b
− b

(3b+ 2)(a+ b− 1)
+

a+ b+−1

a(3a+ 3b− 5)
.

To find the stationary points of g(a, b), work out
∂g

∂a
and

∂g

∂b
and set both to zero .

This gives two equations for two unknowns a and b. We may solve these equations for a
and b (often there is more than one solution). Let (x, y) be a stationary point. If gaa > 0
and gbb > 0 at (x, y) then (x, y) is a minimum point . So,

∂g

∂a
= −(a+ b− 1)(6a+ 3b− 5)

a2(3a+ 3b− 5)2
− 3a

b(3a+ 2)2
+

b

(3b+ 2)(a+ b− 1)2
+

1

3ab+ 2b
+

1

a(3a+ 3b− 5)

12



∂g

∂b
= − a

(b2(3a+ 2)
+

b(3a+ 6b− 1)

(3b+ 2)2(a+ b− 1)2
− 1

(3b+ 2)(a+ b− 1)
+

1

a(3a+ 3b− 5)
− 3(a+ b− 1)

a(3a+ 3b− 5)2
,

and for (a, b) =

(
1

3
,
1

3

)
, we have:

min g(a, b) = min

[
a

3ab+ 2b
− b

(3b+ 2)(a+ b− 1)
+

a+ b− 1

a(3a+ 3b− 5)

]
= 1.

and for (a, b) =

(
1

3
,
1

3

)
, we have:

min g(a, b) = min

[
a

3ab+ 2b
− b

(3b+ 2)(a+ b− 1
+

a+ b− 1

a(3a+ 3b− 5)

]
= 1.

Solution 6 by Albert Stadler, Herrliberg, Switzerland

We will prove that the minimum value equals 1 and the minimum is assumed if and only
if a = b = c = 1/3. To that end we must prove that

f(a, b, c) =
a(a+ b+ c)

3ab+ 2b(a+ b+ c)
+

a(a+ b+ c)

3ab+ 2b(a+ b+ c)
+

a(a+ b+ c)

3ab+ 2b(a+ b+ c)
≥ 1.

We clear denominators and get the equivalent inequality

10
∑
cycl

a4b2+24
∑
cycl

a3b3+18
∑
cycl

a4c2+4
∑
cycl

a5c ≥ 2
∑
cycl

a4bc+15
∑
cycl

a3b2c+11
∑
cycl

a3bc2+28
∑
cycl

a2b2c2. (1)

By the (weighted)AM-GM inequality,∑
cycl

a4b2 +
∑
cycl

a4c2 ≥ 2
∑
cycl

a4bc,

15
∑
cycl

a3b3 = 15
∑
cycl

(
2

3
a3b3 +

1

3
c3a3

)
≥ 15

∑
cycl

a3b2c,

11
∑
cycl

a4c2 = 11
∑
cycl

(
2

3
a4c2 +

1

6
b4a2 +

1

6
c4b2

)
≥ 11

∑
cycl

a3bc2,

9
∑
cycl

a4b2 ≥ 27a2b2c2,

9
∑
cycl

a3b3 ≥ 27a2b2c2,

6
∑
cycl

a4c2 ≥ 18a2b2c2,

4
∑
cycl

a5c ≥ 12a2b2c2,

and (1) follows if we add the last seven inequalities. In all seven inequalities equality
holds if and only if a = b = c.

13



Comment by Stanley Rabinowitz of Chelmsford, MA. Problems such as this are
easily solvable by computer algebra systems these days. For example; the Mathematica
command
Minimize [{a/(3a ∗ b + 2b) + b/(3b ∗ c + 2c) + c/(3c ∗ a + 2a), a > 0 && b > 0 && c > 0 &&
a+ b+ c = 1}, {a, b, c}] responds by saying that the minimum value is 1 and occurs

when a = b = c =
1

3
.

Also solved by Konul Aliyeva (student), ADA University, Baku, Azerbaijan;
Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL; Tran Hong
(student), Cao Lanh School, Dong Thap, Vietnam; Sanong Huayrerai,
Rattanakosinsomphothow School, Nakon, Pathom, Thailand; Seyran
Ibrahimov, Baku State University, Maasilli, Azerbaijan; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Stanley Rabinowitz of
Chelmsford, MA; Neculai Stanciu “George Emil Palade” School, Buză,
Romania and Titu Zvonaru, Comănesti, Romania; Daniel Văcaru, Pitesti,
Romania; Nicusor Zlota “Traian Vuia Technical College, Focsani, Romania,
and the proposer.

5509: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be positive real numbers that add up to one and such that

0 <
x

y
,
y

z
,
z

x
<
π

2
. Prove that

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
<

3

5

√
5.

Solution 1 by Michel Bataille, Rouen, France

The Cauchy-Schwarz inequality provides

√
x

√
cos
(y
z

)
+
√
y

√
cos
( z
x

)
+
√
z

√
cos

(
x

y

)
≤ (x+y+z)1/2

(
cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

))1/2

.

Since x+ y + z = 1, it follows that the left-hand side L of the proposed inequality
satisfies

L ≤
(

cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

))1/2

.

Thus, it suffices to show that

cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)
<

9

5
. (1)

Now, Jensen’s inequality applied to the cosine function, which is concave on (0, π2 ), yields

cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)
≤ 3 cos

(
y/z + z/x+ x/y

3

)
. (2)

14



But we have 1 = 3

√
y
z ·

z
x ·

x
y ≤

y/z+z/x+x/y
3 (by AM-GM) and

0 < y/z+z/x+x/y
3 <

3·π
2
3 = π

2 , hence

cos

(
y/z + z/x+ x/y

3

)
≤ cos(1)

(since the cosine function is decreasing on (0, π2 )).

Then (2) gives cos
(y
z

)
+ cos

(
z
x

)
+ cos

(
x
y

)
≤ 3 cos(1). There just remains to remark that

cos(1) < 0.6 = 3
5 to obtain the desired inequality (1).

Solution 2 by Tran Hong (student), Cao Lanh School, Dong Thap, Vietnam

LHS
BCS
≤
√
x+ y + z

√
cos
(y
z

)
+ cos

( z
x

)
+ cos

(x
y

)
=
√

1 ·
√

cos
(y
z

)
+ cos

( z
x

)
+ cos

(x
y

)
(1)

Let f(t) = cos t, t ∈
(

0,
π

2

)
⇒ f ′′(t) = − cos t < 0

Using Jensen’s we have:

f
(y
z

)
+ f

( z
x

)
+ f

(x
y

)
≤ 3 · f

(
y
z + z

x + x
y

3

)

= 3 cos

(
y
z + z

x + x
y

3

)
≤ 3 cos(1).

⇒ {(1) ≤
√

3 cos(1) ≈ 1, 2731 < 3 ·
√

5

5
≈ 1, 3416.

Solution 3 by David E. Manes, Oneonta, NY

Let J =
√
x cos

(y
z

)
+
√
y cos

(
z
x

)
+

√
z cos

(
x
y

)
. We will show that J ≤

√
3 cos 1 <

3

5

√
5.

By the Cauchy-Schwarz inequality, one obtains

J =

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
≤
√
x+ y + z

√
cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)

=

√
cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)
.

At the risk of being redundant, note that

J ≤
√∑

cyc

cos
(y
z

)
=

√
(x+ y + z)

∑
cyc

cos
(y
z

)

=

√
(x+ y + z) cos

(y
z

)
+ (x+ y + z) cos

( z
x

)
+ (x+ y + z) cos

(
x

y

)
.

15



Since the cosine function is concave on the interval (0, π/2), it follows by Jensen’s
inequality that for each of the following terms in the cyclic sum under the square root
sign, we get

x cos
(y
z

)
+ y cos

( z
x

)
+ z cos

(
x

y

)
≤ cos

(
xy

z
+
yz

x
+
xz

y

)
y cos

(y
z

)
+ z cos

( z
x

)
+ x cos

(
x

y

)
≤ cos

(
y2

z
+
z2

x
+
x2

y

)
z cos

(y
z

)
+ x cos

( z
x

)
+ y cos

(
x

y

)
≤ cos(y + z + x) = cos 1.

Therefore, J ≤

√
cos

(
xy

z
+
yz

x
+
zx

y

)
+ cos

(
y2

z
+
z2

x
+
x2

y

)
+ cos 1. For the first

term,
xy

z
+
yz

x
+
zx

y
, in parentheses above, observe that using the Arithmetic

Mean-Geometric Mean inequality, one obtains

1

2

(xy
z

+
yz

x

)
≥
√
xy2z

xz
= y,

1

2

(
yz

x
+
zx

y

)
≥

√
xyz2

xy
= z,

1

2

(
zx

y
+
xy

z

)
≥

√
x2yz

yz
= x.

Summing the above terms yields

xy

z
+
yz

x
+
zx

y
≥ x+ y + z = 1. (1)

Using the Cauchy-Schwarz inequality in the Engel-Titu form for the second term in
parentheses in J above, one immediately obtains

y2

z
+
z2

x
+
x2

y
≥ (y + z + x)2

z + x+ y
= 1. (2)

Since the cosine function is decreasing on the interval [0, π/2] and as a result of

inequalities (1) and (2), it follows that cos
(
xy
z + yz

x + zx
y

)
≤ cos 1 and

cos
(
y2

z + z2

x + x2

y

)
≤ cos 1. Therefore,

J =

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
≤
√

3 cos 1.

Finally, note that for each of the above steps the inequalities become equalities if and

only if x = y = z =
1

3
.

Solution 4 by Daniel Văcaru, Pitesti, Romania

One has√
x cos

y

z
+

√
y cos

z

x
+

√
z cos

x

y
≤
√
x+ y + z︸ ︷︷ ︸ ·

√
cos

y

z
+ cos

z

x
+ cos

x

y
=

√
cos

y

z
+ cos

z

x
+ cos

x

y
=

16



√
sin
(π

2
− y

z

)
+ sin

(π
2
− z

x

)
+ sin

(
π

2
− x

y

) ︷︸︸︷
<

√(π
2
− y

z

)
+
(π

2
− z

x

)
+

(
π

2
− x

y

)

=

√
3
π

2
−
(
y

z
+
z

x
+
x

y

)
.

The inequality under the brace is true because sinx < x, ∀x ∈
(
0, π2

)
. On the other

hand, one knows that
y

z
+
z

x
+
x

y
≥ 3 by the MA-MG inequality. Therefore one has

√
x cos

y

z
+

√
cos

z

x
+

√
cos

x

y
<

√
3
π

2
− 3 =

√
3 ·
(π

2
− 1
)
<

√
3 ·
(

32

20
− 1

)
=

√
3 · 12

20
=

3√
(5

=
3

5

√
5.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy; Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece; Albert Stadler, Herrliberg, Switzerland and the proposer.

5510: Proposed by Ovidiu Furdui and Alina Ŝıntămărian both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate
∞∑
n=1

[4n (ζ(2n)− 1)− 1] ,

where ζ denotes the Riemann zeta function.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

∞∑
n=1

(4n(ζ(2n)− 1)− 1) =

∞∑
n=1

(
4n

( ∞∑
m=2

1

m2n

)
− 1

)
=

∞∑
n=1

∞∑
m=3

(
2

m

)2n

=

=

∞∑
m=3

∞∑
n=1

(
2

m

)2n

=

∞∑
m=3

(
2

m

)2

1−
(

2

m

)2 =

∞∑
m=3

4

m2 − 4
=

∞∑
m=3

(
1

m− 2
− 1

m+ 2

)
=

= 1 +
1

2
+

1

3
+

1

4
=

25

12
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

17



∞∑
n=1

[4n(ζ(2n)− 1)− 1] =

∞∑
n=1

[4n
∞∑
k=2

1

k2n
− 1] =

∞∑
n=1

∞∑
k=3

4n

k2n
=

=

∞∑
k=3

∞∑
n=1

4n

k2n
=

∞∑
k=3

4

k2
1

(1− 4
k2

)
=

∞∑
k=3

4

k2 − 4
=

= lim
n→∞

n∑
k=3

[
1

k − 2
− 1

k − 1

]
+ lim
n→∞

n∑
k=3

[
1

k − 1
− 1

k

]
+ lim
n→∞

n∑
k=3

[
1

k
− 1

k + 1

]
+

+ lim
n→∞

n∑
k=3

[
1

k + 1
− 1

k + 2

]
= 1 +

1

2
+

1

3
+

1

4
=

25

12

Solution 3 by Moti Levy, Rehovot, Israel

Let

S :=
∞∑
n=1

(4n (ζ (2n)− 1)− 1) , SN :=
N∑
n=1

(4n (ζ (2n)− 1)− 1) .

Then

SN =
N∑
n=1

((
22n

∞∑
k=2

1

k2n

)
− 1

)
=

(
N∑
n=1

∞∑
k=2

22n

k2n

)
−N

=
∞∑
k=3

N∑
n=1

22n

k2n
=
∞∑
k=3

4

k2 − 4

(
1−

(
2

k

)2N
)

S = lim
N→∞

SN =

∞∑
k=3

4

k2 − 4
=

∞∑
k=3

(
1

k − 2
− 1

k + 2

)

=

∞∑
k=1

1

k
−
∞∑
k=5

1

k
= 1 +

1

2
+

1

3
+

1

4
=

25

12
.

Now, as a bonus, let us evaluate parametrized version of the above sum:

S (t) :=

∞∑
n=1

(
t2n (ζ (2n)− 1)− t2n

22n

)
, SN (t) :=

N∑
n=1

(
t2n (ζ (2n)− 1)− t2n

22n

)
Then

S (t)N =

N∑
n=1

((
t2n

∞∑
k=2

1

k2n

)
− t2n

22n

)
=

(
N∑
n=1

∞∑
k=2

t2n

k2n

)
−

N∑
n=1

t2n

22n

=

( ∞∑
k=2

N∑
n=1

t2n

k2n

)
−

N∑
n=1

t2n

22n
=
∞∑
k=3

N∑
n=1

t2n

k2n
=
∞∑
k=3

t2

k2 − t2

(
1−

(
t

k

)2N
)

S (t) = lim
N→∞

S (t)N =

∞∑
k=3

t2

k2 − t2

18



Let us assume that t is not a positive integer and satisfies the inequality t > −1, then

∞∑
k=1

1

k2 − t2
=
ψ (t+ 1)− ψ (−t+ 1)

2t
,

where ψ (t) is the Digamma function.

ψ (−z + 1) = ψ (z) + π cot (πz)

∞∑
k=1

1

k2 − t2
=

1

2t

(
1

t
− cot (πt)

)

S (t) = t2
1

2t

(
1

t
− π cot (πt)

)
− t2

12 − t2
− t2

22 − t2

=
5t4 − 15t2 + 4− πt

(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
.

We summarize our result as follows,

S (t) =



5t4 − 15t2 + 4− πt
(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
, |t| < 3

lim
t→1

5t4 − 15t2 + 4− πt
(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
=

5

12
, |t| = 1,

lim
t→2

5t4 − 15t2 + 4− πt
(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
=

25

12
, |t| = 2.

Remark: The function S (t) , as defined above, is continuous in the interval |t| < 3.

Reference:
Borwein, Jonathan; Bradley, David M.; Crandall, Richard (2000). ”Computational
Strategies for the Riemann Zeta Function”. J. Comp. App. Math. 121 (1–2): 247–296.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Denote the sum of the problem by S so that S =
∞∑
n=1

∞∑
k=3

(
2

k

)2n

.

Since the summands are positive, so interchanging the order of summation, we have

S =

∞∑
k=3

∞∑
n=1

(
2

k

)2n

= 4
∞∑
k=3

1

k2 − 4
.

For any integer M ≥ 3, we have

4

∞∑
k=3

1

k2 − 4
=

M∑
k=3

(
1

k − 2
− 1

k + 2

)
=

25

12
−

M+2∑
k=M−1

1

k
.

It follows that S =
25

12
.
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Comment by Editor : Ed Gray of Highland Beach, FL wrote: “I didn’t know any
recursive formula that would help, so I did the sum by brute force, computing the sum
of the first 10 terms, getting a result of 2.0828.....This aroused my curiosity, so I went to
Wolfram-alpha and sought the sum for a great number of terms, like 100 and 300. It
became clear that the answer is 2.0833333333 · · · forever. Converting this to a fraction,
we get a beautiful answer of 25/24”. He continued on saying that he did not actually
solve the problem. This is being mentioned here as a very useful heuristic for getting a
feel for the problem, and as a caveat that there are an infinite number of different ways
to express a closed form representation for a specific decimal.

Also solved by Michel Bataille, Rouen, France; Bruno Salgueiro Fanego,
Viveiro, Spain; Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece, and the proposer.

Mea Culpa

Mary Wagner-Krankel of St. Mary’s University in San Antonio, TX should
have been credited with having solved problem 5500.
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